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Abstract The g-profile control problem in the ramp-up phase of plasma discharges is consid-

ered in this work. The magnetic diffusion partial differential equation (PDE) models the dynamics

of the poloidal magnetic flux profile, which is used in this work to formulate a PDE-constrained op-

timization problem under a quasi-static assumption. The minimum surface theory and constrained

numeric optimization are then applied to achieve suboptimal solutions. Since the transient dy-

namics is pre-given by the minimum surface theory, then this method can dramatically accelerate

the solution process. In order to be robust under external uncertainties in real implementations,

PID (proportional-integral-derivative) controllers are used to force the actuators to follow the

computational input trajectories. It has the potential to implement in real-time for long time

discharges by combining this method with the magnetic equilibrium update.
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1 Introduction

During the ramp-up phase of a tokamak discharge
(Fig. 1), multiple external sources (e.g., Ohmic heating,
neutral beam injection, radio frequency) can be used
to control the spatial profile of many different plasma
variables such as density, temperature, current, and ro-
tation. Transport models usually governed by 1-D non-
linear coupled partial differential equations (PDEs) can
be used to predict the plasma dynamics with certain
degree of accuracy (e.g., Refs. [1,2]). Strong nonlin-
earities and model uncertainties add to the complexity
of the problem. In addition to that, multi time scale
phenomena make the problem even more challenging.
For example, the NBI (neutral beam injection) creates
high energy particles and is accompanied by the slow-
ing down process, redistribution of the energy with the
time scale of energy confinement. These time scales are
different from both the particle confinement and the
momentum confinement time scales in general. Thus,
the approximated method of time scale separation (such
as the singular perturbation method [3]) has to be used
to decouple various dynamic processes of different time
scales.

Different from the prediction problem, where inputs

and initial profiles are given to calculate the time re-
sponse, the control problem is to find admissible inputs
that can drive the plasma from given initial profiles to
the vicinity of predefined desired profiles. The solution
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Fig.1 A sample: the total plasma current evolution can be
divided in several phases. In this work we focus on phase
I, which includes the ramp-up phase and the first part of
the flattop phase. The control goal is to drive the magnetic
flux profile from some initial arbitrary profiles to a prede-
fined target profile at some time instant 7" within the time
window [T1,T»] in the flattop phase (color online)
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of this problem aims at saving long trial-and-error pe-
riods of time currently spent by fusion experimental-
ists trying to manually adjust the time evolutions of
the actuators to achieve the desired plasma profiles at
some time instant during the early stage of the flattop
phase 4. As an alternative approach, the data~driven
modeling technique has been applied to the area of cur-
rent profile control, which does not fully use the mod-
els and parameters from the first principle of plasma
physics, e.g., the results from JET 5~7 DII-D ¥ and
the ASDEX Upgrade tokamaks [,

We have recently proposed some advanced nonlinear
optimization techniques (e.g., extremum-seeking [10]
and sequential quadratic programming 1) to solve
this very challenging problem, and we have used them
for the control of the current profile evolution during
the ramp-up phase of discharge in the DITI-D tokamak.
Instead of solving the PDE-constrained optimization
problem, which is often computationally costly, we can
interpolate the transient dynamics by connecting the
initial to the desired final profiles. By choosing two
feasible curves satisfying the spatial boundary condi-
tions to connect the initial to the desired final profiles
at both boundary points, an optimal surface spanned
by the four-edge frame (two boundary curves, initial
and desired final profiles, see Fig. 2) can be obtained
by solving a 2-D nonlinear elliptical PDE arising from
the minimal surface theory in differential geometry (see,
e.g., Refs. [12,13]). This surface, which represents the
desired transient dynamics, satisfies the boundary con-
ditions and minimizes the dynamic fluctuations. Thus,
the ramp-up-phase final-time optimal control problem
becomes a trajectory tracking problem. The computa-
tional optimal trajectories can be directly implemented
to the current profile control but it can not attenuate
external noises and the errors driven by the modeling
uncertainties. Thus, feedback control should be used
to enhance the system robustness. Besides the feed-
back control synthesis based on the data-driven identi-
fication models in Refs. [5~7], the robust optimal con-
trol approach [14] has been applied to the current profile
control at DITI-D [15~18],
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Fig.2 The four-edge frame including the initial magnetic
flux distribution ¢ (p,%0) and the desired target magnetic
flux distribution ¥%(p) at the final time #;. At the bound-
ary p = 0 and jp = 1, we connect 10 (0) and ¥ (0) to generate
smooth transient dynamics for (0, ), and 10 (1) and ¥ (1)
to generate smooth transient dynamics for (1, ¢) (color on-
line)
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Knowing the desired temporal-spatial evolutions,
both spatial and temporal derivatives of the distributed
profiles can be computed. Thus, at each time instant
the transport PDEs degenerate to algebraic equations
at every spatial point where the control values are the
only unknowns. Optimization problems can be formu-
lated to solve the algebraic equations by taking into ac-
count the control constraints (see, e.g., Refs. [19,20]).
By using this proposed technique, the ramp-up current
profile optimal control problem can be formulated into a
least-square problem with algebraic constraints, which
is much less computationally demanding.

The paper is organized as follows. The optimal con-
trol problem for the current profile system is introduced
in section 2. The transient dynamics defined by the
minimal surface theory is presented in section 3. In
section 4, algebraic equations for the unknown control
values are formulated at each time instant and are later
solved by the least square method. Simulation studies
are presented in section 5. The paper is closed in section
6 by stating conclusions and future research remarks.

2 Statement of the control prob-
lem

2.1 Control-oriented model

Dynamics of tokamak fusion plasmas is quite com-
plicated and the main reason is the coupling between
various physical responses of different time scales. In
addition to the accuracy of actuators, the discrepancies
between the desired control trajectories and the actual
ones are unavoidable. Thus, compensation based on ad-
vanced control techniques is needed to enhance the ro-
bustness. To enable model-based control of the current
profile at DIII-D, a control-oriented model for the dy-
namic evolution of the poloidal flux profile during and
just after the ramp-up of the plasma current has been
recently proposed I, During “Phase I’ (see Fig. 1),
mainly governed by the ramp-up phase, the plasma cur-
rent is mostly driven by induction. In this case, it is
possible to decouple the equation for the evolution of
the poloidal flux (4, t) from the equation for the evolu-
tion of the temperature 7,(p, ). The magnetic diffusion
equation is combined with empirical correlations ob-
tained at DITI-D for the temperature and non-inductive
current to introduce a simplified dynamic model de-
scribing the evolution of the poloidal flux during the
inductive phase of the discharge. The technique using
separation of time scales has been already applied to
the current profile control of tokamak fusion plasmas,
such as JET 4~0] and DIII-D [10:21],

The current density j, that flows toroidally around
the tokamak and whose profile must be controlled, is
related to spatial derivatives of the poloidal magnetic
flux 1. We let p be an arbitrary coordinate indexing
the magnetic surface. Any quantity constant on each
magnetic surface could be chosen as the variable p. We
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choose the mean geometric radius of the magnetic sur-
face as the variable p, i.e., 7TB¢,Qp2 = ®, where By is
the reference toroidal magnetic field at the geometric
plasma center Ry. The variable p denotes the normal-
ized radius -%, and py, is the radius of the last closed
flux surface. The evolution of the poloidal flux in nor-
malized cylindrical coordinates is given by the magnetic
diffusion equation,
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where ¢ is the time, v is the poloidal magnetic flux, n
is the plasma resistivity, T, is the plasma electron tem-
perature, £ is the vacuum permeability, jn7 is the non-
inductive source of current density (neutral beam, elec-
tron cyclotron, etc.), B is the toroidal _magnetic field,
and <> denotes flux-surface average. F', G, H are ge-
ometric factors, which are functions of p, independent
of the time variable for a given magnetic equilibrium.
The boundary conditions of Eq. (1) are given by
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where I(t) denotes the total plasma current.

Highly simplified models for the temperature and
non-inductive toroidal current density are chosen for
the inductive phase of the discharge. Based on experi-
mental observations at DIII-D, the shapes of the profiles
are assumed to remain fixed and equal to the so-called
reference profiles, which are identified from DIII-D dis-
charges associated with the experiment of interest. The
responses to the actuators are simply scalar multiples
of the reference profiles.

The temperature T, is assumed to follow

I(t)VP
— 3)
n(t)
where the reference profile TP™fl® is identified from
DIII-D through Thomson scattering, and kr. =
1.7295 x 10 n -3A—1w-1/2 The average density 7
is defined as n(t fo t)dp, where n denotes the
plasma density and P the total power of non-inductive

current drive.

The non-inductive toroidal current density 5%?

To(p,t) = kre TP ()

is assumed to follow
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where the reference profile ]ﬁ&%?re is identified from
DIII-D through a combination of MSE (motional
Stark effect 2} diagnostics and the EFIT equilib-
rium reconstruction code 2% 24] and kntpar = 1.2139 X
1018 m~9/2A-1/2W—5/4, ThemodelforT andSLB>

presented above considers neutral beams as the only
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source of current and heating. In the case where more
heating and current sources are considered, Egs. (3)
and (4) should include the weighted contributions of
the different sources, and reference profiles need to be
identified for each heating and current source. The re-
sistivity n scales with the temperature T, as n(p,t) =

kegZeo
—sfi T where Zog = 1.5, and kug = 4.2702x10~5 Q.
(p,1)
: (kGV)S/Z. By introducing
~ keffZeff 1
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the normalized poloidal magnetic flux can be rewritten
as

1 oY
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(5)
All the parameters mentioned above are listed in Ta-
ble 1. The control inputs u; and wuy are functions of
physical actuators such as the total power P of the
non-inductive current drive, the total plasma current
I, and the average density 7, i.e.,

Ul(t) — ,'71/1.5[—1.5P—O.757 UQ(t) —

PO I (6)

Table 1. A description of the parameters
Parameters Description
¥ Poloidal flux
n(T) Plasma resistivity
T, Electron temperature
n Plasma density

po = 4m X 10_7(%) Vacuum permeability

pp = 0.79 (m) Radius of last closed flux surface

Uy, Toroidal flux in the last closed flux
surface

Bg,o =185 (T) Reference magnetic field at Ro

Ro = 1.668 (m) Reference point for Bg o
(e.g., geometric center of plasma Rgeo)
p Normalized radius ﬂ—ﬂb
F , G, H Geometric factors
INT Any non-inductive source of current
density
(neutral beam, electron cyclotron, etc.)
<> Flux-surface average
j Toroidal current density
E Toroidal electric field
I Plasma conductivity
I Total plasma current
Piot Total power of non-inductive current
drive
n Spatially average density

The poloidal magnetic flux at the spatial boundaries
is determined by the Neumann conditions

W

_(07t):07 aA

7 (1,8) = kus(t),



where k is a constant. The initial condition for the
magnetic flux profile is given by ¥(p,10) = 1o(p).

This proposed method takes advantage of the time
scale discrepancies between various physical variables,
mainly the normalized poloidal magnetic flux (5, 1)
and the temperature profile To(,t), by neglecting the
time evolution of 7.(p,t) and replacing it by a rigid
empirical relationship (i.e., without considering the re-
sponse delays in Eqgs. (3) and (4), respectively). A fur-
ther combination of the current quasi-static assumption
and the sequential update of the magnetic equilibrium
is needed when the evolution of equilibrium at the ini-
tial current ramp up phase is not negligible.

2.2 Cost functional and constraints
In practice, the toroidal current density is usually
specified indirectly by the safety factor which is de-
-1 -1
A A av(p,
fined as q(p,t) = [gip} By opip = {ﬂag_fl} . The

3]
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constant relationship between ¢ and p, p =

The control objective is to find control inputs P(¢) and
I(t) that minimize the cost functional

S 2 s
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where ¢9(p) is the desired target profile at time t¢, and

the positive constants vy, vp and 5 are control weight-

ing factors. The control actuators may need to satisfy

constraints such as:

9 <r<1?,
R<P<P, |; (8
ﬁlgﬁgﬁu

Magnitude saturation :

Rate saturation : m <1, 9)
dt v

Initial and final values : I(tg) = Iy, I(ts) = Ir, (10)

where II(O) and Lgo) represent the lower and upper

bounds of the current actuation function 7(¢) while o
represent the upper bound of rate. P, and P, represent
the lower and upper bounds of the total power. i) and
ny represent the lower and upper bounds of the line
average density. This is set to prevent density instabili-
ties and disruptions. The upper limit of the line average
density is approximately half of the Greenwald limit at
DIII-D. More interestingly, we have fixed starting and
ending values (Ip and It, respectively) for the current
actuation function.

The waveforms generated by the proposed optimiza-
tion algorithm in this work are the references for the
controllers associated with the plasma current I(¢), line
averaged density 7(t), and beam power P(¢). In the
case of the plasma current, a PID loop regulates the
ohmic coil voltage Vigop at DIII-D to make the plasma

406

Plasma Science and Technology, Vol.15, No.5, May 2013

current measured by a Rogowski loop (which includes
both inductive and non-inductive current components)
follow the desired waveform generated by the optimiza-
tion algorithm. Similarly, a PID loop regulates gas
puffing and pumping to make the line averaged density
measured by a CO; interferometer follow the optimal
waveform. The power of the current drive is directly
controlled by the power supplies associated with the
drive. Recent experiments in DIII-D have shown the
possibility of controlling both plasma current and beam
power very accurately. However, the control of the evo-
lution of the line average density appears as more chal-
lenging.

3 Transient dynamics design

3.1 Edge design

By noting %%i = r;,thzﬁ,oP%ﬁ and naturally holding
giﬁ(ﬁ = 0,%) = 0, a desired target magnetic flux pro-
file at the final time t¢, i.e. ¥(p, 1) = ¥(p), can be

obtained by integrating the desired output ¢9(5) over
0,4], (0 < p < 1)

p
) =0+ [ < Baoedo, (11

o 940
where either 4(0) or ¥4(1) need to be fixed to obtain
the desired +%-curve shown in Fig. 2. We can determine
the left (1(0,t9) 1(0,t¢)) and vight (1(1,t9), ¥(1,t))
boundary values by using the compatibility conditions:
¥(0,20) = %0(0), ¥(1,t0) = wo(1), ¥(0,tr) = ¥*(0)
and ¥(1,#) = ¥9(1). Thus, we add a sequence of
points {@b(O,Ti)}le ,T; € (T, 1), between ¥(0,tg) and
(0,1r), and a sequence of points {1/}(1,Tj)};—1=1 T €
(to,tt), between (1,%0) and (1,%) to represent the
left and right boundary evolution conditions (Dirichlet
boundary conditions) via spline interpolations. There-
fore, we obtain the four-edge frame shown in Fig. 2,
where the surface within this frame representing the
desired transient dynamics still needs to be defined.

3.2 Minimal surface

In Fig. 3, we define M = {0 <p <1,4p <t <t} in
the pgt-plane with the boundary denoted by OM. We
define a three dimensional curve 9S £ FE ~ F ~ G ~
H ~ F over OM, which can span a surface S in infinite
ways. In this work, the minimal surface theory is used
to define a unique surface within the frame and min-
imize transient fluctuations. We discuss the detailed
theory and algorithms in the rest of this subsection.
Besides the minimal surface theory, other approaches
such as the spline interpolation surface methods can
be also used to construct the transient dynamics. The
construction of transient dynamics can utilize the priori
experience from historic data to achieve smooth transi-
tion in an off-line fashion.
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Fig.3 Surface integral. The surface S over domain M
is expressed by z = v¥(p,t), V(p,t) € M. The coor-
dinate of A is (po,to,20), where zo = ¥(po,t0). The
coordinate of B is (po,to + dt, zo + ¥t(po, to)dt), where
¥e(po,to) = Z(po,to), and dt is the length of the
line element AB on the t-o-p plane. The coordinate
of D is (ﬁo + dp, to, zo +d)ﬁ(ﬁo,to)dﬁ), where d)ﬁ(ﬁo,to) =

g_?(ﬁo, to), and dp is the length of the line element AD on
the ¢-0-p plane. TPen, the vector AB is (0,dt, 4 (o, to)dt)
and the vector AD is (dp,0,%4(po,t0)dp). Therefore, the
area of the element JABCD is ’A}? X Aj)’

= [(=45(po, to)dpdt, —p (po, to)dpdt, dpdt)|

= \/ 1+ 92 (o, to) + 2 (po, to)dpdt (color online)

We use z = (p,t) to express the surface S. As
shown in Fig. 3, the minimal surface problem can be
stated as the following optimization problem:

min / /M I+ 02 (.0 + 07 (b, Ddpdt,  (12)

P(h:t)

subject to: (p,1)[g 0 = g(p,t) &

Yo(h), pc0,1],t =to,
Spline (¥(0.£0). {¥(0. T oy 0(0.1)) T € (10,10,
Spline (¥(1,t0), (9L, T)H_, (1 1)) , Ty € (to, 1),

i), pel0 1] t=t,

where OM is the boundary of the domain M and satis-
fles OY(p,t)/0p s=0 = 0. There are very few examples
of minimal surfaces that can be expressed analytically.
Nonlinear programming (NLP) can be used in general
to find a numerical solution minimizing the area func-
tional, but it is often computationally costly. Alter-
natively, by using the FEuler-Lagrange equation in the
calculus of variations ['3], the minimal surface problem
(12) can be reformulated as a nonlinear elliptic PDE:

0 Vi 0 Yt
5 | —=—
WNJ1+e2+92) O\ J1+y2+93

(0, D)lorg = 9(0:1)- (13)
This is called the minimal surface equation, which
is impossible to solve analytically in general and nu-
merical algorithms such as the finite element method
(FEM) %] or the finite difference method (FDM) [20]
can be used to obtain numerical solutions.

=0,

One challenge arising from the implementation of the
minimal surface theory for the definition of the tran-
sient dynamics of the magnetic flux is the satisfaction
of the boundary conditions. In this problem, a Neu-
mann boundary condition at p = 0 must be satisfied.
However, such a spatial derivative requirement is not
taken into account by the minimal surface Eq. (13). To
overcome this challenge, we decompose the domain into
sub-domains and solve the minimal surface equation
(nonlinear elliptic PDE) over each sub-domain with
overlapping boundaries. In order to define a transient
dynamics satisfying the zero Neumann boundary condi-
tion at p = 0, we split the domain into two sub-domains
M = M7 UM, where M is a narrow region of width
Ap along the p = 0 boundary (Fig. 3). By properly
defining the Dirichlet boundary conditions for M, it
is possible to approximately satisfy the zero Neumann
boundary condition at g = 0.

4 Control computations

4.1 Scalar analysis

In plasma discharge experiments at the DIII-D toka-
mak, the total power P(t), the total plasma cur-
rent I(t), and the average density 7(t) are of order
105 W, 10% A, and 10" m~? respectively. The coeffi-
cients ¥1(p) and J2(p), which vary with respect to g,
are of order 10713 and 10'3, respectively. The poloidal
magnetic flux 1(4,1), which varies with respect to both
the normalized radius and time, is of order 10~!. The
other variables in Eq. (5) are of order 1. Thus, we can
estimate the orders of all the terms in Egs. (5) and (6):

T B 10, uy (1) ~ 10, us (1)1 2 {ﬁD(p)%} ~
10, up(t) ~ 1073 and J2(p)us(t) ~ 10*°. Therefore,
the interior control term J2(p)ua(t) is small in compar-
ison to other terms in Eq. (5).

4.2 Least square scheme

We consider a grid division (4;,¢;) in the temporal-
spatial domain M = {0 < p<1,0<t <ts}: 0=p1 <
<. . <pp<...<py=landtg=1t <la<...<
t; < ... <ty =1t;. We assume that the desired tran-
sient dynamics is obtained by solving the minimal sur-
face Eq. (13) and is denoted by (p,t) over M. Then,
we can compute the boundary control through the Neu-
mann boundary condition (7), us(t,) = %%(1, tn),
n=12,...,N.

Based on the results of our order analysis, we let the
interior control uz = 1072 and rewrite the PDE system
(5) as the following linear system

10 o 1 oy

—— |pD(p)=— 1) = ——— +92(p)ua(t), (14
235 D055 | 00 = 5o 5+ om0, (10
where u; must be obtained at t,, n =1,2,...,N. For
each t,, n = 1,2,..., N, Eq. (14) can be satisfied at
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each spatial node p,,, m =2,3,..., M, ie.,

Ay yur(tn) = by =1,2,..., N, (15)
where
8 [apa 8db2.tn)
55 [PD( )5—2}
M= : ) (16)
o OV (Paritn
A2 [pD(p)2iiita)]|
(P2t
TRy 2zta) 9y (pa)ua(tn)
2 M = : . (7

OP(fag b . A
ﬂl(;M)—¢(p3Af tn) +'l92(pM)u2(tn)

Without considering any actuation constraint, we can
obtain the least square solution of the linear system
(15) as

-1
Wl =wi(tn) = {[A5]) " 480} [A500]) b3 r
(18)
In general, we can formulate the following optimization
problem in the presence of actuation constraints:

1 1 , .
Inin §ﬂ1|\u1|\2 +3 nz::lﬁm | A5 ppua (tn) — bZ,MH2 ;

(19)
where wy = (uy(t1),...,u1(tn), ., ur ()T, B and
B2,» are positive weighting constants and If is the ad-
missible control set defined by Egs. (8)~(10) at t = ¢,
n=1,2,...,N. This is a quadratic programming prob-
lem which can be solved relatively quickly.

4.3 Computational derivatives

The matrices in Eq. (15) include both the temporal
and spatial derivatives of the desired transient dynam-
ics @/;(pA, t) over My, = (Bm.tn), m=1,2,..., M and
n=1,2,...,N. Using the discrete values @L(ﬁm_l, tn),
@/;(ﬁm, t,) and @/;(pAm_H, t,) defined on a uniform grid, we
can obtain the spatial second-order difference formulas:

apA 1sin 2Aﬁ )
aqj} ~ dy(ﬁm-klv tn) B d,(ﬁm’ tn)
aﬁ(pmytn) ~ 2Aﬁ 9 m C [27M71L
. N V(par—2,tn) — 40(prr—1, tn) + 38%(par, tn)
_A(pM7tn) ~ ~
0p 200
where Ap is the spatial step length. The term

%8% [ﬁD(ﬁ)%’;’gil} is computed using similar

second-order difference formulas in terms of the pre-
viously obtained %’E’t”) for m = 1,2,..., M. The
temporal difference formulas are obtained following an
identical procedure.
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5 Numerical example

The geometrical parameters D(5), 91(p) and Y2()
in model (5) are shown in Fig. 4, which are identified
from experimental data. Given the initial and desired
profiles of the magnetic flux ¥(g,t) in Fig. 5, we use
splines to define the boundary evolutions over M,
which are shown in Fig. 6. This formulates a four-edge
frame without giving the detailed transient dynamics.
The minimum surface theory is proposed in this work to
generate a smooth dynamic evolution incorporating pri-
ori experimental experience and constraints. However,
it is not necessarily feasible to find a unique surface
minimizing the area functional of the surface spanned
by a general framework according to the differential ge-
ometry theory. Thus, in this work we make domain
decompositions to obtain sub-patches and implement
minimum surfaces over each patch. For example, we
decompose the whole time-space domain into two sub-
domains M; and Moy, as shown in Fig. 7. Alterna-
tively, spline interpolation of surfaces is also a good
method to the surface generation but it requires more
control points over the domain compared to the min-
imum surface theory. We generate a triangular grid
division over the domain M = M; U M, as shown in
Fig. 7. Then, we use the finite element method to solve
the minimal surface equation over both M; and M.
We solve the minimal surface Eq. (13) over the discrete
nodes in both M; and M, using the finite element
method.
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Fig.4 Diffusivity coefficient D= FGH, coefficients
91(x107) and ¥2(x10'%) versus the normalized
radius p (color online)
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Fig.5 The initial and desired profiles (color online)
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Fig.6 The left and right profiles (color online)
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Fig.7 The triangular grid for FEM computations (color
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In order to formulate the linear algebraic Eq. (15),
we compute every term in Eq. (5) in terms of both the
temporal and spatial derivatives using various finite dif-
ference schemes, which are shown in Fig. 8. Noting
that %%(ﬁ = 0,t) has a steep connection to 0 for all ¢

in Fig. 8, then singularity (type—%) appears when com-
puting the g-profile using the definition

R By o0ppp
(b,8) = =55~

9p

(20)

Therefore, the I'Hopital law has to be used to compute
the g-profile at the origin, i.e.,

B 2p
q(0,t) = lim —5p = im .
=0 5‘% =0 3;2[) (p7 t)

We obtain the control functions shown in Fig. 9 where
we let uz(t) = 1073, Thus, we can obtain the physical
actuators (denoted by P,, I, and n,) taking into ac-
count the definitions (6) and (7). Using the obtained
actuator functions, we simulate the PDE system (5)
with boundary conditions (6). The obtained control
functions can drive the system to the vicinity of the de-
sired profile with a shape similar to the desired profile.
This is illustrated in Fig. 10, where desired and actual
flux profiles are compared to the initial profile. The er-
ror of y-profiles at the final time #; seems to be rather
constant with respect to space, which implies that the
desired shape for the g-profile is achieved. Fig. 11 com-
pares the desired g-profile with the actual g-profile at
time ;. As shown in Fig. 11, one can observe that the
controlled g-profile at ¢ = £y has a much better match
to the desired target over the interval 0.05 < p < 1 and
is sensitive over the interval 0 < 5 < 0.05 due to
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Fig.8 Computational derivative (color online)
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Fig.9 Computed control functions (color online)
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Fig.11 Controlled g-profile (color online)

boundary singularity compared to the initial g-profile.
The explanation is that the PDE system (1)-(2) is a
simplified model oriented for control that could not cap-
ture the exact physics on the boundaries but provides
a good approximation within the interval. The rather
constant flux error may be used to redefine ¥4(0) (or
14(1)) during the definition of the desired magnetic flux
target profile.
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6 Conclusion

The open-loop finite-time optimal current profile
control problem arising in tokamak plasmas during the
ramp-up phase of the discharge is solved by using the
minimal surface theory and the least square method
(or the quadratic programming method when actuation
constraints are taken into account). The minimal sur-
face theory is used to generate the desired transient dy-
namics and then a tracking problem can be formulated
for the current profile control. Knowing the transient
dynamics, every term containing both temporal and
spatial derivatives in the control-oriented PDE model
can be computed using the finite difference method.
Thus, the control-oriented PDE model becomes a set
of algebraic equations where the only unknowns are the
control functions at different instants of time.

Taking into account the control constraints, we can
reformulate these algebraic equations as a quadratic
programming problem. When no actuator constraint
needs to be taken into account, the quadratic program-
ming problem is simplified to a simple least square
problem. Numerical studies demonstrate that this ap-
proach can significantly reduce computational effort,
showing potential for real-time implementation in a
closed-loop receding-horizon scheme, particularly for
long-discharge tokamaks such as ITER.

Simulation results show that the numerical optimiza-
tion procedure can generate control trajectories driving
the final y-profile to the proximity of a predefined de-
sired profile. Future work includes the implementation
of this method directly in terms of the ¢ variable in or-
der to eliminate relatively spatially-constant matching
errors that can appear in the 1 variable, which are in-
deed not important. Alternatively, an iterative scheme
can be designed where the matching error is used to
redefine the desired magnetic flux target profile, and
therefore the transient dynamics, for the following iter-
ation.

The quasi-static magnetic equilibrium assumption is
used in this work and the update of equilibrium evolu-
tion can be incorporated directly in this framework. In
the real experimental implementation, we also need to
develop a feedback controller to track the nominal tra-
jectory generated by the open-loop computation due to
external noise and uncertainties. The PID control is the
most popular model-free methodology used in practise
and very easy to implement. When the computational
trajectories are implemented in real experiments, PID
controllers dynamically change the actuators to remain
the optimal computational results.
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