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Abstract— Designing a single controller to simultaneously reg-
ulate all kinetic and magnetic plasma properties in a tokamak
can be difficult, if not impossible, due to the system’s complex
coupled dynamics. A more viable solution is developing individual
algorithms to control one or more plasma properties and inte-
grating them in the plasma control system (PCS) to regulate the
target scenario. However, such integration requires an actuator
allocation algorithm to convert virtual commands from individual
controllers into physical actuator requests (e.g., neutral beam
powers) and to arbitrate the competition for available actuators
by the different controllers. Existing actuator allocation algo-
rithms rely on solving a static optimization problem at each
time instant. Real-time static optimization can be computationally
expensive in some instances. Furthermore, static optimization
ignores the history of the actuator outputs and the temporal
evolution of the actuator constraints. Therefore, dynamic actu-
ator allocation algorithms have been proposed recently as an
alternative. These algorithms use ordinary differential equations
to describe the relation between virtual commands and physical
actuator requests. In this work, a minimax optimization-based
dynamic actuator allocation problem is formulated for a certain
class of plasma control algorithms. A reinforcement learning
(RL)-based algorithm is proposed to solve the optimization and
hence the allocation problem. The proposed algorithm is tested
using nonlinear simulations.

Index Terms— Actuator allocation, concurrent plasma control,
minimax optimization, reinforcement learning (RL).

I. INTRODUCTION

ACHIEVING robust operation in next-generation toka-
maks like ITER will rely on the plasma control system’s

(PCS’s) ability to regulate multiple plasma properties around
predetermined targets. A common approach in plasma-control
design is to synthesize a single control algorithm incorporating
more than one control objective [1], [2]. However, as the
number of plasma properties to be controlled increases, the
complexity of the underlying plasma dynamics increases,
and hence, fully integrated control synthesis becomes hard.
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In particular, the increased dimensionality and complexity of
the plasma models make control synthesis intractable.

An alternative to fully integrated control synthesis is to use
a two-step approach. The first step consists of synthesizing
one or multiple control algorithms. Each algorithm in the first
step is designed to prescribe virtual commands depending on
the deviation of one or a limited number of plasma variables
from the given targets. The second step involves designing
an actuator-allocation algorithm that converts the virtual com-
mands into physical actuator requests while managing the
competition for different actuators by the plasma controllers.
In this step, actuator dynamics and constraints can be incorpo-
rated independently of the individual control algorithms. Such
a two-step approach can provide multiple advantages over
the fully integrated control synthesis approach. For instance,
even in the case of a single plasma-control algorithm, the
complexity of the plasma control synthesis is vastly reduced
due to the decoupling of plasma and actuator dynamics.
Additionally, using an actuator allocator makes it easy to
account for real-time changes in the actuator availability [3],
[4], [5]. Such changes can occur whenever an actuator fails or
is redirected for another purpose (such as an electron cyclotron
(EC) being repurposed for neoclassical tearing mode (NTM)
suppression). Furthermore, the plasma control algorithms can
be made tokamak-agnostic. In other words, the plasma con-
trol can be designed independently of the available tokamak
actuators since they only prescribe virtual commands. Thus,
control algorithms designed for and tested on one tokamak
can be implemented on another tokamak without modifications
(assuming the required measurements or state estimates are
available) as long as the controllers are coupled with the
tokamak-specific actuator allocators. It is evident from these
points that next-generation tokamaks could benefit from a
two-step plasma controller design. The implementation of such
methodology relies on the development of a robust actuator-
allocation algorithm.

Actuator-allocation algorithms could be classified into static
or dynamic algorithms. In static algorithms, the relation
between the virtual commands prescribed by the control
algorithms and the physical actuator requests is assumed
to be a linear or nonlinear algebraic equation. A bulk of
the actuator-allocation algorithms available in the literature
fall under this category [5], [6], [7]. In addition, control
algorithms designed to regulate plasma properties simul-
taneously sometimes implicitly include a static allocation
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algorithm [8]. Static algorithms generally rely on posing the
actuator-allocation problem as an instantaneous optimization
problem and solving it. For instance, the algorithm pro-
posed in [6] uses mixed-integer quadratic programming to
solve the allocation problem. The algorithm in [7] relies
on minimizing a quadratic cost function subject to linear
constraints. Another class of actuator-allocation algorithms is
the dynamic algorithms. These algorithms model the relation
between virtual control commands and the physical actua-
tor requests using differential equations. Since the evolution
of the physical actuator requests is related to the virtual
commands, dynamic algorithms can be designed to allocate
actuator requests that are optimal over the entire tokamak
discharge. Furthermore, it is possible to incorporate actuation
lags and delays in dynamic algorithms. However, introducing
the command-request model based on a differential equation
makes the design of dynamic actuation-allocation algorithms
challenging. Compared to static algorithms, very few dynamic
algorithms are available in the plasma control literature.
The dynamic algorithm proposed in [9] uses adaptiveness to
meet burn controller objectives while accounting for actua-
tor dynamics.

This work develops a dynamic allocation algorithm that
can combine virtual plasma control commands and prescribe
physical actuator requests when the number of virtual com-
mands is less than the number of available actuators. The
proposed algorithm is designed to be: 1) robust to uncer-
tainties in the plasma and actuator models and 2) optimal
over the entire duration of the tokamak discharge. Addition-
ally, the algorithm is designed to be tokamak agnostic as long
as the plasma-response models and feedback control laws have
a specific structure. The proposed algorithm uses the approach
presented in [10] to convert a static command-request model
into a dynamic model. As shown in [10], the new dynamic
model allows the actuator allocation algorithm to be refor-
mulated as an infinite-horizon minimax optimization problem.
Typically, the Hamilton-Jacobi–Isaacs (HJI) equation, a non-
linear partial differential equation (PDE), has to be solved to
obtain the solution of the optimization problem. This work
uses policy iteration (PI) reinforcement learning (RL) and
single-layer neural networks to solve the actuator allocation
problem. The proposed approach is tested using nonlinear
simulations for two different cases.

This article is organized as follows. Section II discusses
the steps involved in developing a dynamic actuator model.
Section III reformulates the actuator allocation problem as
a minimax optimization problem. The policy-iteration-based
methodology used to solve the minimax optimization problem
is also presented in Section III. Section IV reviews the results
of numerical experiments carried out to validate the proposed
algorithm. The conclusions of this work and scope for future
extensions are discussed in Section V.

II. COMMAND-REQUEST RELATION MODELING

Consider a tokamak scenario in which the control objective
is to regulate n plasma states using k physical actuators.
Suppose that the evolution of the plasma state vector x ∈ Rn is

governed by a linear/linearized ordinary differential equation
of the form

ẋ = Ax + Bu (1)

where A and B are the state and input matrices. The vector
u ∈ Rm represents the virtual commands that are prescribed by
o different controllers that are designed to regulate components
of x. Note that o ≤ m, which implies that each controller can
specify a scalar or vector virtual command. In addition, it is
assumed that m < k, i.e., the controllers can be designed such
that the number of virtual commands is less than the number
of physical actuators. To illustrate this framework, consider
the problem of plasma energy control by modulating the total
power [1]. In this case, the plasma energy is the state, total
power is the virtual input, and the individual noninductive
drives are the physical actuators.

Let p ∈ Rk be the vector of physical actuator requests that
are sent to the actuators that are available for control in a given
tokamak scenario. The relation between u and p is given by
the linear algebraic equation

u = G p (2)

where G ∈ Rm×k is a known matrix with full row rank. In the
context of the total plasma energy control problem referred to
above, the above equation represents the relation between the
total power and the individual auxiliary drive powers. At any
given time t , the static physical actuator requests ps can be
computed using the relation

ps = G†u (3)

where G†
= GT (GGT )−1

∈ Rk×m is the pseudoinverse of
G. However, since the actuator requests computed using the
static model in (3) are optimal only at time t , they may not
be optimal over the entire plasma discharge [11]. In addition,
the actuator requests obtained from (3) may not satisfy the
saturation limits.

The goal of dynamic actuator allocation is to choose a
“virtual allocation input” µ that governs the evolution of a
“virtual allocation state” v such that the combination of v

and ps is optimal over the period of plasma discharge. The
evolution of the virtual state v ∈ Rk−m is modeled as follows:

v̇ = µ. (4)

Now, define the dynamic actuator request pd as follows:

pd = G⊥v + ps (5)

where G⊥
∈ Rk×(k−m) is a matrix whose columns form the

basis of the nullspace of G, i.e., GG⊥
= 0 ∈ Rm×(k−m). Note

that (5) satisfies the command-request constraint given in (2).
The evolution equation of the “first state” v is given by (4).
On the other hand, the evolution equation of the “second state”
ps is obtained by taking the time derivative on both sides
of (3), which results in

ṗs = G†u̇ (6)

where the notation ˙(·) denotes the time derivative. Suppose the
feedback control law can be written in the form

u = −K x (7)
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where K is the feedback matrix. Substituting (7), (1) and (2)
into (6) results in

ṗs = −G† K ẋ = −G† K [Ax + Bu] (8)

= −G† K BG ps − G† K Ax. (9)

Define w = [vT , pT
s ]

T . Combining (4), (5), and (9) results in
the dynamic allocation model with the state equation

ẇ =

[
0 0
0 −G† K BG

]
︸ ︷︷ ︸

Aa

w +

[
I
0

]
︸︷︷︸

Ba

µ +

[
0

−G† K A

]
︸ ︷︷ ︸

Da

x︸︷︷︸
d

(10)

and the output equation

pd =
[
G⊥ I

]︸ ︷︷ ︸
Ca

w. (11)

Note that the plasma state vector x acts as a disturbance d.

III. ACTUATOR ALLOCATION VIA OPTIMIZATION

In this section, the problem of computing pd by choosing
w is reformulated as an optimization problem. Given an input
policy µ : w 7→ µ(w), where w is the state governed by (10),
consider a cost function of the form

Jµ(w, d) =

∫
∞

t
e−α(τ−t)(Q( pd) + µT Rµ − γ 2

∥d∥
2)dτ

(12)

where pd is related to w via (11), Q : pd 7→ Q( pd) ∈ R is
a scalar valued function that penalizes high values of actuator
request pd , R > 0 is a positive definite matrix, and γ > 0 is
a constant. Now the optimization problem can be formulated
as follows. Determine the optimal policies µ∗

: w 7→ µ∗(w)

and d∗
: w 7→ d∗(w) such that

Jµ∗

(w, d∗) = min
µ

max
d

Jµ(w, d). (13)

Note that the term d∗ represents the disturbance policy that
specifies the worst-case disturbance for a given w. Thus, the
objective of the above optimization problem is to choose the
optimal input policy that reduces the cost for the worst-case
disturbance. The above problem is typically called minimax
optimization or two-player zero-sum game problem and is
related to the H∞ robust control problem. A unique solution
to the above optimization exists [12] if

min
µ

max
d

Jµ(w, d) = max
d

min
µ

Jµ(w, d) (14)

and it is given by the following equation:

µ∗
= −

1
2

R−1 BT
a ∇V ∗, d∗

=
1

2γ 2 DT
a ∇V ∗. (15)

In the above optimal policies, the term ∇V ∗ is the gradient of
the optimal value function V ∗

: w 7→ V ∗(w) ∈ R. The optimal
value function is obtained by solving the HJI equation [12]

Q(Caw) + ∇V ∗(w)T Aaw − αV ∗(w)

−
1
4
∇V ∗(w)

T Ba R−1 BT
a ∇V ∗(w)

+
1

4γ 2 ∇V ∗(w)
T Da DT

a ∇V ∗(w) = 0 (16)

where w ∈ R2k−m is an arbitrary vector.

Remark 1: A common choice for Q is

Q( pd) = pT
dQ pd (17)

where Q is a positive semidefinite matrix. With this choice
of Q, the solution of the minimax optimization problem
discussed above can be obtained by solving the game algebraic
Riccati equation (GARE) [12]. Alternatively, the function Q
can be designed to incorporate saturation limits. Suppose the
saturation limits of the i th actuator are given by the constraint
set [− p̄i

d , p̄i
d ] ⊂ R, the function Q could be selected as

follows:

Q( pd) = pT
dQ pd +

k∑
i=1

(
pi

d

β p̄i
d

)2l

(18)

where l ≥ 2, β ≤ 1 is the safety margin, and pi
d is the i th

component of the vector pd . The higher order terms in the
above cost function penalizes large values of pd , thus acting
as a “soft constraint.” Since only a soft constraint is imposed
by the above cost function, it is recommended to use a safety
margin β less than 1. For nonsymmetric saturation limits, the
discontinuous cost function proposed in [10] could be used.

A. Policy Iteration RL

The HJI equation is a nonlinear PDE, which can be chal-
lenging to solve. An alternative approach to arrive at the
optimal policies µ∗ and d∗ is to use PI, a model-based RL
algorithm [12]. PI algorithm begins with initialization of the
control and disturbance policies, µ0 and d0, respectively, and
then iteratively implementing two steps: 1) policy evaluation
and 2) policy improvement, until convergence. In the policy
evaluation step, the Bellman equation

Q(Caw) + ∇Vi
T (

Aaw + Baµi + Da d i
)

− αVi + µT
i Rµi − γ 2dT

i d i = 0 (19)

is solved for Vi . In the Bellman equation, the terms µi and d i

represent the control and disturbance policies obtained in the
previous iteration. In the policy improvement step, the value
function from policy evaluation step Vi is used to update both
the control and disturbance policies using the equations

µi+1 = −
1
2

R−1 BT
a ∇Vi (20)

d i+1 =
1

2γ 2 DT
a ∇Vi . (21)

This process of evaluation and improvement is repeated until
a stopping criteria is satisfied. The conditions for convergence
of Vi to the solution of (16) are discussed in [12]. Note that
the Bellman equation is a linear PDE. Thus, the PI algorithm
has replaced the problem of solving a nonlinear PDE with that
of iteratively solving a linear PDE.

B. NN Parameterization of Value Function

The policy evaluation step discussed above involves solving
the Bellman equation. Solving the Bellman equation can be
further simplified by introducing a single-layer neural-network
(NN) approximation of the value function V . Note that,
with a single layer, the neural network approximation can be
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considered as a linear combination of basis functions. Suppose
the value function at the i th iteration can be approximated as
follows:

Vi (w) = ω̂
T
i φ(w) (22)

where ω̂i ∈ RN is the vector of neural network weights,
φ(·) := [φ1(·), . . . , φN (·)], φi : w 7→ φi (w) is the i th NN
basis function (i = 1, . . . , N ), and N is the number of neurons.
With this approximation, the gradient of the value function can
be written as follows:

∇Vi (w) = ω̂
T
i ∇φ(w) (23)

where ∇φ(w) denotes the Jacobian matrix of φ. Substitut-
ing (22) and (23) into the Bellman equation (19) results in a
linear algebraic equation of the form

a(w)ω̂i = y(w) (24)

where

a(w) =
(

Aaw + Baµi + Da d i
)T

∇φ(w)T
− αφT (w) (25)

y(w) = −Q(w) − µT
i Rµi + γ 2dT

i d i . (26)

Evaluating (24) at M different wi for i ∈ {1, . . . , M ≥ N },
results in M linear equations, which can be written as follows: a(w1)

...

a(wM)


︸ ︷︷ ︸

A

ω̂i =

 y(w1)
...

y(wM)


︸ ︷︷ ︸

y

. (27)

Thus, with the introduction of the NN approximation of the
value function, solving the Bellman equation for Vi simplifies
to solving the above linear equation for ω̂i . Note that the points
wi are selected so that the matrix A has maximal rank and
low condition number.

C. PI Algorithm

The methodology to determine optimal policy for the min-
imax optimization problem can be summarized as follows.

1) Choose an initial set of allowable stabilizing control and
disturbance policies, µ0 and d0, as defined in [12].

2) Parameterize the value function as shown in (22).
3) Policy Evaluation: Solve (27) for ω̂i and compute

∇Vi (w) using (23).
4) Policy Update: Compute the policies µi+1 and d i+1

using (20) and (21).
5) Return to Step 3) if input and disturbance policy con-

vergence criteria are not satisfied.
The policy obtained from the above algorithm is used

to evolve (10) and determine the physical actuator requests
using (11), which is computationally inexpensive when com-
pared to real-time static optimization of actuator requests.

Remark 2: Changes in scenario operating conditions can
change the matrix G in (2). In such cases, the above algorithm
can be implemented in real time to update the policy. Imple-
mentation of the above algorithm in the PCS would be fairly
simple since only a linear system is solved iteratively.

IV. NUMERICAL TESTING OF DYNAMIC ALLOCATOR

The results from the simulations carried out to test the
effectiveness of the proposed actuator allocation algorithm are
reviewed in this section. Two different test cases that deal
with the control of particle energies are considered. In the
first test case, simultaneous electron and ion energy control is
considered. This test case is chosen to highlight the effective-
ness of the actuator allocation algorithm for concurrent control
purposes. The second test case considers the control of the
total plasma energy using multiple actuators. This test case
is chosen to highlight how the use of the actuator allocation
algorithm simplifies control design. The simulations in both
the test cases were carried out using Runge–Kutta solvers.

A. Test Case 1: Electron and Ion Energy Control

The ion energy Ei and electron energy Ee are plasma
properties that play a critical role in burn control in reactor-
grade tokamaks [9]. They are governed by nonlinear ordinary
differential equations of the form

Ė i = −
Ei

τE,i
+ φα Pα + Pei + Pai (28)

Ėe = −
Ee

τE,e
+ (1 − φα)Pα − Pei − Pbr + Poh + Pae (29)

where Pα , Pei , Pbr and Poh are the alpha particle heating
power, power exchanged between ions and electrons through
collisions, power lost due to bremsstrahlung radiation, and
ohmic heating power, respectively. The term φα is the fraction
of alpha particle power deposited into ions. The terms τE,i and
τE,e are ion and electron energy confinement times, respec-
tively, and are proportional to the global energy confinement
time τE . The global energy confinement time is determined
by using the IPB98(y,2) scaling law [13], according to which
τE depends on the plasma current Ip, line-averaged electron
density ne, and the powers Pα , Pei , Pbr , Poh , Pai , and Pae. Note
that the powers Pα , Pei , Pbr , and Poh depend on the particle
densities and temperatures, which in turn affect the evolution
of ion and electron energies. During control synthesis, the
terms Ip, ne, Pα , Pei , Pbr , and Poh are considered uncontrol-
lable inputs. During a tokamak discharge, any deviations that
arise due to variations in these parameters from their nominal
values are compensated for by the integral component of the
controller described below.

The terms Pai and Pae are the auxiliary power deposited
into ions and electrons, respectively, and are considered the
virtual commands to be prescribed by the controller. Assuming
there are one ion cyclotron, one EC and two neutral beam
injectors available for control, the relationship between the
virtual commands and the physical actuator requests is

{
Pai

Pae

}
=

[
ηicφic 0 ηnb1φnb ηnb2φnb

ηicφ̄ic ηec ηnb1φ̄nb ηnb2φ̄nb

]
Pic

Pec

Pnb1
Pnb2

 (30)

where Pic, Pec, Pnb1, and Pnb,2 are the ion cyclotron, EC,
neutral beam 1, and neutral beam 2 powers, respectively, and
the terms ηic, ηec, ηnb1, and ηnb2 account for the efficiencies
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Fig. 1. Test case 1: from left to right (a) ion energy evolution in open loop and closed loop, (b) electron energy evolution in open loop and closed loop,
(c) virtual allocation states evolution, and (d) physical actuator power/request trajectories.

of these actuators, respectively. In the above equation, φnb and
φ̄nb = 1−φnb account for the ion and electron heating fraction
of the neutral beam injectors, and φic and φ̄ic = 1−φic account
for that of the ion cyclotron.

A linear quadratic integral (LQI) controller is designed
to regulate the ion and electron energies around given ion
energy and electron energy targets, Ē i and Ēe, respectively.
Synthesis of an LQI controller is beyond the scope of this
article. The general approach to its synthesis can be found
in [1]. To summarize briefly, the LQI design process involves
deriving a linear model of the form (1), where the state x is
defined as x := [ẽT , ẽT

i ]
T and the virtual commands vector is

u := [Pai , Pae]
T . Note that the state x contains the ion and

electron energy errors ẽ := [Ei − Ē i , Ee − Ēe]
T , as well as

their corresponding integral error components ẽi =
∫ t

0 ẽdτ .
The new linear system is used to formulate a linear quadratic
regulator problem, and optimal control theory is used to derive
the control law. The resulting control law takes the form given
in (7). Since the control model and feedback law have the form
shown in Section II, the dynamic actuator algorithm proposed
in this article can be used.

The following values were used while carrying out the
simulations: Ip = 15 MA, ne = 10 × 1019 m−3, Poh = 1 MW,
Pbr = 15 MW, Pei = 1.5 MW, Pα = 80 MW, φα = 0.2,
τE,i = 1.1τE , τE,e = 0.9τE , ηic = 0.9, ηec = 0.9, ηnb1 = 1,
ηnb2 = 0.8, φnb = 0.3, and φic = 0.8. The function Q
defined in (17) with Q = diag(1.2, 0.9, 1, 1.1) was used to
carry out the simulations. The term R in (12) was assigned
an identity matrix. Other parameters in the cost function (12)
were selected as α = 0.1 and γ = 40. Polynomial basis of the
second order were used as the NN basis functions, i.e., given
w = [w1, . . . , w2k−m], the basis were selected as wiw j , where
i = 1, . . . , 2k − m and j = i, . . . , 2k − m.

In the simulations, the algorithm presented in Section III-C
was implemented to determine the optimal policies, and the
algorithm converged within six iterations. Fig. 1 shows the
simulation results obtained for this case. As evident from
the figure, the control algorithm coupled with the dynamic
actuator allocation algorithm is able to achieve the control
objectives. The figure also shows the virtual allocation states
v = [v1, v2]

T . From (5), it is clear that the proposed optimal
dynamic allocator’s solution aligns with the static solution
only when the virtual states are at the origin. The deviation
of the virtual states from the origin shows that the static
solution is suboptimal. The physical actuator request values

determined by the dynamic actuator allocator are also shown
in the figure. As mentioned in Remark 1, the optimal solution
corresponding to the specific Q function selected for this case
can also be computed through GARE. The policies obtained
from PI were compared with those obtained by solving GARE.
The Euclidean norm ∥∇V (w)/2−Pw∥ for different vectors
w ∈ R2k−m was determined. This norm is bounded from above
by 1.15 × 10−8. As expected, the PI converged to the optimal
solution in this case.

B. Test Case 2: Total Energy Control

This case considers the control of the total plasma energy E
in tokamaks with only nonburning plasmas. The total energy
is a plasma property related to the normalized beta and is
critical to MHD stability. The objective of this test case is to
highlight how adding a dynamic actuator algorithm simplifies
control synthesis. The total energy is governed by [8]

Ė = −
E
τE

+ Pa (31)

where Pa is the total auxiliary power and is related to the
physical actuator requests through the equation

Pa =
[
1 1

]{
Pnb1 Pnb2

}T
. (32)

In the above model, terms such as alpha particle heating,
ohmic heating, and radiation losses are neglected [8]. The
terms τE , Pnb1, and Pnb2 in (31) and (32) are defined in
Test Case 1 presented above. Typically, the actuator powers
Pnb1 and Pnb2 are selected to match predesigned P̄nb1 and P̄nb2
so that the total energy is maintained at the predefined target
Ē . However, model uncertainties and external disturbance can
cause the total energy to deviate from the target, and it is
critical to drive the total energy back to its target in the shortest
time possible. A feedback stabilizing controller can be used
to achieve this objective.

The design of a feedback stabilizer involves linearizing (31)
around the target Ē and the predetermined auxiliary power
P̄a = P̄nb1 + P̄nb2. The resulting 1-D linear ODE takes the
form

ẋ = ax + bu (33)

which is similar to (1). In the above equation, x = E − Ē
and u = Pa − P̄a . The value of a defines the rate at which
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Fig. 2. Test case 2: from left to right (a) total energy evolution in open loop and closed loop, (b) virtual allocation state evolution, (c) physical actuator
request trajectories, and (d) feedback component of actuator requests with saturation limits.

the deviation in total energy is stabilized. This rate can be
increased by choosing

u = −k̂x (34)

where k̂ is a constant selected such that the rate of conver-
gence of the closed-loop system, defined by a − bk̂, matches
the desired rate. Since the model and control law have the
required structure, the dynamic actuator allocator can be used
to prescribe the physical actuator requests Pnb1 and Pnb2.
It is certainly possible to design a stabilization algorithm that
prescribes the actuator requests directly while satisfying satu-
ration limits. However, with the use of an actuator allocator,
the control design becomes trivial and simplifies to choosing a
constant k̂. The conversion to physical values while satisfying
the saturation limits are handled by the allocation algorithm.

The following values were used in the simulations: Ip =

1.02 MA, ne = 1.05 × 1019 m−3. The function Q in (12)
was selected as (18) with Q = diag(2, 1), l = 2, β = 0.9 and
p̄i

d = 1 × 105 for i = 1, 2. Other parameters in the cost
function (12) were set as R = 1, α = 0.1, and γ = 40. The
value of k̂ in the feedback control law is k̂ = 9.6774. Since
this case considers a more complicated cost function, second-
order polynomial basis is insufficient to approximate the value
function. Hence, Gaussian radial basis functions centered at
343 equidistant points in a grid of [−5 × 105, 5 × 105

]
3 were

selected as the NN basis functions. For any given center ai

in the grid, the Gaussian basis function is given by φi (·) =

e−(∥(·)−ai ∥/2σ 2), where σ is a parameter that defines the width of
the Gaussian basis function. In the simulations, its value was
selected as σ = 2 × 105. The PI algorithm was implemented
for 100 iterations and the resulting value function was used
to implement the dynamic actuator algorithm. Note that the
algorithm may not converge to the optimal solution since
the number of neurons and the choice of NN basis affect
the final solution. However, PI provides an effective way to
approximate the value function.

The simulation results are shown in Fig. 2. As evident, the
total energy stabilizes more quickly in the controlled case. The
allocation algorithm modulates the virtual state v as shown
in the figure. The total physical actuator powers and their
corresponding feedback components are also presented in the
figure. The figure shows that the feedback component of the
actuator powers violate the saturation constraints at the start of
the simulation imposed in the cost function. The function Q
defined in (18) only imposes soft constraints. Since no precise
combination of physical actuator powers within the saturation

limits satisfy the virtual controller commands at the start of
the simulation, the constraints are violated. However, after
entering the set of physically feasible actuator requests, the
values stay within the set. Analyzing the effect of extreme
virtual commands that could lead to physically infeasible
actuator requests remains a topic of future interest.

V. CONCLUSIONS AND FUTURE WORK

A dynamic actuator allocation algorithm has been developed
by deriving a dynamic command-request model, which is then
used to formulate a minimax optimization problem. A PI-based
algorithm has been presented to solve the optimization prob-
lem, particularly for cases that use nonquadratic cost functions.
The effectiveness of the actuator allocator has been illustrated
using two plasma control test cases. Future studies could focus
on relaxing model and plasma control law assumptions, con-
sidering cases with more virtual commands than the number
of actuators, incorporating hard saturation limits, including
actuator lags, introducing actuator management capabilities to
handle actuator failures, and testing the proposed algorithm in
more complex plasma control scenarios.
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