Research Toward Resolving Key Issues for ITER and Steady-State Tokamaks
D.N. Hill, ..., E. Schuster, et al. (Collaboration Paper)
Nuclear Fusion 53 (2013) 104001 (18pp)
Abstract
|
|
The DIII-D research program is addressing key ITER research needs and developing the physics basis for future
steady-state tokamaks. Pellet pacing edge-localized mode (ELM) control in the ITER configuration reduces ELM
energy loss in proportion to 1/fpellet by inducing ELMs at up to 12 x the natural ELM rate. Complete suppression
of ELMs with resonant magnetic perturbations has been extended to the q95 expected for ITER baseline scenario
discharges, and long-duration ELM-free QH-mode discharges have been produced with ITER-relevant co-current
neutral-beam injection (NBI) using external n = 3 coils to generate sufficient counter-Ip torque. ITER baseline
discharges at beta_N ~ 2 and scaled NBI torque have been maintained in stationary conditions for more than four
resistive times using electron cyclotron current drive (ECCD) for tearing mode suppression and disruption avoidance;
active tracking with steerable launchers and feedback control catch these modes at small amplitude, reducing
the ECCD power required to suppress them. Massive high-Z gas injection into disruption-induced 300-600 kA
20 MeV runaway electron (RE) beams yield dissipation rates ~10 x faster than expected from e-e collisions and
demonstrate the possibility of benign dissipation of such REs should they occur in ITER. Other ITER-related
experiments show measured intrinsic plasma torque in good agreement with a physics-based model over a wide range
of conditions, while first-time main-ion rotation measurements show it to be lower than expected from neoclassical
theory. Core turbulence measurements show increased temperature fluctuations correlated with sharply enhanced
electron transport when \Nabla Te / Te^-1 exceeds a critical-gradient scale length. In H-mode, data show the pedestal
height and width growing between ELMs with \Nabla P at the computed kinetic-ballooning limit, in agreement with the EPED model.
Successful modification of a neutral-beam line to provide 5 MW of adjustable off-axis injection has enabled sustained operation at
beta_N ~ 3 with broader current and pressure profiles at higher qmin than previously possible, though energy confinement is lower
than expected. Initial experiments aimed at developing integrated core and boundary solutions demonstrated heat flux reduction
using enhanced edge radiation from neon injection and innovative divertor geometries (e.g. snowflake configuration).