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Abstract
Simultaneous regulation of multiple properties in next-generation tokamaks like ITER and
fusion pilot plant may require the integration of different plasma control algorithms. Such
integration requires the conversion of individual controller commands into physical actuator
requests while accounting for the coupling between different plasma properties. This work
proposes a tokamak and scenario-agnostic actuator-sharing algorithm (ASA) to perform the
above-mentioned command-request conversion and, hence, integrate multiple plasma
controllers. The proposed algorithm implicitly solves a quadratic programming (QP) problem
formulated to account for the saturation limits and the relation between the controller
commands and physical actuator requests. Since the constraints arising in the QP program are
linear, the proposed ASA is highly computationally efficient and can be implemented in the
tokamak plasma control system in real time. Furthermore, the proposed algorithm is designed to
handle real-time changes in the control objectives and actuators’ availability. Nonlinear
simulations carried out using the Control Oriented Transport SIMulator illustrate the
effectiveness of the proposed algorithm in achieving multiple control objectives simultaneously.

Keywords: actuator-sharing algorithm, concurrent plasma control, plasma control integration,
actuator allocation

1. Introduction

Next-generation tokamaks like ITER and the fusion pilot plant
will require precise regulation of multiple plasma properties
to achieve a predefined scenario with a high fusion gain.
The regulation of individual plasma properties has been stud-
ied extensively in the existing tokamaks. Recent years have
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seen a shift towards simultaneous control of multiple plasma
properties [1–5]. Most of these studies on simultaneous con-
trol have relied on designing a single complex controller that
can regulate multiple plasma properties. The effectiveness of
this approach towards simultaneous control has been demon-
strated for the regulation of multiple plasma scalars [2] and the
control of plasma profiles with some scalars [3–5]. As more
plasma properties are incorporated into the control problem,
designing a single controller to achieve all the objectives can
be challenging. In recent years, an alternative approach that
uses actuator-sharing algorithms (ASAs) has been proposed
as an effective way to integrate multiple plasma controllers [6–
12]. In this approach, the single complex controller is replaced
bymultiple simple controllers. These controllers prescribe vir-
tual commands to satisfy distinct plasma control objectives.
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Figure 1. Illustration of the ASA block in the PCS.

These virtual controller commands vary based on the specific
plasma control algorithm, and they may not correspond to
actual actuator requests. An ASA then converts these control-
ler commands into physical actuator requests. Figure 1 illus-
trates how an ASA can integrate different controllers in a toka-
mak plasma control system (PCS). Since the ASA decouples
the actuators from the controller and accounts for the actuator
constraints and saturation limits, this approach vastly reduces
the complexity of the design of the individual controllers.
Furthermore, since the performance of the different controllers
and the actuators are coupled, sudden changes in the plasma
control objectives or failure of the actuators can affect a plasma
discharge in a tokamak. ASAs can be designed to handle such
events in real time.

ASAs use a model to represent the relation between the
controller commands and actuator requests. Depending on the
model used, ASAs can be classified into static and dynamic
algorithms. Static ASAs use algebraic equations to model the
command-request relation in a system. Most existing ASAs
developed for the tokamaks fall under this category [8, 9].
These ASAs generally rely on online optimization, in which
the command-request model is imposed as a constraint, to con-
vert the controller commands into physical actuator requests.
For instance, the ASA in [8] uses mixed-integer quadratic
programming (QP). Static ASAs based on QP and tailored
to specific simultaneous plasma control problems have also
been developed [2, 4, 9]. Since factors like actuator saturation
limits can be easily incorporated into the optimization prob-
lem, static ASAs are easy to formulate and develop. However,
depending on the algebraic command-request model, type of
optimization problem, and number of actuators, static ASAs
can be computationally expensive. The second category of
ASAs, called dynamic ASAs, uses differential equations to
model the command-request relation. These ASAs rely on
integrating a differential equation to solve the allocation prob-
lem and, hence, can be more computationally inexpensive.
Furthermore, dynamic ASAs consider the evolution of the
actuator trajectories inherently. Hence, the actuator evolu-
tion can be designed to be optimal over a time horizon

instead of a single time step. Furthermore, factors like lag
in actuator response can be incorporated into the dynamic
ASAs. Despite these advantages, dynamic ASAs have not
been extensively explored since formulating them for a broad
class of plasma control problems is challenging, often requir-
ing specific assumptions on the plasma controllers. A generic
dynamic ASA based on minimax optimization has been pro-
posed in [12]. Another example of a dynamic ASA is the one
proposed in [9] for the burn control problem.

This work proposes a computationally efficient static ASA
that can integrate a wide variety of plasma control algorithms,
allocate a broad class of actuators, and deal with real-time
changes in the control objectives and actuators’ availability.
The proposed ASA relies on a linear/linearized command-
request model to formulate the allocation problem as a QP
problem. The linear nature of the model enables efficient com-
putation of the allocation problem’s solution using iterative
evaluation of closed-form equations. Furthermore, the alloc-
ation problem is formulated to consider a generic class of con-
trol algorithms and tokamak actuators, thus making it toka-
mak and scenario agnostic. From this perspective, the pro-
posed ASA can be considered as a generalization of the exist-
ing problem-specific solutions used in [1, 2, 4, 9]. Besides gen-
eralizing existing solutions, the proposed allocation problem
is formulated to incorporate real-time changes in the avail-
able actuators or plasma control objectives. In any given scen-
ario, the plasma control objectives can change as the plasma
evolves. For instance, a minimum safety-factor qmin control-
ler may be turned on only when the qmin value reaches a
threshold. In addition, actuators could undergo failures or be
repurposed for a different control objective (for example, an
electron cyclotron (EC) used for total energy control could
be repurposed for NTM suppression). The proposed ASA is
designed to handle such turning on/off of plasma control-
lers and changes in available actuators while maintaining the
QP problem framework. In other words, whenever there are
changes in the available actuators or plasma control object-
ives, the ASA updates the cost function and the constraints
in the QP problem without altering its underlying structure.
Retaining the QP problem framework is beneficial since it
obviates the need for comparatively complex optimization
algorithms. The contributions of this paper include: (i) for-
mulation of a QP problem based on an algebraic command-
request model to solve the allocation problem, (ii) develop-
ment of a methodology to incorporate changes in the con-
trol objectives and actuators’ availability into the QP problem,
(iii) synthesis of a computationally inexpensive algorithm that
solves the allocation problem, (iv) illustration of the effective-
ness of the proposed ASA using nonlinear simulations in the
Control-Oriented Transport SIMulator (COTSIM) using three
different test cases.

The sections in this paper are organized as follows.
Section 2 mathematically defines the allocation problem and
formulates the corresponding QP problem. The section also
goes over the modifications necessary to the QP problem to
handle changes in the control objectives or actuators’ availab-
ility. The results of numerical simulations carried out to test the
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proposed ASA are presented in section 3. Section 4 concludes
the work and lists potential extensions. Finally, a computation-
ally inexpensive algorithm that solves the allocation problem
formulated in section 2 is presented in appendix.

2. Allocation problem formulation and algorithm
design

2.1. Problem formulation

In this subsection, the allocation problem is described, and the
QP problem associated with the allocation problem is formu-
lated. Consider a tokamak scenario in which multiple control-
lers try to regulate different plasma properties using l phys-
ical actuators. The assumption is that these controllers pre-
scribe virtual commands based on the deviation of the cor-
responding plasma properties from their targets, and the rela-
tion between the virtual controller commands and the physical
actuator requests is known. Let v ∈ Rm be the vector of stacked
virtual inputs prescribed by the controllers at each time step tk,
and p ∈ Rl be the vector of physical actuator requests. The
actuator request pi corresponding to the ith actuator must lie
within the range

[
p
i
, p̄i

]
, where p

i
, p̄i are the lower and upper

saturation limits of the actuator, respectively. Suppose that the
relation between v and p is given by the equation

A(v)p= b(v) , (1)

where A : v "→ A(v) ∈ Rm×l is a nonlinear matrix function and
b : v "→ b(v) ∈ Rm is a nonlinear vector function.

Remark 1. Note that the above command-request relation is
assumed to be linear in p. In certain cases, the relation could
be nonlinear. Linearization with respect to a reference vector
pr could be used to obtain a model of the form given in (1). At
any given time step tk, the actuator request ptk−1

at the previ-
ous time step tk−1 could be used as the reference to linearize
the command-request relation. Considering that the changes
in actuator request values between consecutive time steps are
small, the linearized model obtained using ptk−1

should be
sufficiently accurate to represent the command-request rela-
tion. But the model obtained using ptk−1

is time-dependent.
However, since static ASAs deal with instantaneous values,
the time dependence of the model should not affect the alloc-
ation algorithm.

The problem of actuator allocation can be stated as follows:
at each time step tk, given the vector of virtual commands
v(tk), compute p(tk) such that (1) holds and pi ∈

[
p
i
, p̄i

]
for

i = 1, . . . , l. In other words, the problem involves selecting p
such that (1) and the saturation limits are satisfied. The alloca-
tion problem may have multiple solutions (for example, mul-
tiple values of p could satisfy (1) and the saturation limits)
or may not have a solution (when the controllers are trying
to track distant targets and the actuators are constrained by
the saturation limits). In the former case, one methodology to
determine a unique p is to solve a QP optimization problem,

which, at each time t, involves the minimization of the cost
function f, i.e.

argmin
p(t)

f(p(t)) = argmin
p(t)

pT (t)Qp(t) (2)

subject to the constraints

A(v(t))p(t) = b(v(t)) , (3)

p(t) ∈
[
p
1
, p̄1

]
× . . .×

[
p
l
, p̄l

]
. (4)

In the above optimization problem, Q= diag(q1, . . . ,ql) is
a diagonal matrix with weights q1, . . . ,ql. The reformulated
problem involves minimizing the cost function f, which meas-
ures the total actuator effort while satisfying the constraints
mentioned in the original allocation problem. Note that the
allocation problem does not have a solution when no p within
the saturation limits can satisfy (1). If such a situation arises
at a certain time step, slack variables can be introduced into
the optimization problem, as discussed in appendix, to solve
it. The resulting p violates (1) but satisfies the saturation lim-
its. If the allocation problem does not have a solution through
extended periods of the plasma discharge, then redefining the
controller targets might be the only possible solution.

2.2. Incorporating controller and actuator changes into the
QP problem

Real-time changes in the control objectives and actuators’
availability require adaptation of the above-presented QP
optimization problem. This subsection introduces the con-
trol objective adjustment matrix C and actuator status mat-
rix S, which can be used to redefine the original QP prob-
lem whenever controller and actuator changes occur during
a plasma discharge. The approach presented below relies on
first defining a generic QP problem that incorporates all the
controllers and actuators in any given plasma scenario. The
matrices C and S are used to eliminate terms in the generic QP
problem corresponding to the inactive controllers and actuat-
ors, respectively.

In a given tokamak scenario, let r represent the maximal
number of plasma controllers that can be activated during a
plasma discharge. Suppose the ith controller prescribesmi vir-
tual commands represented by the vector vmi for i = 1, . . . ,r.
Note that m1 + . . .+mr = m! r by definition. Furthermore,
suppose that the command-request relation of each control-
ler is independent of the other controllers, i.e. the command-
request relation given in (1) can be written in the from

A(v)p=

⎡

⎢⎣
Am1 (vm1)

...
Amr (vmr)

⎤

⎥⎦p=

⎧
⎪⎨

⎪⎩

bm1 (vm1)
...

bmr (vmr)

⎫
⎪⎬

⎪⎭
= b(v) . (5)
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To define the control objective adjustment matrix C
corresponding to the time step tk, define the matrix Ĉ as

Ĉ=

⎡

⎢⎣
c1Im1

. . .
crImr

⎤

⎥⎦ ∈ Rm×m, (6)

where, for i = 1, . . . ,r, ci ∈ R is equal to 1 is the ith controller
is active and 0 otherwise. The term Imi is an identity matrix of
dimension mi. The matrix C can now be constructed by elim-
inating the rows of Ĉ with only zeros. At each time tk, C is
m̂×m dimensional matrix, where m̂=

∑r
i=0 ci mi " m. This

matrix, as shown below, will be used to redefine the QP prob-
lem whenever there is a change in the control objectives.

To account for changes in the actuators’ availability, the
actuator status matrix S is defined using an approach similar
to the one presented above. Define the diagonal matrix Ŝ as

Ŝ=

⎡

⎢⎣
s1

. . .
sl

⎤

⎥⎦ ∈ Rl×l, (7)

where l represents the maximal number of physical actuators
available for plasma control in a given tokamak scenario, the
term sj, j = 1, . . . , l, is a positive constant and takes a value of
1 when the actuator j is available and 0 otherwise. The mat-
rix S is built by combining the non-zero columns of Ŝ without
changing the column order. Note that S is a l× l̂ dimensional
matrix, where l̂=

∑l
j=0 sj " l.

The matrices C and S defined above can now be used to
reformulate the QP optimization problem whenever there is a
change in the controller objectives or actuators’ availability. In
particular, the terms A, Q, b, and p arising in the QP problem
defined in subsection 2.1 are replaced by Ǎ, Q̌, b̌, and p̌, which
are defined as

Ǎ= CAS, Q̌= STQS, b̌= Cb, p̌= STp. (8)

Intuitively, the introduction of C and S, as shown in the
above equation, eliminates terms relevant to inactive control-
lers and actuators from the QP problem. The definition of these
matrices provides a computationally inexpensive and straight-
forward method to handle controller and actuator changes in
real time. Note that the C and S matrices are updated and the
QP problem is redefined only when there is a change in the
controller or actuator status.

2.3. Actuator sharing algorithm

The ASA can now be summarized as follows. At any given
time-step tk,

(i) compute the virtual commands using the plasma control
algorithms and define the vector v of virtual commands,

(ii) compute the terms A(v(tk)) and b(v(tk)) arising in the
command-request model,

(iii) define the control objective adjustment matrixC and actu-
ator status matrix S based on the control objectives and
actuators’ availability at time tk,

(iv) compute the terms Ǎ, Q̌, b̌, and p̌ using (8),
(v) solve the QP problem defined by Ǎ, Q̌, b̌, and p̌.

The most critical step in the above algorithm is solving
the QP problem. A wide-array of algorithms, including act-
ive set and interior point methods, exist to solve QP optimiza-
tion problems. Some of these techniques have already been
implemented in the PCSs of existing tokamaks like EAST
for real-time optimization purposes [13]. Appendix summar-
izes an alternative algorithm that iteratively uses closed-form
equations to arrive at the solution of the allocation problem.
The maximum number of iterations in the algorithm presented
in appendix is restricted by the number of physical actuators.
Since the iteration primarily involves evaluation of a closed-
form equation, the algorithm presented in appendix is compu-
tationally inexpensive.

3. Numerical testing of the ASA

This section summarizes the results of numerical simulations
that were carried out to test the effectiveness of the proposed
static ASA in a DIII-D tokamak scenario using the COTSIM
[14]. In particular, three test cases were studied: (i) simultan-
eous control of the safety factor gradient at a rational surface
and total thermal energy of the plasma [15], (ii) simultan-
eous control of the minimum safety factor and total thermal
energy [16], (iii) simultaneous control of the minimum safety
factor and total thermal energy with an arbitrary actuator
failure.

3.1. Case 1: Safety factor gradient and total energy control

In certain scenarios, neoclassical tearing modes can appear
at regions where the safety factor q takes rational val-
ues. In such scenarios, regulating the slope of the safety
factor profile at the rational surfaces may prevent or delay
the onset of such instabilities [17]. This test case con-
siders the problem of simultaneous regulation of the safety
factor gradient and total thermal energy of the plasma,
which is another plasma property that is critical for MHD
stability.

The safety factor gradient controller is built using themodel
developed in [15]. In this work, the gradient at the (3,2)
rational safety factor surface is approximated by the differ-
ence between the safety factor values at two points around the
rational surface. Refer to figure 2 for a graphical illustration of
this approach. Given a rational safety factor surface, gradient
control can be achieved by controlling qD = qR − qL, where
qR and qL are the safety factor values at the right and left con-
trol points ρR and ρL, respectively. Suppose the objective is
to track a target q̄D, the evolution of the error q̃D = qD − q̄D is
given by [15]
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Figure 2. Illustration of the minimum safety factor and safety factor
gradient approximation.

˙̃qD = ĉR (t,Ptot,fb,qR)− ĉL (t,Ptot,fb,qL)− ˙̄qD︸ ︷︷ ︸
čq

+ gD (t,Ptot,fb)
Tufb (t) . (9)

In the above equation, ĉi, (i = R,L), is a nonlinear function
of the total feedback power Ptot,fb and the safety factor value
qi. The term ufb is the vector of feedback auxiliary current
drive powers available for feedback control, and gD is the
vector that accounts for the spatial deposition of the auxili-
ary drives. The steps involved in the derivation of the above
model can be found in [15]. In simulations, two NBIs and two
ECs were assumed to be available for control. Then, the vec-
tor ufb can be written as ufb = [PNBI,1,PNBI,2,PEC,1,PEC,2]T.
In addition, the total feedback power can be expressed as
Ptot,fb = PNBI,1 +PNBI,2 +PEC,1 +PEC,2.

The evolution of the error between the total plasma energy
W and a given target W̄ is governed by

˙̃W=− W
τE (t,Ptot,fb)

+Ptot,ff − Ẇ
︸ ︷︷ ︸

čW

+Ptot,fb, (10)

where τE is the energy confinement time and Ptot,ff is the feed-
forward total power. The derivation of the above-given 0D
model can be found in [3].

It is clear from the above models that the two plasma
properties are coupled. To design the controllers and integ-
rate them using ASA, virtual inputs v1 and v2 are defined as
v1 = gD(t,Ptot,fb)Tufb(t) and v2 = Ptot,fb. With this definition,
the command-request model of the form given in (1) can be
written as

[
gD,1 (t,v2) gD,2 (t,v2) gD,3 (t,v2) gD,4 (t,v2)

1 1 1 1

]

×

⎧
⎪⎪⎨

⎪⎪⎩

PNBI,1 (t)
PNBI,2 (t)
PEC,1 (t)
PEC,2 (t)

⎫
⎪⎪⎬

⎪⎪⎭
=

{
v1 (t)
v2 (t)

}
. (11)

With virtual inputs, controllers can be designed independently
of the auxiliary drive constraints, making control synthesis

much easier. As mentioned in subsection 2.1, these constraints
are handled by the ASA.

Feedback linearization-based controllers are used for the
stabilization of q̃D and W̃ [15]. These controllers negate
the nonlinearities in the models and introduce stabilizing
linear terms. One choice of feedback linearizing virtual
inputs is

v1 =−čq− kq,pq̃D − kq,I

ˆ t

0
q̃D,

v2 =−čW− kW,pW̃− kW,I

ˆ t

t0
W̃dt, (12)

where kq,p,kq,i,kW,p,kW,i > 0 are controller gains. Substituting
the above virtual inputs into (9) and (10) results in linear
equations, which can be proved to be stable using Lyapunov
analysis [18]. The above virtual commands can then be con-
verted into physical actuator requests using the ASA.

The above controllers and the static ASA presented in sub-
section 2.3 were tested in COTSIM for a DIII-D scenario. The
DIII-D configuration information corresponding to shot num-
ber 147 634 was used [19]. The saturation limits of the actu-
ators were selected as 12 MW, 6 MW, 3.5 MW, and 3.5 MW,
respectively. While these limits differ from the current satur-
ation limits of the DIII-D auxiliary drives, they were chosen
to test the controllers’ ability to track large errors. The sim-
ulation results are shown in figure 3. The gray background
in the figure corresponds to the time period when the con-
trollers are active. The virtual commands prescribed by the
controllers are presented in figure 3(a). The ASA converted
these virtual commands into physical actuator requests presen-
ted in figure 3(b). The evolution of the plasma states, qD and
W, when these requests were used are shown in figure 3(c).
The closed-loop trajectories demonstrate that the controllers
and the ASA can achieve the desired plasma control object-
ives. The steady-state error in the trajectories of qD and W
indicates that the integral gains kq,i and kW,i could be tuned
further.

3.2. Case 2: Minimum safety factor and total energy control

Another critical property that is linked to the MHD stabil-
ity of the plasma is the minimum safety factor [16]. Figure 2
also gives a graphical illustration of the minimum safety factor
qmin at ρmin. This case considers the control of the minimum
safety factor and total plasma energy simultaneously. Since the
gradient θ of the poloidal flux is related to the safety factor,
minimum-safety-factor regulation can be achieved by regu-
lating the value of θ profile at ρmin [16]. The control model,
developed in [16], is given by

˙̃θqmin (t) = ĉ(t,Ptot,fb,θqmin)− ˙̄θqmin (t)+ h(t,Ptot,fb)
Tufb (t) ,

(13)

where θqmin is polidal flux gradient at ρmin, θ̄qmin is the target,
θ̃qmin = θqmin − θ̄qmin , ĉ is a nonlinear function of Ptot,fb,θqmin . In
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Figure 3. Case 1: (a) - virtual inputs (left), (b) - actuator requests (center), (c) - closed-loop trajectories (right).

Figure 4. Case 2: (a) - virtual inputs (left), (b) - actuator requests (center), (c) - closed-loop trajectories (right).

the simulations, 2 NBI clusters and 1 EC cluster were assumed
to be available for control. Thus, ufb takes the form ufb =
[PNBI,1,PNBI,2,PEC]T and h(t,Ptot,fb) is the vector that accounts
for the current drive deposition profiles. The virtual input for
this case can be defined similarly to how it was defined for
the safety-factor-gradient control discussed in the previous
case.

Feedback linearzing controllers were designed to drive
θ̃qmin to 0. Simulations were carried out using COTSIM to
test the controllers. The DIII-D configuration utilized for
the simulations discussed in subsection 3.1 was used. To
test the ability of the controllers to stabilize large errors,
the saturation limits of the actuators PNBI,1,PNBI,2,PEC were
set as 13 MW, 13 MW, 4.5 MW, respectively. These val-
ues differ from the actual DIII-D auxiliary drive limits and
were selected specifically for simulation purposes. Figure 4(a)
shows the virtual inputs generated by the controllers, and
figure 4(b) presents the actuator requests computed by the
ASA. When these actuator requests were used to close the
control loop, the plasma properties evolved as shown in
figure 4(c). The gray background in the subfigures depicts
the period of active feedback control. It is clear that the con-
trollers and the ASA are able to achieve the desired control
objectives.

3.3. Case 3: Minimum safety factor and total energy control
with actuator failure
This case considers the simultaneous regulation of the
minimum safety factor and total energy and tests the ability
of the ASA to handle sudden actuator failures. The simulation
configurations used for carrying out the simulations presen-
ted in subsection 3.2 were also used here. At 3.5 s, the EC
cluster was assumed to fail. The ASA will continue assigning
physical actuator requests to the EC cluster if this informa-
tion is not considered in real time. However, once the failure
is detected, if the actuator status matrix S is redefined and the
QP problem is updated as discussed in subsection 2.2, the ASA
should increase the powers of the other actuators. This expec-
ted behavior is observed in the simulation results presented in
figure 5. The light gray background in the figure corresponds to
the period when all actuators are available. On the other hand,
the dark gray background corresponds to the period when the
EC is inactive. The subfigures (a) and (b) present the virtual
inputs and the physical actuator requests, respectively. The
subfigure (c) shows the closed-loop trajectories. As evident
from the physical actuator requests plot, the ASA increases
the NBI powers as soon as the EC fails. As a result, qmin con-
tinues to track the target. On the other hand, it can be seen
that the actuator failure causes the total energy to deviate from
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Figure 5. Case 3: (a) - virtual inputs (left), (b) - actuator requests (center), (c) - closed-loop trajectories (right).

the target. However, the power corrections made by the ASA
cause the total energy to converge again to the target.

4. Conclusion

A novel static ASA has been developed to convert virtual com-
mands from plasma controllers into physical actuator requests
that satisfy the saturation limits. The allocation problem and
the associated QP problem are formulated in such a way that
the ASA is computationally efficient and can handle real-time
changes in the control objectives and actuators’ availability.
An iterative algorithm that solves the allocation problems is
also presented. The effectiveness of the ASA has been demon-
strated using nonlinear simulation in COTSIM using three dif-
ferent test cases. Future extensions of this work could focus
on incorporating actuator dynamics into the ASA and experi-
mental validation of the simulation results.
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Appendix. Iterative algorithm to solve the allocation
problem

This section presents an iterative algorithm that solves the
allocation problem formulated in section 2.1. The develop-
ment of the algorithm is split into two steps. First, the min-
imization of the cost function f defined in (2) subject to the
command-request model (3) is considered. In this step, the
saturation limits of the actuators are ignored. A closed-form
solution of this simplified problem is derived. In the second
step, this closed-form expression is implemented iteratively to
arrive at a vector of physical actuator requests that satisfy the
saturation limits.

A.1. Actuator allocation without saturation limits

Consider the cost function given in (2) and the constraint
imposed by the command-request model (3). Define the func-
tion g as g(p) = Ap− b and the Lagrangian as

L(p,λ) = f(p)−λT g(p) , (A.1)

where λ represents the vector of Lagrange multipliers. The
Lagrange multiplier theorem states that if a local minimum p∗

of the cost function f exists, and ∇pg1, . . . ,∇pgm are linearly
independent, then there exists λ∗ such that

∇pf(p∗)−∇g(p∗)Tλ∗ = 0, (A.2)

g(p∗) = 0. (A.3)

The notation∇p represents the gradient with respect to p, and

∇g(p∗) =
[
∇pg1 (p∗) . . . ∇pgm (p∗)

]T
. (A.4)
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From (2) and the definition of g, it is clear that ∇pf(p∗) =
2Qp∗ and ∇g(p∗) = A. Substituting these expressions
into (A.2–A.4) and rearranging the terms results in a closed-
form equation for the optimal physical actuator request vector
p∗ of the form

p∗ = Q−1AT (AQ−1AT)−1
b. (A.5)

A.2. Incorporating saturation limits using iterative approach

The closed-form equation (A.5) derived above can be used
iteratively to enforce the saturation limits constraints of the
actuators. However, before presenting the iterative algorithm,
it is important to note that the allocation problem or the asso-
ciated QP problem, defined by (2–4), may not have a solu-
tion, i.e. no combination of actuator values can satisfy the
controller commands. To handle such cases, slack variables
s= [s1, . . . ,sm]T are introduced into the QP problem. In other
words, the cost function is minimized with respect to p and
s, where s is allowed to arbitrary real-number values. The
modified QP problem can be stated as, at each time t, given
v(t),

argmin
pa(t)

f(pa (t)) = argmin
pa(t)

pTa (t) Q̂pa (t) (A.6)

subject to the constraints

Â(v(t))pa (t) = b(v(t)) , (A.7)

pa (t) ∈
[
p
1
, p̄1

]
× . . .×

[
p
l
, p̄l

]
× (−∞,∞)

× . . .× (−∞,∞) , (A.8)

where Q̂= diag(q1, . . . ,ql,qs1 , . . . ,qsm) with qsj >> qi > 0 for
i = 1, . . . , l and j = 1, . . . ,m, Â= [A, I], I ∈ Rm×m is the iden-
tity matrix, and pa = [pTsT]T. The closed-form equivalent
of (A.5) in this case can be written as

p∗a = Q̂−1ÂT
(
ÂQ̂−1ÂT

)−1
b, (A.9)

Remark 2. Note that the slack variables are included in the
modified command-request model (A.7) and are heavily pen-
alized in the cost function. Thus, whenever the original QP
problem without the slack variables has a solution, solving the
modified QP problem presented above gives a p close to the
original solution. When the original problem does not have a
solution, solving the modified QP problem results in large val-
ues of the slack variables, which can be considered a measure
of the command-request model violation.

Remark 3. The weights qs1 , . . . ,qsm of the slack variables in
the matrix Q̂ correspond to the m plasma controllers that
prescribe the virtual inputs. Depending on the choice of
qs1 , . . . ,qsm , specific control objectives can be prioritized over
others whenever complete actuator saturation occurs.

The vector p∗a obtained by (A.9) may not satisfy the satur-
ation limits. The following iterative approach gives a p∗a that
satisfies the saturation limits.

(i) Compute p∗a using (A.9).
(ii) If any values in p∗a violate the saturation limits, their

respective values are set to the corresponding saturation
limit.

(iii) The optimization problem is redefined to only include
those components of p∗a that did not saturate.

(iv) Return to Step (i). This process is continued iteratively
until (A.7) and (A.8) are satisfied.

Remark 4. Even if the original QP problem, formulated in
subsection 2.1, has a solution, the above iterative algorithm
may give a solution that is suboptimal with respect to the QP
problem, since the inequality constraints imposed by the sat-
uration limits are not considered while deriving (A.9) [20].
However, it is essential to note that the above algorithm gives
a solution that satisfies both (A.7) and (A.8). In other words, it
solves the allocation problem even if it only gives a suboptimal
QP solution.
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