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Abstract
Scenario development in tokamaks is an open area of investigation that can be approached in a
variety of different ways. Experimental trial and error has been the traditional method, but this
required a massive amount of experimental time and resources. As high fidelity predictive
models have become available, offline development and testing of proposed scenarios has
become an option to reduce the required experimental resources. The use of predictive models
also offers the possibility of using a numerical optimization process to find the controllable
inputs that most closely achieve the desired plasma state. However, this type of optimization can
require as many as hundreds or thousands of predictive simulation cases to converge to a
solution; many of the commonly used high fidelity models have high computational burdens, so
it is only reasonable to run a handful of predictive simulations. In order to make use of
numerical optimization approaches, a compromise needs to be found between model fidelity
and computational burden. This compromise can be achieved using neural networks surrogates
of high fidelity models that retain nearly the same level of accuracy as the models they are
trained to replicate while reducing the computation time by orders of magnitude. In this work, a
model-based numerical optimization tool for scenario development is described. The predictive
model used by the optimizer includes neural network surrogate models integrated into the fast
Control-Oriented Transport simulation framework. This optimization scheme is able to
converge to the optimal values of the controllable inputs that produce the target plasma scenario
by running thousands of predictive simulations in under an hour without sacrificing too much
prediction accuracy.
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1. Introduction

Both feedforward and feedback approaches to plasma control
are routinely used in tokamaks: feedback control, calculated in
real time based on the measured plasma state, is always neces-
sary for applications such as shape control and vertical sta-
bilization [1]; feedforward control, determined ahead of time
and not adjusted once the plasma shot starts, is often used
with actuators such as the auxiliary heating systems to try to
achieve a specific plasma state. This feedforward approach
requires a significant amount of effort to determine what actu-
ator trajectories are needed to achieve the desired state. This
can, and historically has, been done using experimental trial
and error, but the limited availability and high cost of exper-
imental run time on a tokamak motivates the need for other
solutions. High fidelity integrated predictive simulations (e.g.
the physics-oriented transport code TRANSP [2, 3]) can be
used to predict the results of a set of proposed actuator tra-
jectories to determine whether scenario goals are obtained.
There has been a recent push to use these type of tools in a
predict-first approach [4–6], or to tune the feedforward actu-
ator requests through a series of predictive simulations in order
to minimize the experimental resources necessary to achieve
the desired plasma. Going a step further, it would be very desir-
able to have the capability to have an optimization tool predict
ideal actuator trajectories according to the model instead of
requiring a physicist to do a manual tuning. Unfortunately, this
type of automatic optimization can require hundreds or even
thousands of predictions using different perturbations of the
actuator trajectories; high fidelity predictive models such as
predictive TRANSP may take hours to tens of hours to run a
single predictive simulation, making it too computationally-
intensive to work well with this type of optimizer.

In order to develop this type of optimization algorithm, a
computationally lighter predictive model is needed. Control-
oriented predictive codes such as RAPTOR [7] or the Matlab-
based transport code Control-Oriented Transport Simulator
(COTSIM) [8] have significantly lower calculation times that
make them reasonable options for a numerical optimization
scheme. This type of offline numerical actuator trajectory
optimization has previously been conducted for NSTX-U [9,
10], EAST [11], DIII-D [12–14], ITER [15, 16], ASDEX-
U and TCV [17]. However, optimization using a predictive
model has the caveat that the optimized actuator trajectories
are only as good as the model used to generate them. Any sim-
plifications used to improve the calculation speed of the model
have the potential to limit the relevance of the optimizer res-
ults. In order for this type of optimization scheme to produce
actuator trajectories that are compatible with experimental
operation, a balance needs to be found between model fidelity
and calculation speed. One approach to achieving both high
prediction accuracy and fast calculation speed that has gotten
significant attention in recent years is using machine learning
surrogates for high fidelity predictive models [18–20]. With
this method, the machine learning algorithm is trained on sim-
ulation data generated by the high fidelity model, and is thus
able to closely replicate that calculation with an inference time
potentially orders of magnitude faster.

Amodel-based optimization tool is presented here for DIII-
D using the nonlinear transport code COTSIM as the pre-
dictive model. As shown in figure 1, COTSIM is a modular
code that allows the user to choose between a variety of mod-
ules and configurations to customize the predictive simulation.
The configuration of COTSIM used here evolves transport
equations for the poloidal stream function, electron temper-
ature, and toroidal rotation profiles and assumes a prescribed
equilibrium, including the plasma shape and position. After
evolving each transport equation, it calculates values such as
the safety factor profile and βN that are used to define different
scenarios. A variety of different models are available to cal-
culate plasma properties such as the density, resistivity, trans-
port coefficients, and pedestal location, as well as the auxiliary
heating and non-inductive current sources. Specifically, two
neural network surrogatemodels are available that will be used
in this work. NubeamNet [21] replicates the calculation of the
effects of neutral beam injection from NUBEAM [22], includ-
ing the heating, current, and torque drive profiles, and has been
integrated into COTSIM as an alternative to a simple empirical
beam model. MMMnet [8] replicates the calculation of cer-
tain anomalous diffusivity coefficients fromMMM[23], and is
available as an option in COTSIM along with the Bohm/gyro-
Bohm [24] and Coppi-Tang [25] models. Both of these neural
network surrogates produce similar results to the models they
were trained to replicate while achieving significantly shorter
inference times. This allows COTSIM access to higher fidelity
predictions while maintaining its fast calculation speed [26].
The optimizer presented in this work takes advantage of both
the speed and the higher fidelity of COTSIM when these mod-
els are used to determine actuator trajectories that produce a
target plasma scenario in a reasonable amount of time and with
a high level of accuracy.

This paper is organized as follows. In section 2, the optimiz-
ation problem is defined in terms of the target plasma scenario
and the constraints on both the plasma state and the available
actuators. In section 3, the optimizer is tested using plasma
scenario targets that are specifically generated to ensure that
they are feasible for the predictive model to achieve. It is tested
for cases using NubeamNet as the beam model and for cases
using MMMnet as the turbulent transport model. In section 4,
the optimizer is tested using plasma scenario targets that are
taken from an experimental shot, and therefore it is not guar-
anteed that the predictive model will be able to perfectly match
the target with any available set of actuator trajectories. This
test is intended to evaluate the capabilities of the optimizer
to produce real experimental plasma scenarios of interest, and
thus the relevance of this tool for future scenario development
efforts. In section 5, conclusions are discussed and future plans
for this tool are proposed.

2. Optimization problem definition

2.1. Target state and cost function

The optimization algorithm is designed to find the set of actu-
ator trajectories that lead to the plasma state that most closely
matches a target plasma state. This target state can be defined
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Figure 1. Schematic of the Control-Oriented Transport Simulator (COTSIM). Inputs to the simulation are plasma current (Ip), power to
auxiliary current drive sources (PCD), power to auxiliary heating sources (PH), and line-average density (un). The magnetic diffusion
equation (MDE) is solved for the evolution of the poloidal stream function (ψ), and a combination of other transport equations and
simplified solvers are available to predict the evolution of electron temperature (Te), electron density (ne), ion temperature (Ti), ion density
(ni), and rotation (Ω).

by a variety of both profile (e.g. electron temperature Te, safety
factor q) and scalar (e.g. βN) properties. The scalar properties
are defined at a specific subset of times throughout the shot (tl),
and the profile properties are defined at the final optimization
time (tf). After this final time, the goal is for the plasma to be in
a stationary state, so the final optimized values of the actuator
trajectories can be maintained and the final target values of the
scalars and the target profiles will be preserved.

In order to quantify how close the optimized output gets to
the target state, a cost function is devised. This cost function
contains terms that measure proximity to the scalar targets at
each time point for which the scalar targets are defined, prox-
imity to the profile targets across the spatial range of the profile
at the final optimization time, and a measure of the stationarity
of the final plasma state. The cost function is defined as,

J(ts, tf) = kssJss (tf)+
∑

s

∑

l

ksJs (tl)+
∑

p

kpJp (tf) , (1)

where s represents the set of scalars used to characterize the
target plasma state, p represents the set of profiles used to char-
acterize the target plasma state, and the weights kss, ks, and kp
define the relative weight placed on the stationary term, each

scalar term, and each profile term. Allowing for certain aspects
of the target to be weighted higher than others adds a layer
of flexibility that can be tuned to align with the needs of the
scenario developer. The different terms in the cost function are
defined as,

Jss (tf) =
ˆ 1

0
Wss (ρ̂) [gss (ρ̂, tf)]

2 dρ̂,

Js (tl) = [star (tl)→ s(tl)]
2
,

Jp (tf) =
ˆ 1

0
Wp (ρ̂) [ptar (ρ̂)→ p(ρ̂, tf)]

2 dρ̂. (2)

where the weights Wss and Wp define the relative weights
placed on different spatial regions of the plasma for the sta-
tionary term and each profile term and the spatial dependence
is given in term of ρ̂= ρ/ρb =

√
Φ/πBφ,0/ρb, where Bφ,0 is

the reference magnetic field at the geometric major radius R0,
Φ is the toroidal magnetic flux, and ρb is the value of ρ at the
plasma boundary. The stationary term comes from the time
derivative of the plasma parameter that is generally the slow-
est to evolve, and is therefore expected to be the last parameter
to reach a stationary condition; in this case, safety factor pro-
file is assumed to evolve on the slowest time scale. The safety

3



Nucl. Fusion 64 (2024) 056018 S. Morosohk et al

factor is related to the spatial gradient of the poloidal flux (see
section 2.3), so the stationary condition is written as,

gss (ρ̂, t) =
∂2ψ

∂t∂ρ̂
. (3)

2.2. Simulation constraints

The optimizer algorithm obeys a variety of constraints that fall
into two general categories: constraints on the actuator traject-
ories that are being optimized; and constraints on the predicted
plasma state. The first set of constraints on the actuator tra-
jectories provide a minimum and maximum absolute value for
each actuator at any point in time based on the hardware cap-
abilities of the DIII-D tokamak. For each of the eight indi-
vidual neutral beams, the injected power is limited to 3 MW,
and the sum of the injected power across all neutral beams is
constrained to fall between 3 and 12MW. These limits can eas-
ily be fine-tuned or adjusted based on changes in the availabil-
ities of different beams. The total ECH power injected is lim-
ited to 3MW based on the assumption of five available gyro-
trons; as more gyrotrons are expected to become available at
DIII-D in the coming experimental campaigns, this constraint
can be easily adjusted. The total auxiliary power injected into
the plasma is constrained to remain above 5 MW; this is to
ensure that the plasma remains in H-mode. The total plasma
current is restricted to remain between 0.5 and 1.5 MA, and
the line average electron density is constrained to fall between
2× 1019 and 6× 1019 m−3. These constraints on the actuator
values at any point in time are written as,

Pnbi,i ! 0 MW ∩ Pnbi,i " 3 MW,

for i ∈ [30L, 30R, 150L, 150R,210L, 210R, 330L, 330R]

Pnbi,total ! 3 MW ∩ Pnbi,total " 12 MW

Pec,total ! 0 MW ∩ Pec,total " 3 MW

Ptotal ! 5 MW.

Ip ! 0.5 MA ∩ Ip " 1.5 MA

n̄e ! 2× 1019 m−3 ∩ n̄e " 6× 1019 m−3. (4)

An additional set of constraints are applied to the rate of
change of two of the available actuators. There is no need
to impose a rate of change constraint on the auxiliary powers
because it is possible to change the magnitude of power being
injected into the system very quickly. However, it can take
more time to safely and effectively adjust the values of the
plasma current and line average density. Because of this, max-
imum rate of change constraints are placed on these two actu-
ators in both the positive and negative directions. Note that the
values chosen here for these rate limits came from qualitat-
ive inspection of previous DIII-D plasmas, so the maximum
rate limits may not be achievable in every scenario. The mag-
nitude of these rate limits can easily be adjusted by the scen-
ario developer based on expectations of what rate of change is
realistically achievable. The rate limit constraints used in the
optimization cases presented in the work are written as,

İp " |6| MA s−1

˙̄ne !→1× 1019 m−3 s−1 ∩ ˙̄ne " 3× 1019 m−3 s−1. (5)

A final set of constraints is applied to the plasma state as
determined by the predictive model. These constraints are
based on well-known stability limits and are designed to
keep the plasma in a stable regime. The first stability limit
considered is the Greenwald density limit, defined as nG =
Ip/πa2, where nG is in 1020 m−3, Ip is in MA, and a is in
m [27]. The line average density is constrained by remain
below the Greenwald limit. The second stability limit taken
into account is related to the normalized pressure ratio βN .
Very high values of βN are associated with a variety of MHD
instabilities, and have the potential to cause a disruption [28].
In order to avoid this, a maximum value of βN is enforced.
Finally, a minimum value of the safety factor q is imposed at
any point in the spatial range of the profile at any time in the
simulation. Too low values of q are known to cause sawtooth
instabilities, or a sudden drop in temperature in the center of
the plasma [29], which have the potential to seed other, more
dangerous instabilities. This set of constraints is intended to
keep the plasma state away from basic stability limits, and is
written as,

n̄e " nG
βN " 4

q(ρ̂)! 1.05. (6)

The values chosen for these constraints for the cases presen-
ted in this work are approximate; for some applications they
may not be strict enough to guarantee plasma stability, and in
other applications they may be overly restrictive. For example,
certain plasma scenarios are intended to operate with q< 1.
The values of the constraints in equation (6) are used for the
optimization cases presented here, but they can easily be adjus-
ted on a case-by-case basis. This allows the user to take into
account more detailed knowledge of the specific plasma scen-
ario they are working with and set the values of the constraints
accordingly.

2.3. Optimization problem statement

The trajectories of each individual actuator are discretized in
time using a temporal grid defined as ti, i = 1,2, . . . ,n, where
tn is equal to the final simulation time tf. The discrete actuator
trajectories are then written in a single vector of parameterized
input to the simulation as,

α= [Pnbi,30L(t1), . . . ,Pnbi,30L(tn),Pnbi,30R(t1), . . . ,Pnbi,30R(tn),

. . . ,Pnbi,330R(t1), . . . ,Pnbi,330R(tn),Pec(t1), . . . ,Pec(tn),

Ip(t1), . . . , Ip(tn), n̄e(t1), . . . , n̄e(tn)]. (7)

The evaluation of the cost function defined in (1) and (2)
depends on the values of the stationary state term gss(ρ̂, tf)
and the scalars and profiles that are chosen to be included in
the target. In this case, the only scalar is chosen as βN(t), so
s= [βN]. The two profiles chosen for the target plasma state are
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Figure 2. Visual representation of the workflow of the optimization method. This diagram includes the input parameterization, predictive
model of the plasma evolution (COTSIM), evaluation of the cost function, and minimization of the cost function with respect to the
parameterized inputs.

the electron temperature Te(ρ̂, tf) and the safety factor q(ρ̂, tf),
so p ∈ [Te,q]. The variable θ =

∂ψ
∂ρ̂ is introduced and defined

as the spatial gradient of the poloidal stream function. Using
this definition, the safety factor can be shown to depend on θ

as q= −Bφ,0ρ
2
bρ̂

θ . In addition, the stationary state term gss(ρ̂, tf)

depends on θ as θ̇ = ∂
∂t (θ) =

∂
∂t

(
∂ψ
∂ρ̂

)
, as shown in (3). The

nonlinear constrained optimization problem can be expressed
in terms of the parameterized inputs α defined as in (7) and the
cost function (1) as,

min
α
J(tf) = J

(
θ̇ (tf) ,βN (t) ,Te (tf) ,θ (tf)

)
, (8)

subject to,

[
Ṫe
θ̇

]
= z(Te,θ,u)→ dynamics of the plasma state,

Au (t)α" bu → actuator constraints, (9)

where the predictive model is defined by z and the plasma state
constraints (6), the actuator magnitude limits (4), and the actu-
ator rate of change limits (5) are represented by Au and bu.

This optimization problem can be approached using the
sequential quadratic programming (SQP) [30, 31] algorithm.
This method minimizes a nonlinear program by solving a
sequence of quadratic subprograms using constraints that are
linearized around the current estimate. For this application, the
nonlinear program is defined by (8) and (9). An overview of
this optimization process is presented graphically in figure 2.

3. Numerical testing of the optimization algorithm
on feasible targets

In this section, the optimization problem defined in section 2.3
is solved for targets that are guaranteed to be feasible. In this
case, feasible is taken to mean that there exists a set of actuator
trajectories for which the predictive model exactly reproduces
all of the scalar and profile targets. In order to guarantee this
feasibility, the targets are taken from the outputs of a COTSIM
simulation using the same configuration of COTSIM with all
the same settings that the optimizer will be using. This is not a
guarantee that the optimizer will achieve a cost function value
of zero. The feasible targets are not necessarily taken from a
time point where the predicted plasma is in a stationary state,
so theremay not be a solutionwhere a zero value of the station-
ary state term is consistent with a perfect match to the scalar
and profile targets. In this situation, the optimizer will use the
applied weights to determine which terms to place the highest
priority on minimizing.

For the optimization cases presented in this section, the ini-
tial guess of actuator trajectories used by the optimizer is taken
to be 1MW at all simulation times for the 30◦, 210◦, and 330◦

neutral beams, 0MW at all simulation times for the 150◦ neut-
ral beams, 1 MW at all simulation times of total EC power, an
initial Ip value of 0.6MA at t= 0.6 s ramping up to 1 MA for
the rest of the shot, and a line-average density of 4× 1019 m−3

at all simulation times. These values were chosen only because
they are well within the applied actuator constraints, so they
are unlikely to produce a plasma state that is a good match
to the target. It is then up to the optimizer to figure out what
changes need to be made to the actuator trajectories to achieve
the target plasma state.
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Figure 3. Simulated electron temperature, safety factor, and βN achieved by the optimized actuator trajectories compared to target
parameters generated by COTSIM using NubeamNet and using actuator trajectories from DIII-D shot 147634.

In all the cases shown in this work, the weights applied to
the cost function in (1) and (2) are chosen as,

kss = 1, kq = 1000, kTe = 1000, kβN = 1000,

Wss =






250 0" ρ̂" 0.4
500 0.4< ρ̂" 0.8
1250 0.8< ρ̂" 1

,

Wq = 10,

WTe = 10. (10)

This works out to roughly an order of magnitude higher weight
on the profile targets than on the scalar or the stationary state
target. In addition, this places equal weight across the spatial
range of each of the profiles, but a significantly higher weight
on the outer portion of the spatial range of the stationary state
target. The plasma current is proportional to the boundary con-
dition of the transport equation for the poloidal flux profile,
so this spatial variation is applied in an attempt to force the
plasma current to reach a steady state by the end of the simula-
tion time. The values of these weights are very easy to manip-
ulate, and in the future can be tuned to match the priorities of
the user.

3.1. Optimization results using NubeamNet

For this first optimization case, the targets were generated
from a COTSIM simulation using NubeamNet to calculate

the heat and current deposition from the neutral beams; the
Bohm/gyro-Bohm model to calculate the anomalous compon-
ent of electron thermal diffusivity; no neoclassical component
of electron thermal diffusivity; a simplified 0.5D model for
the electron density evolution; a simplified Spitzer resistiv-
ity model; the Sauter [32] bootstrap current model; and the
PEDESTAL [33] model to calculate the width and height of
the electron temperature pedestal. The same configuration of
COTSIMwas used by the optimization algorithm. To generate
the targets, COTSIM used actuator trajectories based on those
used for DIII-D shot 147634. This shot is a high qmin scen-
ario shot, and demonstrates a high non-inductive current frac-
tion that is appealing as a starting point for developing steady-
state plasma scenarios. The empirical models in COTSIM are
tuned to this same experimental shot. Figure 3 shows results
from the optimization case using these targets, and demon-
strates a nearly perfect match between the all of the profile
and scalar targets and the results of the optimization. The
actuator trajectories that the optimizer found to produce this
nearly perfect match are presented in figure 4, compared to
the actuator trajectories that were used by COTSIM to gener-
ate the target plasma state. The actuator values found by the
optimizer are generally reasonable and obey all of the con-
straints placed upon them. In addition, the final two values of
the plasma current are essentially identical, indicating that the
high weight on the outer spatial range of the stationary state
term is indeed forcing the plasma current to converge to a
steady state. For plasma current and line-average density, the
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Figure 4. Actuator trajectories determined by optimizer compared to the actuator trajectories that generated the target profiles NubeamNet
turned on.

optimizer produces a reasonable approximation of the traject-
ories that generated the target. The optimizer also figures out
that the EC power is low for the first half of the simulation and
high for the second half. However, it does not come very close
to matching the NBI power. The COTSIM simulation that gen-
erated the target took its actuator trajectories from a real DIII-
D shot that was not constrained to reach a stationary state; the
additional objective of attaining a stationary state imposed on
the optimized solution could be a source of this discrepancy
in the neutral beam power trajectory. The optimizer could be
making changes to the beam powers to control the evolution
of the current to drive the safety factor profile to a stationary
state.

3.2. Optimization results using MMMnet

For the second optimization case, the targets were generated
from a COTSIM simulation using an empirical beam model
to calculate the heat and current deposition from the neut-
ral beams; MMMnet to calculate the anomalous component
of electron thermal diffusivity; no neoclassical component
of electron thermal diffusivity; a simplified 0.5D model for
the electron density evolution; a simplified Spitzer resistivity
model; the Sauter [32] bootstrap current model; and a fixed
width and height of the electron temperature pedestal. The
same configuration of COTSIM was used by the optimization
algorithm. To generate the targets, COTSIM again used the
actuator trajectories from DIII-D shot 147634. Figure 5 shows

results from the optimization case using these targets; like in
the NubeamNet case, a nearly perfect match is seen between
the all of the profile and scalar targets and the results of the
optimization. The actuator trajectories that the optimizer found
to produce this result are presented in figure 6. Once again,
the optimizer is generally able to roughly recover the traject-
ories that produced the target for the on-axis beam powers, EC
power, plasma current, and line-average density, but reaches a
different solution for the beam powers.

4. Numerical testing of the optimization algorithm
on experimental targets

As this optimizer is intended to aid in scenario development
activities, it was tested to see if it could find actuator trajector-
ies that achieve a plasma scenario that is currently of interest
to the tokamak community. DIII-D shot 155543 is a high-βN
hybrid scenario [34] discharge utilizing off-axis neutral beam
injection, which is a very promising scenario for future react-
ors. If the optimizer can figure out how to achieve the profiles
from this shot, that is a good indication that it will be use-
ful for future scenario development work. In this section, the
optimizer was given a set of targets taken from an analysis
mode TRANSP run for shot 155543, meaning these profiles
were originally generated by fitting experimental data. If the
optimizer can match these experimental profiles, that is a good
indication that it will be a useful tool for further developing the
hybrid and potentially and other scenarios.
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Figure 5. Simulated electron temperature, safety factor, and βN achieved by the optimized actuator trajectories compared to target
parameters generated by COTSIM with MMMnet turned on and using actuator trajectories from DIII-D shot 147634.

Figure 6. Actuator trajectories determined by optimizer compared to the actuator trajectories that generated the target profiles MMMnet
turned on.
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Figure 7. Simulated electron temperature, safety factor, and βN achieved by the optimized actuator trajectories compared to target
parameters taken from experimental shot 155543.

This optimization case was run using the same configur-
ation of COTSIM as the case presented in section 3.1. The
optimizer was originally tested for these experimental targets
using the weights given in (10); although a decent match was
achieved to the Te and q profile targets, the predicted βN evol-
ution was still fairly far off from the target. Because of this, the
optimization was rerun with a higher weight on the scalar βN
target; the weights used for the optimization case presented in
this section are,

kss = 1, kq = 1000, kTe = 1000, kβN = 10000,

Wss =






250 0" ρ̂" 0.4
500 0.4< ρ̂" 0.8
1250 0.8< ρ̂" 1

,

Wq = 10,

WTe = 10. (11)

Results of this optimization are shown in figure 7. Although
there is a dip in the shape of the Te profile around ρ̂= 0.8, the
optimized Te values at the top of the pedestal and in the core
of the plasma are a very close match to the target profile. A
decent match for the q profile is produced in the spatial range
from 0.3" ρ̂" 0.9, with a small discrepancy in q95 potentially
caused by a mismatch in the plasma shape assumptions and a
noticeable over-prediction of the value of q0; this seems to be
the part of the target that the optimizer had the most trouble

matching. The predicted evolution of βN over time is again
a decent match to the target, not perfect but close enough to
be clear that the optimizer is functioning as intended. The tar-
gets shown in figure 7 are not necessarily possible to achieve
exactly with the predictive model being applied; even so, the
optimization algorithm has managed to find a set of actuator
trajectories that provide at least a decent match to all three
scalar and profile targets.

The actuator trajectories that produced these results are
shown in figure 8, and again appear to be reasonable requests
and show a constant value of plasma current between the final
two parameterized time points. Unlike in figures 4 and 6, the
actuator trajectories in this case are not compared to the actu-
ator trajectories that generated the target. In section 3, the
relationship between the actuator trajectories and the targets
they produce is fully characterized by COTSIM. It is theor-
etically possible for the optimizer to recover the trajectories
that generated the targets, making the comparisons in figures 4
and 6 more meaningful to discuss. In this section, the rela-
tionship between the experimental actuator trajectories and the
experimental targets is only approximately characterized by
COTSIM; it is therefore possible for there to be a considerable
mismatch between the experimental trajectories and the tra-
jectories derived by the optimizer, and such a mismatch would
not indicate any failure of the optimization tool. There are
known limitations in the predictive model, such as the assump-
tion of a prescribed equilibrium that matches the equilibrium
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Figure 8. Actuator trajectories determined by optimizer that achieve the closest match to experimental target profiles with NubeamNet
turned on.

from shot 147634. Next steps will include minimizing the
effects of the known limitations of COTSIM model, includ-
ing running this optimization algorithm for experimental tar-
gets using a prescribed equilibrium that better matches the
equilibrium associated with the target profiles and scalars and
eventually using an equilibrium solver. This could produce a
more meaningful comparison with the experimental actuator
trajectories as well as potentially a better match to the tar-
gets, specifically the target q profile. However, the fact that
the optimizer has been shown to be capable of producing a
decent match to the experimental plasma state still represents
significant progress in the development of this optimization
tool, and demonstrates its relevance for future scenario devel-
opment work.

5. Conclusions and future work

In this work, an optimization algorithm has been developed
to find actuator trajectories that produce a plasma state that
most closely matches a target scenario. The optimizer uses the
COTSIM code as its predictive model, including neural net-
work surrogates that are available to increase the accuracy of
predictions. The target plasma scenario is defined by the final
values of a set of plasma profiles (electron temperature and
safety factor) as well as the evolution of scalar values (βN)
over the time span of the simulation. How close any one pre-
dictive simulation gets to the target scenario is measured using
a cost function that contains terms for each of the target plasma
parameters as well as a measure of the stationarity of the final
plasma state. The optimizer is able to manipulate the values
of the total plasma current, the line-average electron density,
the ECH/ECCD system, and the eight neutral beams that are
available on DIII-D; these actuator values are constrained to

be in a range that is physically reasonable for DIII-D. The
plasma state is also constrained to ensure it does not violate a
set of basic stability limits. Minimization of the cost function
with respect to the actuator trajectories, subject to the dynamic
model and the set of constraints, is performed using the SQP
algorithm.

Three different optimization cases are presented here. In the
first two cases, the targets are generated by a simulation using
the same configuration of COTSIM the optimizer is using,
so the targets are guaranteed to be feasible for the optimizer
to match. An optimization is performed using feasible tar-
gets when NubeamNet is used by COTSIM to calculate the
beam heating and current drive, and another optimization is
performed when MMMnet is used by COTSIM to calculate
the anomalous electron thermal diffusivity coefficient. In both
of these cases, the optimizer is able to achieve a nearly per-
fect match to all of the target plasma parameters. For the third
case, the targets are taken from an experimental hybrid scen-
ario DIII-D shot, so it is not guaranteed that the predictive
model is capable of exactly reproducing the targets. However,
the optimizer is still able to produce a decent match to the pro-
file and scalar targets.

Current results indicate that this optimizer will be a useful
tool for future scenario development work. It has the poten-
tial to help physicists figure out how to produce desired scen-
ario targets that have not yet been reliably achieved in exper-
iment. It could also be applied to achievable scenario tar-
gets to see if the same plasma state can be achieved using
a different set of actuator trajectories, for example to take
advantage of increased ECH power availability or to get
around hardware maintenance issues. However, there are a
number of tests still to be run, and further improvements
that could be made. The configuration of COTSIM used in
this work assumes the same prescribed equilibrium for all

10
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of the cases shown; a more accurate prescribed equilibrium
could be used for the experimental targets, or an equilib-
rium solver that has been recently implemented into COTSIM
could be employed. In addition, the EPEDNN [19] neural
network surrogate model is currently available in COTSIM,
and it is planned to add other models such as a surrogate
for GENRAY/CQL3D [20] in the future. Replacing more
of the simplified, control-oriented models in COTSIM with
higher-fidelity surrogate models should improve the accuracy
of the predictive model, making this optimization tool even
more appealing for scenario development and experimental
planning.
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