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ABSTRACT

This study aims to incorporate the effects of fast particles into our present fluid model for tokamak transport. The parameter ef ¼ x=xf ,
where x is the mode frequency and xf is the typical frequency of the fast particles, which enters as a factor in front of the fast particle
response. Thus, for trapped fast particles, where xf ¼ xpres the precession frequency of the fast particles, this parameter is of order 10"2 for
drift waves, and thus, the fast particle response can be neglected. However, ef will be of order 1 for fast particle modes such as in the fishbone
instability. An important turbulence property, affecting both these limits, is resonance broadening. Effects of resonance broadening have
recently been considered for fast particle instabilities, often coupled directly to the linear growth rate, while we here consider the original
Dupree formulation where the turbulence directly drives a nonlinear frequency shift. Resonance broadening has a general tendency to
counteract dissipative wave particle resonances. This has been observed for fast particle instabilities. Here, there is a resonant external source
for the fast particles, so the instability survives if this source is dominant over the resonance broadening. For drift waves, however, external
sources are not resonant since ef # 1. Thus, the resonance broadening is able to remove the dissipative wave particle resonance completely.
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I. INTRODUCTION
We will here discuss fast particle instabilities from the point of

view of how these arise in kinetic and fluid models.1–4 We here need
to make use of several works on the basic background.5–15 The first
effects noted experimentally from fast particles were a stabilizing effect
due to dilution.15 The reason for this was that we must have quasi neu-
trality so that a population of fast ions meant that the number of back-
ground ions, driving various instabilities, like, e.g., the Ion
Temperature Gradient (ITG) instability, had to be reduced. This effect
is, of course, present also for impurities.

However, in 1983, fishbone instability was observed on the
Poloidal Divertor Experiment (PDX) machine in Princeton1 in con-
nection with perpendicular neutral beam heating. This was a new
mode of MHD type introduced and driven by the trapped fast par-
ticles. It was explained theoretically within 1 year.2 While the fishbone
mode was an internal kink mode driven by the fast particles at mode
numbers of order 1, a similar instability was found for the MHD bal-
looning mode at much higher mode numbers.3 The MHD ballooning
was assumed to be responsible for precursors to the fishbones. In the
following, we will do the same for a system of drift waves and MHD
modes that contains the first high-frequency fishbone system. This
means the excitation of a high-frequency fishbone as derived in Ref. 3.
We also note that both slowing down and Maxwellian kinetic distribu-
tion functions were studied in Ref. 4 where it was concluded that the
difference in results between these was marginal.

Recently, it has been found that resonance broadening5–14 has
an important effect on velocity space instabilities.15–18 Resonance
broadening appears as a nonlinear frequency shift which removes
the linear frequency resonance to make the amplitudes finite. It was
first derived by Dupree6 by substituting equations for sidebands into
the nonlinear terms, keeping only terms that are phase coherent
with the central mode. As expected, the frequency broadening
reduces the effect of the resonance. However, due to a fixed external
fast particle source in velocity space, the kinetic resonance may sur-
vive if the external source is sufficiently strong and resonant with
the waves. This process is similar to that of particle trapping, where
particles are moved out of resonance. However, here, it is waves that
vary their phase velocity due to nonlinear frequency shifts. As
shown by Refs. 7–9, when there is no source to maintain the particle
energy, resonance broadening is able to completely remove the
kinetic nature of the wave-particle resonance.

Reference 7 was written for a homogeneous plasma. This was
generalized in Ref. 8 where inhomogeneity was introduced. However,
the result for the diffusivity was the same, the only generalization being
that the linear growth rate will now be due to drift waves. The case for
drift waves had already been studied by Dupree and Tetreault.9 Our
generalization is here that our derivation is non-Markovian. This leads
to the same diagonal element for the diffusivity as that found by
Connor and Pogutse.19 Thus, Ref. 7 derives the same diagonal element
for transport as found previously by us20 for the energy transport and
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in Ref. 19 for the particle transport, both derivations using fluid theory,
while Refs. 7 and 8 use fully nonlinear kinetic derivations. Thus, we
can see this as a verification of our fluid closure, while Ref. 19 only
verifies the nonlinear turbulence calculations using fluid theory.
However, this was done by using both analytical and numerical calcu-
lations. We note the similarity between Ref. 19 and our fluid result in
the saturation level of the turbulence which requires an outgoing
boundary condition. This requires that strong zonal flows absorb the
inward cascade in a finite system. Sufficiently strong zonal flows are
obtained with reactive fluid closures as used both by us and in Ref. 19.
Another fluid closure, relevant for fast particle modes, was given in
Ref. 21, while our reactive closure, in combination with electron trap-
ping, gave particle and heat pinches.22

In Ref. 7, we use a Fokker–Plank equation where the resonance
broadening [see Eq. (7)] is due to nonlinear friction. This leads to a
saturation in time of the quasi-linear behavior at t ¼ 1=b, where b is
the nonlinear friction of the mean square velocity deviation from the
initial state. In the case of a resonant source, as we have for fast particle
modes, it is easy to see that the quasi-linear growth of the mean square
velocity deviation may continue in time corresponding to the presence
of dissipative kinetic resonances.

We have here focused on aspects relevant to various physics
descriptions of linear and nonlinear systems in fluid and kinetic the-
ory. For this purpose, we have limited ourselves to the case of perpen-
dicular neutral injection. For tangential injection, we need to consider
further details of the geometry.23–25 More geometry effects were con-
sidered in Refs. 25–27. The presence of kinetic resonances also requires
us to consider effects of gyro-Landau resonances21 for fast particle
modes and the fluid closure for drift waves.28–31

This paper’s structure is as follows. Section II describes the deri-
vation of simultaneous equations for fast particle instabilities and drift
wave turbulence. The fluid and kinetic equations are presented in Sec.
III in order to make contact with previous derivations of fast particle
instabilities. Section IV dedicates to the summary of the results.

II. DERIVATION OF SIMULTANEOUS EQUATIONS
FOR FAST PARTICLE INSTABILITIES AND DRIFT
WAVE TURBULENCE

We will here start from our earlier description of the high-
frequency version of the fishbone instability.3 This simplifies the
geometrical aspects at the same time as it includes all the principal
questions of combining drift wave dynamics and fast particle modes.
This case assumes perpendicular neutral beam injection. When paral-
lel injection is used, we need to consider various gap modes that
depend more sensitively on the magnetic field geometry.23,24

An equation that very clearly shows the dependence of kinetic
growth rates on nonlinear frequency shifts is that of the growth rate of
the universal drift wave instability.10

c ¼ p
2

! "1=2

x$e
x" x$e
kkvte

e"x2=ðkkvteÞ2 ; (1)

where c is the mode growth rate, x is the mode frequency, x$e is the
electron diamagnetic drift frequency, kk is the wave vector parallel to
the magnetic field, and vte is the electron thermal velocity. It is easy to
see in Eq. (1) that for drift waves, where x is close to x$e, the growth
rate is very sensitive to a frequency shift. When the magnitude of x$e
exceeds the mode frequency, the instability can be attenuated. The real

eigenfrequency of drift waves is here the electron diamagnetic drift fre-
quency shifted by Finite Larmor Radius Effects (FLR). Equation (1)
was introduced merely to show how strong the effect of a frequency
shift can be, and the details do not apply to fast particle modes. The
same thing is true for nonlinear frequency shifts that involve quadratic
nonlinearities. In a turbulent electrostatic state, we have the
Fokker–Planck equation for turbulent collisions,6–8

@

@t
þ v ( @

@r

! "
WðX;X0; t; t0Þ ¼ @

@v
bv þ D! @

@v

# $
WðX;X0; t; t0Þ:

(2a)

Here the nonlinearities appears:

b ¼
X

j

bjj/jj
2; (2b)

D! ¼
X

j

djj/jj
2; (2c)

whereW is the transition probability between states X and X0 and dur-
ing the time interval t " t0. Here, b is the nonlinear friction, while D!

is the nonlinear diffusion coefficient in velocity space and / is the elec-
trostatic potential. In order to better understand the various terms as
well as nonlinear formalism in general, we refer to Hasegawa.10 Since
the nonlinear friction is already quadratic in the fields, multiplied by
the transition probability, we realize that we have a cubic nonlinearity
of the same type as those stabilizing explosive instabilities. If we ignore
the nonlinear friction, Eq. (2a) has the same form as an equation for
quasi-linear transport.10 Again it is only intensities, as in Eq. (2c),
which play a role since other terms vanish by phase mixing. Thus, Eq.
(2a) is the Fokker–Plank equation for turbulent collisions. It was
obtained already by Dupree6 and further explained in Refs. 9 and 10.
We are interested in solutions of Eqs. (2a)–(2c), in particular, the
transfer of energy between particles and waves. As it turns out, Eq.
(2a) has analytical solutions in terms of transition probabilities.4,7

While the diffusivity can be expressed in terms of D! also in quasi-
linear theory,10 the nonlinear friction is a strongly nonlinear feature.6,7

It corresponds to a nonlinear frequency shift and, accordingly, reso-
nance broadening.16–18 It has a profound influence on the evolution in
time. In particular, it influences the time variation of the mean square
velocity deviation from the initial state.

Analytical solutions4,6 help us to derive the variation in time of
the mean square velocity deviation (velocity dispersion) as expressed
in its most simple form in Ref. 13 [see Eq. (9.53)]. This was obtained
for constant coefficients in the Fokker–Planck equation. However, the
most important feature that velocity dispersion is constant asymptoti-
cally was verified numerically in quite general cases in Ref. 24. The
analytical result is

hDv2i ¼ D!

b
ð1" e"btÞ: (3)

When b# 1, Eq. (2a) gives the usual linear time dependence as
known from quasi-linear theory. While D! can contain both weakly
and strongly nonlinear components, b corresponds to a nonlinear fre-
quency shift which is always strongly nonlinear. In Ref. 20, the diago-
nal part of our fluid diffusivity was derived. This also agreed with the
result of Connor and Pogutse.19 However, Ref. 20 also gave the full
quasi-linear expression including off-diagonal parts. The main reason
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why we could derive a fluid result from a general, strongly nonlinear
kinetic equation was the resonance broadening obtained due to the
friction term.7 The reason why quasi-linear theory works in the fluid
case20,28–30 is that the fluid velocity is several orders of magnitude
smaller than the kinetic (thermal) velocity. While Eq. (3) is the result
of turbulence calculations (c.f. also Ref. 32), we now recall that dissipa-
tive kinetic effects were also removed by the nonlinear frequency shift
(resonance broadening) in the coherent works by Mattor and Parker28

and Holod et al.29 Thus, it appears that nonlinear frequency shifts
have similar effects in coherent and turbulent systems.

Now Eq. (3) was derived for a situation without external sources
except for sources of particles and energy that were required to main-
tain gradients in density and temperature. In the presence of external
sources in velocity space (Sv), Eq. (2a) should be replaced by

@

@t
þ v ( @

@r

! "
WðX;X0; t; t0Þ ¼ @

@v
bvþD! @

@v

# $
WðX;X0; t; t0Þ þ Sv:

(4)

In the case of drift waves, a fast particle source would appear at about
a factor 100 higher frequency than the drift wave frequency. Thus, it
would oscillate rapidly and thus be averaged out.

hSvi ¼ 0:

For modes oscillating close to the precession frequency of fast particles,
however, the source in Eq. (4) will be important. Here, we need to real-
ize that this source will give a fast particle instability. Thus, it will give
growing perturbations. We can then use the same expression as for
friction, which damps out instabilities but now with linear growth
leading to

@W
@t
¼ @

@v
s v½ *WðX;X0; t; t0Þ

or

Sv ¼ "
@

@v
s v½ *WðX;X0; t; t0Þ: (5)

Here, the source contains the transition probability, which guarantees
that it is resonant. It actually has the same form as the friction term
but with the opposite sign. Our original Fokker–Planck equation turns
out to have an analytical solution when the coefficients are constants.5

We then use the solution by Chandrasekhar5 to derive the mean
square velocity deviation (velocity dispersion) from the original state
as shown in Ref. 7 [equation after Eq. (82)]. This was further simplified

in Ref. 15 [Eq. (9.53)]. The effect of the friction (resonance broaden-
ing) can, in the case Eq. (4), without fast particles, be solved analyti-
cally as is given in Eq. (3).

We notice in Eq. (3) hDv2i (velocity dispersion) will start as pro-
portional to t for small times. However, when friction becomes impor-
tant at t ¼ 1=b it will flatten.

The flattening of hDv2i in Fig. 1(a) means that there is no more
transfer of energy between particles and waves. Thus, a reactive fluid
closure must be possible. Indeed, the further calculations in Ref. 7
showed that transport resulted in our diagonal diffusivity. Here, we
included all moments with sources in the experiment, a point dis-
cussed in Ref. 13.

We can take the resonance broadening from Dupree6 also dis-
cussed in Ref. 9,

bx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2kdx"x0

3

3

s

; (6)

where d is the diffusion coefficient in velocity space and the frequency
components are needed in a non-Markovian treatment. When we
include the external source in velocity space, however, Eq. (3) is
replaced by

hDv2i ¼ D!

b
ð1" e"ðb"sÞtÞ: (7)

Thus, the source is counteracting the resonance broadening. If we take
the case s ¼ b, the situation here is very similar to that of Refs. 2 and
3. The fast particles introduce a new high-frequency branch of the
fluid dynamics which actually contains a kinetic resonance. For this
branch, i.e., the fast particle branch, Fig. 1(a) is replaced by Fig. 1(b).
We have here chosen s ¼ b which is a special case for the demonstra-
tion of the principle. In the quasi-linear case, dissipative kinetic reso-
nances are active which is the case for fast particle instabilities such as
Fishbones. We will here use a two-fluid description to study the com-
bined system of drift waves and fast particles. In order to include a fast
particle source in our fluid model, we need to change our fluid closure.

3
2
ni

@

@t
þ vi (r

! "
Ti þ Pir ( vi ¼ "r ( q$i þ ir ( qdiss: (8)

Equation (8) includes our required modification in closure which can
be used to derive gyro fluid models.21 Here, qdiss is the dissipative clo-
sure term to be added to the diamagnetic heat flow, and it leads to cdiss
in Eq. (9). Since we know where the closure term enters in our fluid

FIG. 1. (a) An illustration of the velocity
dispersion over time. The original linear
growth is a quasi-linear behavior, while
the flattening at t ¼ 1=b is a strongly non-
linear effect. (b) Velocity dispersion as a
function of time when external source
exactly balances resonance broadening.
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model, it is easy to generalize it [as obtained from Eq. (6.153) in Ref.
15]. The ion thermal diffusivity can be written as

vi ¼ Re
1
gi

gi "
2
3
" ð1" ftÞ

10
9s

en "
2
3
ftD

# $(

+ c3=k2r
ðxr " 5=3xDi " icdissÞ

2 þ c2

)
; (9)

where gi is the ratio of normalized ion temperature to normalized
ion density gradients, ft is the fraction of trapped electron, en is the
density gradient scale length normalized by major radius, s is the
electron-to-ion temperature ratio, kr is the wavevector perpendicu-
lar to the magnetic field, xDi is the ion magnetic drift frequency,
cdiss is the gyro-Landau fluid resonance, and the term D is due to
the coupling between electrons and ions in our fluid model and is
not needed here. These are taken from our derivations in Refs. 15
and 20. It is important to note here that all parts of Eqs. (8) and (9)
are taken from the simplest limit of our fluid model for drift waves.
For these, hSvi ¼ 0 applies. For the fast particles, we have to use
Eq. (5) which will then give the gyro-Landau resonance21 called
qdiss in Eq. (8) and accordingly cdiss in Eq. (9). It will be taken from
Ref. 3 but with a reduction due to resonance broadening as found
above.

We also recall that our Fokker–Planck equation without an exter-
nal source resulted in both the diagonal part of our diffusivity Eq. (9)
if we omit the cdiss and the particle diffusivity in Ref. 19. Now, we
know that the external source Sv in Eq. (4) will lead to a replacement
of the friction b by b" s; so we can directly make the same replace-
ment in Eq. (9), i.e., cdiss , s" b, for s > b. When b “dominates,”
there is no dissipative term at all. This means that resonance broaden-
ing is able to completely remove wave-particle resonances.

III. FLUID RESONANCES
We now want to work with fluid and kinetic equations in order

to make contact with previous derivations of fast particle instabilities.
Our first observation is then that the approximation Ek ¼ 0 has usu-
ally been used in previous calculations. As it turns out, this is generally
due to ignoring some toroidal effects. Thus, following our previous
derivations for drift waves15 but adding a gyro-Landau resonance
which would be important at higher frequencies, we find starting by
the density perturbation. From now on, we introduce “f” for “fast”
particles.

dnf
nf
¼

x$e þ sfxpr

x" xpr
" k2q2

s þ
xpr

x" xpr

#

+ gf "
2
3

! "
x$e

x" 5=3xpr þ iD

$
e/
Te
; (10)

where qs - cs=xci; is the expression for the ion Larmor radius using
the electron (rather than ion) temperature (Te), xci ¼ eB=mi is the
ion cyclotron frequency, cs -

ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the speed of sound, e is the

electron charge, B is the magnetic field strength, mi is the ion mass,
and gf is the ratio of normalized fast ion temperature to normalized
fast ion density gradients. The last term in Eq. (10) is a toroidal effect
since xpr represents the bounce frequency. This term is due to the fast
ion temperature perturbation as seen from

dTf

Tf
¼ x

x" 5xDi=3þ iD
2
3
dnf
n
þ x$e

x
gf "

2
3

! "
e/
Te

# $
: (11)

We have here included the modified closure in the term D. Thus, Eqs.
(10) and (11) should be sufficient for our derivation after identifying
the explicit term of the resonance. We now need to include also elec-
tromagnetic effects. We can do that by including the effect of induc-
tion in preventing electrons from reaching a Bolzmann distribution
thus, we obtain from parallel electron motion:

dne
ne
¼ e/

Te
þ x$e " x

kk

eAk
Te

: (12)

Combining Eq. (12) with the electron continuity equation, we get

eAk
Te
¼

kkðx" x$eÞ
xðx" x$eÞ " k2q2

s k
2
kv

2
A

e/
Te
: (13)

By substituting the value of Ak into Eq. (12), it becomes

dne
ne
¼ e/

Te
1þ ðx$e " xÞ2

xðx$e " xÞ " k2q2
s k

2
kv

2
A

" #
; (14)

where vA is the Alfv!en velocity. The main ion density equation is
expressed as

dni
ni
¼ e/

Te

x$eð1" k2q2
i Þ

x" xDi
" k2q2

s

# $
; (15)

where qi is the ion Larmor radius. Now using quasineutrality between
electrons, main ions, and fast ions, we obtain

1þ ðx$e " xÞ2

xðx$e " xÞ " k2q2
sk

2
kv

2
A

" #

¼ x$e þ sfxDi

x" xDi
" k2q2

s þ
xDi

x" xDi
gi "

2
3

! "
x$e

x" 5
3
xDi

2

4

3

5

þ
x$e þ sfxpr

x" xpr
" k2q2

s þ
xpr

x" xpr

gf "
2
3

! "
x$e

x" 5
3
xpr þ iD

2

664

3

775:

(16)

We note that the dissipative resonance exists only for the fast ions
since they are resonant with the fast ion source. The dissipative reso-
nance disappears from the other terms because of Eq. (5) the dissipa-
tive term is proportional to s" b.

We first ignore the fast particle part of Eq. (16) and then arrive at

xDix$e
k2q2

s

x$e
x
" 1

! "
þ k2kv

2
A 1" xDi

x

! "
" ðx" x$eÞðx" xDiÞ

¼ 2
s
x$eðx$e " xÞ " k2kv

2
A +

x$e
x
þ k2q2

s 1" xDi

x

! "# $
: (17)

We can here check the MHD limit by taking the limit x. x$;xDi.
We then obtain standard MHD ballooning modes

x2 ¼ k2kv
2
A " D; (18a)
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D ¼ x$exDe

k2q2
s
: (18b)

Now looking at the fast particle part, we obtain

xðx$e " xÞ " k2q2
sk

2
kv

2
A þ ðx$e " xÞ2

h i e/
Te

¼ ff
e/
Te

x$ef þ sfxpr

x" xpr
" k2q2

s

# $
þ ff

xpr

x" xpr

dTf

Tf
; (19)

where ff ¼ nf=ne is the fraction of fast ions. Including the temperature
perturbation from Eq. (11), we get

xðx" x$eÞ " k2kv
2
A 1" x$ef

x" xpr
þ k2q2

s

! "

¼ "ðx$e " xÞ x$e
k2q2

f
" Df

x" xpr þ iD

# $
; (20a)

Df ¼
x$fxDf

k2?q2
f
; (20b)

contains the fast particles fraction ff and here D includes also the reso-
nance broadening. We are now in a position to write down our final
stability condition,3

i xðx" x$iÞ½ *1=2

xA
¼ dWfluid þ dWfast: (21)

We here introduced a normalization with the Alfv!en frequency xA

which means that the different parts here are dimensionless. We have
already seen how the fluid part gives us the two fluid parts of the MHD
energy change. In our full description, the parallel electric field is
included. Also, the fast particle part includes the parallel electric field and
resonance broadening. Thus, Eq. (21) will turn into the equation for
high-frequency fishbones in Ref. 3. We note that Eq. (21) contains both
the fluid, drift wave, and the fast particle part dWfast. These have been
treated differently. Thus, while dWfluid uses isothermal electrons, dWfast

uses the full kinetic integral for the fast particles as taken from Ref. 3.
If we take the limit when x is much larger than the drift frequen-

cies. We then have to evaluate the fast particle resonance, which will
be the same as in Ref. 3, except for the fact that we have here included
resonance broadening. Thus, we can now use the resonant part of
dWfast as given in Ref. 3 [see Eq. (29) in Ref. 3].

dWfast ¼
pq2

2s
b̂f I0

x
xpr

ln 1"
xpr

x

! "
: (22a)

Here we introduce:

b̂f ¼ f; (22b)

f ¼ ðs" bÞ=s: (22c)

Thus, we have modified dWfast from Ref. 3 to include a reduction due
to resonance broadening. Here, f represents the effect of resonance
broadening, bf is the fast ion pressure to magnetic pressure ratio, and
I0 represents geometry effects partly due to solving the linear eigen-
value problem for MHD ballooning modes. However, also dWfluid,
which is a generalization of dWMHD in Ref. 3 to include two fluid
effects, has been improved partly due to solving the linear eigenvalue
problem for MHD ballooning modes as seen in Refs. 26 and 27.

In our calculation for the high-frequency fishbone, we found3

I0 ¼
0:5
Kb0

a0I0ða0Þ þ Iða0Þ
x$f
"xdf

! "
; (23)

where

Kb0 ¼
2R
r

! "0:5

Kðk20Þ=p;

Iða0Þ ¼
2R
r

! "0:5

2Eðk20Þ " Kðk20Þ
& '2

=pKðk20Þ;

k20 ¼ 1þ r
R
" a0B0

! "
r
2R
;

"xDf ¼ "nq 2Eðk20Þ=Kðk20Þ " 1
& '

=R r Xc:

Continuing to follow the ordering in Ref. 3, we have

xpr ¼ "xDf . x$e; "xDf < xDf ;

where r is the minor radius, R is the major radius, a0 ¼ x=xpr, Xc is
the cyclotron frequency, and Eðk20Þ and Kðk20Þ are complete elliptic
integrals. Here, xpr is the precession frequency of the fast particles
which equal the bounce-averaged fast particle magnetic drift fre-
quency, "xDf and x$e are the diamagnetic drift frequency of the core
plasma which has much lower temperature. Furthermore, the
bounce averaged magnetic drift is smaller than the magnetic drift
itself since bounce averaging reduces its magnitude. This ordering is
consistent with the PDX experimental data from Ref. 3. The imagi-
nary part of Eq. (21) directly gives us the term D but here propor-
tional to s" b.

However, we can also go in the other direction, including more
physics. In our full fluid model,15,31 we use

eAk
Te
¼

kkðx" x$eÞ

xðx" x$eÞ þ xDeðx$eT " xÞ "
mkkTe

e2Brn0

@Jk0
@r
" k2q2

sk
2
kv

2
A 1" iðx" xDeÞ

k2kDe

 ! e/
Te
: (24)

Using Eq. (24) in Eq. (12) means that we include also kinetic bal-
looning modes and peeling modes in our description. Thus, while
fast particle-driven modes appear close to the boundary of MHD

ballooning modes in Ref. 3, they will here appear close to the
combined boundary of kinetic ballooning modes and peeling
modes.
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IV. SUMMARY
We have here included the effects of fast particles in our fluid

model for drift waves. In doing this, we have entered a source term
into the Fokker–Planck equation previously used for the derivation of
our fluid model. This source has to have a frequency comparable to
the eigenmodes we study. Thus, it enters only because we are here con-
sidering eigenmodes with frequencies of the order of the precession
frequency of the energetic trapped particles, which is typically about
two orders of magnitude larger than that of drift waves. We have here
included two fluid effects containing the parallel electric field and also
kept the resonance broadening, which reduces the effect of the fast
particle drive. The way we include an extra source connects closely to
the discussion in Ref. 13. There is a rather detailed discussion of how
external sources influence our system. This discussion can easily be
extended to include an external fast particle source. This was the main
new content of our work, from which it follows that our standard fluid
closure is valid when resonance broadening dominates over the exter-
nal source, while we need to include a dissipative kinetic source (like a
Landau fluid resonance) when the external kinetic source dominates
over resonance broadening.

Our work applies in its respective limits to both drift wave theory
and the theory of fast particle instabilities. For fast particles, we refer to
Refs. 4 and 25 for a comparison between results for Maxwellian and
slowing-down distributions. Reference 25 also includes the effects of
geometry, which are mainly discussed in Refs. 23 and 24 for gap
modes. The new results for fast particle modes are mainly resonance
broadening and two fluid effects like parallel ion motion.
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