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Abstract— A numerical free-boundary equilibrium (FBE)
solver, based on finite-difference and Picard-iteration methods,
has been recently developed on a rectangular grid to compute
the poloidal-flux distribution in tokamaks. An accelerated ver-
sion of this computationally intensive numerical solver, named
FBE-Net, has been developed in this work by leveraging the
physics-informed neural network (PINN) method. Within this
framework, the neural-network (NN) component employs a
fully connected multilayer perceptron (MLP) architecture. Crit-
ically, the underlying physical constraints are defined by the
Grad–Shafranov (G-S) equation, ensuring the NN-based solver
adheres to essential governing principles. FBE-net is trained on
a dataset generated by the numerical solver, which serves as a
source of ground truth. The inputs for FBE-Net are the plasma
current, the normalized beta, and the coil currents, while the
outputs are the poloidal-flux map and a set of flux-averaged equi-
librium parameters. When compared to the numerical solver, the
NN-based solver displays a significant increase in computational
efficiency without notably sacrificing accuracy.

Index Terms— Free-boundary equilibrium (FBE) solver,
Grad–Shafranov (G-S) equation, physics-informed neural net-
work (PINN).

I. INTRODUCTION

IN MAGNETIC confinement fusion devices such as toka-
maks and stellarators, plasma equilibrium is crucial for a

wide range of applications. It is not only essential for physics
analysis, including the study of magnetohydrodynamic (MHD)
instability, transport, and turbulence but also plays a pivotal
role in scenario development. These scenarios encompass
diverse plasma shapes, including circular, noncircular, and
configurations with X-points where the toroidal and poloidal
magnetic fields undergo significant changes. Plasma equilib-
rium is vital for both addressing issues in existing tokamaks
and designing new machines, impacting the entire discharge,
from startup and ramp-up to the flat-top phase and ultimately,
the controlled plasma termination in the ramp-down phase.

It is thus of paramount importance to develop solvers
to address the complexities of the plasma equilibrium, pri-
marily governed by the well-known Grad–Shafranov (G-S)
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equation [1], [2]. The solvers are dominantly categorized into
two distinct types, i.e., fixed-boundary and free-boundary equi-
librium (FBE) solvers. Fixed-boundary equilibrium solvers [3],
[4], [5] make two key assumptions. First, they prescribe the
shape of the plasma cross section, such as a circular or elon-
gated shape, and its position within the vacuum vessel. Second,
they express the right-hand side (RHS) of the G-S equation,
i.e., the toroidal plasma current density (Jφ), either in a linear
form [5] or as a constant [3], [4]. Thus, the G-S equation
can be analytically solved due to this simple assumption on
its dependence on the toroidal plasma current density. Fixed-
boundary equilibrium solvers are widely used in studies of
MHD instability and particle and heat transport, where simple
plasma equilibrium states (e.g., prescribed plasma boundary)
are required. In contrast, FBE solvers [6], [7] are designed
to solve the G-S equation when the plasma boundary is
not predefined but rather determined as part of the solution
process. The FBE solver becomes indispensable when seeking
to comprehend the dynamics of plasmas with evolving bound-
aries, especially in scenarios involving external coil currents
as actuators for shape control. The inherent nonlinearity in the
RHS of the G-S equation demands numerical solutions, often
involving iterative processes. As a result, FBE solvers are more
computationally demanding than fixed-boundary equilibrium
solvers since they demand intensive numerical calculations on
spatial grids.

To accelerate the computation process of an FBE solver,
it becomes both practical and essential to devise a fast
surrogate solver using neural network (NN) methodologies.
Recently, NN-based FBE solvers and reconstructions algo-
rithms [8], [9], [10], [11] have been developed to predict the
poloidal-magnetic-flux rapidly while maintaining impressive
accuracy. Notably, studies such as [8] and [10] incorporate
governing physical principles or constraints into their NN
models. By integrating constraints, they can align the pre-
dictions with the underlying physics (i.e., the G-S equation)
while also demonstrating some level of robustness when
extrapolating beyond the training data. Most of the previous
work, including [9], [10], [11], has focused on the development
of NN-based surrogate models for reconstruction algorithms
like EFIT [12] where data from from flux loops and magnetic
probes are used as inputs to the model. Building on prior
knowledge, two types of NN-based FBE solvers are proposed
in this work for EAST [13]. These two NN-based FBE solvers,
which are named FBE-net1 and FBE-net2, do not use any type
of magnetic measurements as inputs. FBE-net1 is based on
the multilayer perceptron (MLP), while FBE-net2 incorporates
the innovative architecture of physics-informed NNs (PINNs)

0093-3813 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on February 20,2025 at 14:16:42 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1762-0663
https://orcid.org/0000-0002-2164-1582
https://orcid.org/0000-0001-7703-6771


4148 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 52, NO. 9, SEPTEMBER 2024

Fig. 1. Rectangular grid used for the numerical equilibrium solver.

[14] by incorporating the G-S equation directly into its loss
function. As a difference from previous recent work, the
proposed NN-based FBE solvers draw their ground truth data
from a MATLAB-based numerical FBE solver [15]. The NN-
based solver is designed to operate in direct mode [7], where
the inputs are the plasma current Ip, the normalized beta
βp, and 16 poloidal coil currents. It is ultimately designed
to be integrated into Control Oriented Transport SIMulator
(COTSIM). In COTSIM, a 2-D equilibrium solver is used
to provide flux-averaged equilibrium parameters, which are
required by the transport equations for the poloidal magnetic
flux, heat, particle, and momentum. Since the NN-based
solver can run much faster than the original numerical FBE
solver, its integration in COTSIM would facilitate testing of
integrated equilibrium + transport feedback-control algorithms
as well as fast scenario planning by model-based feedforward
optimization [16].

This article is organized as follows. The collection, gen-
eration, and division of the dataset used for NN training are
presented in Section II. Both the structures of the NNs and
the training procedures are introduced in Section III. The
performance of the NN-based solver is assessed in Section IV.
Conclusions and possible future work are stated in Section V.

II. DATASET GENERATION AND DATA PROCESSING

To achieve a robust understanding of plasma dynamics,
generating a precise and varied dataset is of paramount impor-
tance. The dataset used to train the NN-based solver, which
is instrumental in establishing a foundational ground truth,
is collected from the execution of a MATLAB-based numerical
equilibrium solver [15]. The solver uses a wide range of
input conditions to generate 8455 feasible equilibrium states
for the plasma. Specifically, data are created by manipulating
parameters such as the plasma current (Ip), poloidal beta (βp),
and 16 poloidal field (PF) coils within a defined spectrum,
ensuring comprehensive coverage of possible scenarios. The
value of Ip is selected within the range of 0.32–0.5 MA
at 0.01 MA intervals, while βp values are chosen from the

interval 0.2 to 0.8 with a step size of 0.01. The maximum,
minimum, mean, and standard deviation values for all the PF
coils are presented in Table I.

A. Numerical Equilibrium Solver

Recently, a numerical FBE solver [15] using the finite
difference method (FDM) has been developed entirely within
the MATLAB environment. The G-S equation is solved on a
rectangular grid by leveraging the Picard iteration method [17].
The numerical FBE solver typically takes a maximum of 10 s
to converge to an equilibrium solution. This solver has been
cross-verified with fixed-boundary solvers [5], free-boundary
solvers (i.e., FEEQS.M [18]), and compared with experimental
equilibrium reconstruction data from codes like EFIT. In this
section, a concise overview of the numerical equilibrium
solver is offered, explaining its operational mechanics and
highlighting its distinctive attributes as an essential tool for
generating the required dataset.

In the cylindrical coordinate system (R, φ, Z ), the φ com-
ponent is deemed negligible due to the assumption of toroidal
axisymmetry in tokamaks. The FBE equation is derived from
the force balance equation in axisymmetric tokamak geometry

1∗ψ(R, Z) = −µ0 R Jφ(R, Z) (1)

where ψ is the poloidal stream function and µ0 is the perme-
ability in vacuum. The toroidal current density Jφ depends on
different regions

Jφ(R, Z) =


Rp′(ψ)+

f f ′(ψ)

µ0 R
, in plasma area �pl

Ik

Sk
, in coil k

0, elsewhere

(2)

where p(ψ) is plasma kinetic pressure, f is the diamagnetic
function f (ψ) ≡ RBφ , Bφ is the toroidal magnetic field, Ik

and Sk are the current and cross section of external conductor
coil k, and the prime symbol denotes the gradient with respect
to ψ . The operator 1∗ is defined as

1∗
≡ R

∂

∂R

(
1
R
∂

∂R

)
+

∂2

∂Z2 . (3)

As shown in Fig. 1, the 2-D cross section is defined in a
rectangular computational domain (Ri , Z j )

Ri = Rmin + δR × (i − 1), Z j = Zmin + δZ × ( j − 1). (4)

The small-size steps in the R- and Z -directions are defined as

δR =
Rmax − Rmin

NR − 1
, δZ =

Zmax − Zmin

NZ − 1
where NR and NZ are the number of grid points in the R- and
Z -directions, respectively (i = 1, . . . , NR , j = 1, . . . , NZ ).
They are both set as 65 in this work. The derivatives of the
2-D (R, Z) G-S operator 1∗ in (3) can be approximated as

∂ψ

∂R

∣∣∣
j,i

≃
ψ j,i+1 − ψ j,i−1

2δR
∂2ψ

∂R2

∣∣∣
j,i

≃
ψ j,i+1 − 2ψ j,i + ψ j,i−1

(δR)2

∂2ψ

∂Z2

∣∣∣
j,i

≃
ψ j+1,i − 2ψ j,i + ψ j−1,i

(δZ)2
. (5)
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TABLE I
MAXIMUM, MINIMUM, MEAN, AND STANDARD DEVIATION VALUES FOR 16 PF COILS

TABLE II
LIST OF INPUTS AND OUTPUTS OF NN-BASED SOLVERS

The 1∗ψ term in (1) is rewritten based on the approximations
in (5)

1
(δZ)2

ψ j−1,i +

( 1
(δR)2

+
1

2Ri (δR)

)
ψ j,i−1

− 2
( 1
(δR)2

+
1

(δZ)2

)
ψ j,i +

( 1
(δR)2

−
1

2Ri (δR)

)
ψ j,i+1

+
1

(δZ)2
ψ j+1,i = −µ0 Ri Jφ j,i (6)

in which ψ j,i denotes ψ(Ri , Z j ) and Jφ j,i represents
Jφ(Ri , Z j ). Furthermore, (6) can be simplified as

Aψ = b ⇔ ψ = A−1b (7)

where A is a constant matrix and the matrix b depends on Jφ .
It should be emphasized that the boundary of Jφ is excluded

from (6) by choosing i ∈ (1, NR) and j ∈ (1, NZ ). The bound-
ary is assumed to adhere to a Dirichlet boundary condition [6].
A Picard iteration is implemented as

1
(δZ)2

ψn
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( 1
(δR)2

+
1

2Ri (δR)

)
ψn

j,i−1

− 2
( 1
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+
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ψn

j+1,i = −µ0 Ri J n
φ j,i

(
ψn−1

j,i

)
(8)

where n represents the iteration number. Given an initial
assumption for J 0

φ j,i , the value of ψ0
j,i can be derived from (8).

Subsequently, J 1
φ j,i is updated based on (2), i.e., J 1

φ j,i =

Jφ(ψ0
j,i ). The process iteratively computes the numerical

solutions for J n
φ j,i and ψn

j,i until the convergence criterion,
specifically ∥ψn

j,i − ψn−1
j,i ∥ < 10−4, is satisfied.

TABLE III
DETERMINE HYPERPARAMETERS VIA METHODICALLY SCANNING

B. Data Normalization

The proper scaling of input and output data, as detailed in
Table II, is crucial for optimizing the NN training efficiency.
An attempt to train the NN model based on unnormalized
data may inadvertently impede the learning progression or
in extreme cases, cause it to stop entirely because of issues
like gradient explosion. Such problems arise when the hidden
units become saturated [20], causing a loss of clarity and
making it challenging to effectively train the NN-based solver.
To address these problems often arising during training, this
work makes use of the normalization approach delineated
in [21]. This normalization approach ensures data scaling
within the [0.01, 1] range, enhancing numerical stability and
preventing vanishing gradient issues due to the sensitivity of
activation functions to very small inputs. This method not
only makes the training process better, but it also keeps the
advantage of being able to easily switch back the predictions
to their original scale.

III. NN MODEL AND TRAINING

This section explores the details of the chosen NN model
and its training approach for the NN-based solver. Initially,
a comprehensive examination of the foundational MLP, named
FBE-net1, is presented, highlighting its architectural design
and performance characteristics. Following this, a novel adap-
tation is presented, integrating the G-S equation as a constraint
in the loss function, in line with the PINN method. This second
NN-based solver is called FBE-net2.

A. Fully Connected MLP

The normalized dataset detailed in Section II-B is parti-
tioned randomly into three distinct sets. Specifically, 80%
is allocated for training purposes (that is, for NN model
training), 10% is designated for validation (essentially to
optimize hyperparameter values), while the remaining portion
serves as the testing set (employed to evaluate the accuracy of
the network’s predictions).
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The NN architecture adopted in this investigation follows
the MLP design, featuring three hidden layers. The hyper-
parameters, which are tuned by methodical scanning, are
presented in Table III. Each layer is structured to optimize
data flow and learning capacity, with a designated number of
neurons to address the complexity of the problem. To handle
nonlinearities and improve the model’s ability to capture
intricate relationships in the dataset, activation functions such
as hyperbolic tangent (tanh) and rectified linear unit (ReLU)
are employed. Additionally, regularization techniques, includ-
ing dropout [22], are incorporated to enhance the model’s
robustness and prevent overfitting.

During the training phase, the model is trained in
200 epochs, with each epoch consisting of a batch size of 150.
The nodes per hidden layer are set at 258, and a learning rate
of 0.01 is applied to optimize the training process and manage
overfitting. This customized MLP architecture serves as the
foundation for the advanced plasma equilibrium computations
explored in this study.

IV. NN-BASED SOLVER EVALUATION AND DISCUSSION

A. Integrate G-S Equation as Constraint

The role of the loss function is crucial in the implementation
of PINNs, serving as a bridge between data-driven modeling
and the dominant physics governing the phenomenon. The loss
function ϵ is defined as

ϵ = λ1L1 + λ2L2 + λ3L3 (9)

L1 =
1

Nd

Nd∑
i=1

(
J NN
φ − J DT

φ

)2 (10)

L2 =
1

Np

Np∑
i=1

(
R2

∇

(
∇ψ(J NN

φ )

R2

)
+ µ0 R J DT

φ

)2

(11)

L3 =
1

Nd

Nd∑
i=1

(
J NN
φ,out − J DT

φ,out

)2 (12)

where (·)NN is predicted by the NN, (·)DT is predicted by the
original numerical solver (ground truth data), and (·)out is the
data-point on the outermost contour of Jφ . The parameters λ1,
λ2, and λ3 are the weights of each loss function.

In this design, the G-S equation is directly integrated
as a constraint within the loss function using the PyTorch
library [23]. PyTorch, a leading deep learning tool, facilitates
the seamless integration of plasma physics knowledge with
state-of-the-art computational techniques, enhancing the pre-
dictions of the NN-based solver. It is noteworthy that Jφ is
chosen as the target feature instead of ψ . While setting the
target feature as either ψ or Jφ is equivalent, the implemen-
tation with Jφ is preferred for its earlier development.

Following the training procedures delineated in
Section III, the performance of the NN-based solver is
evaluated using the testing dataset. This includes comparing
predictions from the numerical equilibrium solver with those
generated by the NN-based solver for specific discharges in
the testing dataset.

Fig. 2 displays log-scale histograms detailing the regres-
sion outcomes for predictions, notably representing Fig. 2(a)

TABLE IV
PERFORMANCE SUMMARY: NN SOLVERS’ MSE AND SPEED

ψ(R, Z), (b) F̂ , (c) Ĝ, and (d) Ĥ . It shows that most
data points cluster along the diagonal line, especially for
the three geometric factors F̂ , Ĝ and Ĥ [19]. This clus-
tering suggests that the geometric factors predicted by the
NN exhibit significant congruence with the results derived
from the numerical FBE solver. This alignment is further
substantiated by the correlation coefficients (R2) approaching
unity, as showcased in the upper-left corner. A comparative
analysis presented in Fig. 3 juxtaposes the calculations from
the numerical FBE solver against the predictions of the NN-
based solver, revealing a generally harmonious alignment, with
minor exceptions. Within the Python computational context,
FBE-net1 boasts a commendable efficiency, yielding geometric
factor predictions in an average span of roughly 1 ms, a pace
that markedly outstrips the numerical FBE solver by several
orders of magnitude.

As shown in Figs. 2(a) and 3(a), the predictions from FBE-
net1 associated with the ψ map necessitate further refinements.
In response to this, FBE-net2 has been formulated to deliver
enhanced results for ψ predictions. By incorporating the G-S
equation as a constraint, the NN-based solver for Jφ(R, Z)
exhibits a commendable correlation with the reference data,
as depicted in Fig. 4. Consequently, the results from FBE-
net2 more closely align with the baseline data, as shown by
the contour illustration in Fig. 5. Then Jφ(R, Z) is converted
to ψ(R, Z) by applying (7), where the graphic result is shown
in Fig. 6. FBE-net2 significantly outperforms its predecessor,
FBE-net1, in its predictive capabilities, aligning closely with
the reference dataset and achieving a much lower mean
squared error (MSE).

In Table IV, a summary of the average correlations and
MSE between the predictions from the numerical equilibrium
solver and the NN-based solver is provided. The results
suggest that the PINN-based surrogate model introduced here
serves as a competent substitute for the conventional numerical
equilibrium solver. This is supported by the fact that the
correlation coefficient R2 approaches 1 for the testing dataset
as shown in Table IV.

While two neural NN-based solvers are developed, their
deployment strategy is evaluated to ensure the highest level
of accuracy and computational efficiency. The primary task
involves the prediction of two critical parameters: the geometry
factors and the ψ map. For the geometry factor prediction,
FBE-net1 demonstrates prowess in providing both rapid and
precise outcomes. Conversely, for the prediction of the ψ map,
FBE-net2 emerges as superior. Comparative analyses reveal
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Fig. 2. Histograms of regression results for shots in the testing dataset using FBE-net1. (a) ψ(R, Z) map, (b) F̂ , (c) Ĝ, and (d) Ĥ .

Fig. 3. Prediction results for shots in the testing dataset using FBE-net1. (a) ψ(R, Z) map, (b) F̂ , (c) Ĝ, and (d) Ĥ .

Fig. 4. Histogram representation of regression results for Jφ(R, Z) derived
from FBE-net2 for shots in the testing dataset.

that, while both solvers operate with comparable speeds, FBE-
net2 substantially outperforms FBE-net1 in terms of precision
for ψ map predictions. Thus, by harnessing the strengths
of each solver, high levels of accuracy for the respective
prediction targets are maintained, without compromising on
computational efficiency.

B. Predictions With Inputs Outside the Training Dataset

To evaluate the robustness and generalization capabilities
of FBE-net2, assessments are conducted using inputs beyond
the training dataset. As an illustrative example, the inputs
Ip and βp are chosen as 0.52 MA (exceeding the training

Fig. 5. Jφ(R, Z) map calculated from FBE-net2. The solid line represents
contours generated by FBE-net2, with the dotted line representing those
produced by the numerical FBE solver.

dataset’s maximum by 4%) and 0.90 (surpassing the dataset’s
maximum by 12.5%), respectively. Fig. 7(a) compares the
prediction made by FBE-net2 for these inputs with the solution
provided by the FBE solver. The contours generated by FBE-
net2 resemble in shape those of the FBE solver, although
they show discrepancies in the exact values (predictions by
FBE-net2 are consistently smaller in value). The MSE map
in Fig. 7(b) provides a quantitative measure of these dis-
crepancies. Remarkably, the MSE is kept under an order of
magnitude of 10−3. In contrast, FBE-net1 not only struggles
to produce meaningful contours when using inputs outside its
training set as shown in Fig. 7(c) but also shows an MSE two
orders of magnitude higher (∼10−1) as shown in Fig. 7(d).
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Fig. 6. ψ(R, Z) map calculated from FBE-net2. The solid line represents
contours generated by FBE-net2, with the dotted line representing those
produced by the numerical FBE solver.

Fig. 7. ψ(R, Z)-contour comparison and MSE maps for predictions with
inputs outside the training dataset. (a) ψ(R, Z) contour comparison for
FBE-net2, (b) MSE for FBE-net2, (c) ψ(R, Z) contour comparison for
FBE-net1, and (d) MSE for FBE-net1.

While FBE-net2 does lose prediction accuracy as it uses inputs
outside the training set, as expected, it does so in a much less
dramatic fashion than FBE-net1. The capability to handle data
beyond its training set while maintaining a tolerable bounded
prediction error is a sample of robustness and adaptability.
However, this assessment should not be interpreted by any
means as a recommendation to use FBE-net2 outside the
training set.

V. CONCLUSION AND FUTURE WORK

In this work, two fast FBE solvers have been developed
by leveraging the capabilities of NN techniques. FBE-net1 is
designed based on MLP, while at the core of the development
of FBE-net2 lies the strategic utilization of the G-S equation
as a constraint. The incorporation of this physics-based
constraint significantly increases the prediction accuracy of
the ψ(R, Z) map by effectively combining physical princi-
ples with state-of-the-art computational methodologies. The

accelerated performance of the NN-driven solver and its
demonstrated robustness position it as an optimal solution
for equilibrium-transport integration within COTSIM. This
integration offers a range of applications, including feedfor-
ward optimization, feedback control simulations, and real-time
plasma control.

Future work will aim at improving the NN-based solver’s
performance and leveraging it in control-oriented equilibrium
+ transport simulations. First, expanding the training data’s
scope to cover a broader range of conditions and diverse toka-
mak configurations will create a more universally applicable
model. Second, incorporating coil-connection constraints such
as the usual anti-series connection of the PF15 and PF16
coils [24] will more accurately reflect operation conditions
at EAST. Third, refining the NN framework’s robustness and
efficiency through hyperparameter tuning and deep NN topol-
ogy exploration, by leveraging techniques like Evolutionary
Algorithms [25] and Meta-learning/AutoML [26], [27], can
significantly enhance prediction performance. Lastly, integrat-
ing the NN-based FBE solver into COTSIM will enable fast
simulations combining equilibrium and transport solvers for
studies demanding regulation of the plasma boundary by active
shape control.
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