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Abstract
A novel hybrid Model Predictive Control (MPC) algorithm has been designed for simultaneous
safety factor (q) profile and stored energy (w) control while incorporating the
pulse-width-modulation constraints associated with the neutral beam injection (NBI) system.
Regulation of the q-profile has been extensively shown to be a key factor for improved
confinement as well as non-inductive sustainment of the plasma current. Simultaneous control
of w is necessary to prevent the triggering of pressure-driven magnetohydrodynamic instabilities
as the controller shapes the q profile. Conventional MPC schemes proposed for q-profile control
have considered the NBI powers as continuous-time signals, ignoring the discrete-time nature of
these actuators and leading in some cases to performance loss. The hybrid MPC scheme in this
work has the capability of incorporating the discrete-time actuator dynamics as additional
constraints. In nonlinear simulations, the proposed hybrid MPC scheme demonstrates improved
q-profile+w control performance for NSTX-U operating scenarios.

Keywords: hybrid system, model predictive control, discrete constraints,
pulse-width modulation, mixed integer quadratic programming, safety factor profile

(Some figures may appear in colour only in the online journal)

1. Introduction

The viability of fusion as a commercial energy source requires
reaching advanced tokamak scenarios, which are character-
ized by a high fusion gain, magnetohydrodynamic (MHD)
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stable operation, and extended confinement. To realize these
conditions, it is necessary to achieve precise control over vari-
ous plasma properties. One such parameter of interest is the
safety factor (q) profile, which is closely related to the pol-
oidal magnetic flux. While this q-profile is shaped, it is pivotal
to avoid pressure-induced MHD instabilities, which can be
accomplished by simultaneous regulation of the plasma stored
energy w. Neutral beam injection (NBI) is a vital actuation
method for concurrent regulation of these two properties. By
introducing high-energy neutral particles into the plasma core,
NBI drives current, heat, and torque, making it an effective
tool for regulating both magnetic and kinetic properties of the
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plasma. During a tokamak discharge, the NBI power level
behaves in an on/off Boolean style of operation. However,
most control schemes that incorporate NBI, such as robust
control [1, 2], Lyapunov control [3], and optimal control [4],
regard the NBI power level as a continuously varying signal,
contrary to its discrete operational nature. The continuous con-
troller signal is converted into a time request for a power pulse
using a technique known as pulse-width modulation (PWM).
While this is often an effectivemethod for regulation of plasma
properties using NBI, in certain scenarios the omission of the
discrete on/off actuator dynamics in the control synthesis can
lead to a loss of control performance.

One potential control strategy that is capable of incorpor-
ating the discrete nature of NBI is model predictive control
(MPC). The MPC algorithm utilizes a model of the system
dynamics in order to solve a real-time optimization problem
that determines the best actuator trajectories to achieve a spe-
cific target state. An advantage of MPC lies in its ability to
handle time-varying constraints on both actuators and states,
giving it an edge in managing complex systems such as toka-
mak plasmas. Consequently, MPC has found implementation
across various plasma control applications, including posi-
tional and shape control [5], and density control [6]. There has
already been significant effort to control the safety factor pro-
file or a related plasma property using MPC [7–11]. However,
like most other control schemes, past work has neglected any
discrete actuator dynamics and assumed that all state and input
variables are continuous. There has been limited exploration
into modifying the conventional MPC algorithm to incorpor-
ate the discrete constraints of the NBI actuators. And yet, there
has been extensive work discussing modeling and optimiz-
ation techniques for MPC algorithms that deal with hybrid
systems containing both continuous-time and discrete-time
variables [12–14]. Indeed, the validity of these hybrid MPC’s
has already been demonstrated in other fields such as self-
driving cars [15], robotics [16], and building energy man-
agement systems [17]. Within the field of plasma control, a
hybrid MPC scheme has been applied to incorporate the dis-
crete nature of pellet injection while regulating the electron
density [18]. This work aims to leverage similar methods to
design a hybridMPC that considers the discrete-time nature of
NBI actuators for simultaneous regulation of the safety factor
profile and stored energy.

This paper is structured as follows. Section 2 outlines
the control-oriented model that is employed by the hybrid
MPC to forecast the evolution of the safety factor profile and
stored energy. Section 3 explains the design of conventional
MPC algorithms for systems with solely continuous variables.
Section 4 discusses the limitations of NBI actuators and the
PWM conversion process. Section 5 describes how the con-
tinuous MPC is modified into the hybrid MPC by incorpor-
ating discrete variables. Section 6 assesses the hybrid MPC’s
performance in comparison to the traditional MPC in a scen-
ario from the National Spherical Torus Experiment (NSTX-
U). Section 7 summarizes the study’s findings and deliberates
on potential future advancements.

2. Control-oriented modeling of the poloidal
magnetic flux and stored energy

In this section, a nonlinear model of the evolution of the
poloidal magnetic flux and stored energy is introduced. This
model will serve as the basis for developing MPC algorithms
discussed in subsequent sections.

The safety factor profile describes the pitch of the magnetic
field and is closely related to the poloidal magnetic flux Ψ,

q(t, ρ̂) =−dΦ
dΨ

=− dΦ
2πdψ

=−
∂Φ
∂ρ

∂ρ
∂ρ̂

2π ∂ψ
∂ρ̂

=−Bϕ,0ρ2bρ̂
θ

, (1)

where Φ is the toroidal magnetic flux, Bϕ,0 represents the
vacuum toroidal magnetic field at the tokamak’s major radius
R0, and ψ(t, ρ̂) is the poloidal stream function, i.e. ψ(t, ρ̂) =
Ψ(t, ρ̂)/(2π). The variable θ is defined as the spatial gradient
of the poloidal magnetic flux, θ ≜ ∂ψ

∂ρ̂ . The symbol ρ̂ desig-

nates the normalized mean effective minor radius, ρ̂≜ ρ/ρb,
where ρ≜

√
Φ/(Bϕ,0π) is the mean effective minor radius,

and ρb is ρ at the plasma boundary. Shown by (1), it is pos-
sible to control the evolution of the safety factor profile by
controlling the spatial gradient of the poloidal magnetic flux θ.

The evolution of the poloidal magnetic flux is modeled by
a one-dimensional partial differential equation (PDE) known
as the magnetic diffusion equation (MDE). This equation
is derived by combining Ampere’s law, Faraday’s law, and
Ohm’s law, while assuming that plasma properties are toroid-
ally axisymmetric and constant along flux surfaces [19]. Any
variable that indexes the flux coordinate can be used as a spa-
tial coordinate. In this work, the normalized mean effective
minor radius ρ̂ is the spatial coordinate. The MDE is repres-
ented as,

∂ψ

∂t
=

η (Te)

µ0ρ2bF̂
2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ĜĤ

∂ψ

∂ρ̂

)
+R0Ĥη (Te)

⟨̄jni · B̄⟩
Bϕ,0

, (2)

∂ψ

∂ρ̂
(t,0) = 0,

∂ψ

∂ρ̂
(t,1) =−kIpIp(t), (3)

where, η(t, ρ̂) is the plasma resistivity, µ0 is the vacuum per-
meability, Te(t, ρ̂) is the electron temperature, B̄ is the mag-
netic field, F̂(ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are equilibrium paramet-
ers, j̄ni(t, ρ̂) is the noninductive current drive, and ⟨ ⟩ denotes
a flux surface average. The variable kIp is a constant defined
as, kIp ≜ −µ0

2π R0Ĝ(1)Ĥ(1), and Ip represents the plasma cur-
rent. The noninductive current drive is composed of the current
source from the actuators (in this case NBI) as well as the self-
generated bootstrap current, i.e. jni = jnb + jbs. The MDE is
closed using a series of empirically-derived, control-oriented
models for ne, Te, and jnb. Additionally, the Spitzer model is
used to calculate the plasma resistivity η and the Sauter model
is used to calculate the bootstrap current jbs. Mathematical
details on these models can be found in [20]. Since the safety
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factor profile is inversely proportional to the spatial gradient
of the poloidal magnetic flux, θ, it is desired to take the spa-
tial derivative of the MDE to obtain the evolution of θ. This
converts the MDE into,

∂θ

∂t
=

[
dCf1
dρ̂

θ+

(
Cf1 +

dCf2
dρ̂

)
∂θ

∂ρ̂
+Cf2

∂2θ

∂ρ̂2

]
ûdf

+
L∑
l=1

dCl
dρ̂

ûl+

(
dCbs

dρ̂
1
θ
−Cbs

1
θ2
∂θ

∂ρ̂

)
ûbs, (4)

subject to the boundary conditions θ(t,0) = 0, θ(t,1) =
−kIpIp(t). In the aforementioned equation,Cf1 ,Cf2 ,Cl, andCbs

represent functions of ρ̂. The variables ûdf, ûl, and ûbs are time-
dependent functions of Ip, the line averaged density n̄e, and the
NBI powers Pnb,l. The subscript l denotes the number of the
NBI, such that l ∈ {1, 2, . . . , L} where L is the total number
of available NBI’s. The explicit definitions of these terms can
be found in [21], however in this work their relationship is suc-
cinctly expressed as

û= fû (u) , (5)

where û= [ûdf, û1, . . . ûL, ûbs]T can be considered the pseudo-
inputs and the variable u = [Ip, Pnb,1, . . . , Pnb,L]

T ∈ RN×1 can
be considered the physical inputs to the system. Note that since
the plasma current and the powers of NBI actuators are inputs,
N= 1+L.

The model in (4) is a partial differential equation (PDE).
To further simplify the model, it is discretized spatially using
the finite difference method. A number ofM+ 1 spatial nodes
are defined at ρ̂m = m/M,m ∈ {0, 1, . . . , M}. The variable θm
denotes θ at the spatial location ρ̂m. It is possible to solve for
the exterior nodes θ0 and θM using the boundary conditions.
Therefore, the variable θ is defined as a vector of all interior
nodes, i.e. θ ≜ [θ1,θ3, . . .θM−1] ∈ R(M−1)×1. By approximat-
ing the spatial derivatives using Taylor series, the PDE (4) is
reduced to a series of coupled ordinary differential equations
(ODE’s), which can be concisely written as

θ̇ = fθ (θ,u) , (6)

where ˙(·) indicates a time derivative.
The plasma stored energy evolution is modeled as an ODE

of the form

ẇ=− w
τe (t)

+Ptot (t)≜ fw (w,u) , (7)

where w is the stored energy and τe is the confinement time
calculated using the IPB98(y,2) scaling law found in [22]. The
variable Ptot is the total power introduced to the plasma,

Ptot =
L∑
l=1

Pnb,l+Pohm −Prad, (8)

with Pohm being the Ohmic power and Prad being the radi-
ated power. Mathematical equations for these terms can
be found in [20]. It is desired to combine (6) and (7)

into one equation, which is done by defining a state vari-
able z ≜ [θ1, θ3, . . . , θM−1, w]T ∈ RM×1, as well as a cor-
responding function F ≜ [fTθ, fw]

T. Now, the state dynamics
can be succinctly expressed as,

ż= F(z,u) . (9)

While this nonlinear model could technically be used by the
MPC, it is desired to use optimization techniques that require
linear state dynamics. Therefore, the next section will linearize
this model before incorporating it into the MPC algorithm.

3. Conventional MPC design

The general MPC algorithm contains three subroutines: pre-
diction, optimization, and receding horizon implementation.
The prediction subroutine calculates the response of the sys-
tem for a predetermined sequence of inputs over a finite time
frame, referred to as the prediction horizon. The optimization
subroutine iterates on the system response obtained from the
prediction routine to solve a constrained optimization prob-
lem on a user-defined cost function to determine the optimal
sequence of inputs over the prediction horizon. In the receding
horizon subroutine, the input value corresponding to the first
time step of the optimal input sequence is implemented in the
system. At each time step, the MPC algorithm employs these
three interconnected subroutines to approach the target state,
a process illustrated in figure 1. In this case, the input (green)
is varied so that the output (blue) approaches the target (red-
dashed). Note that in the figure, during the prediction sub-
routine the inputs are modified over a period of time known as
a control horizon Ncl, which can be either equal or shorter than
the prediction horizonNp, and then are kept constant. Once the
algorithm identifies the optimal inputs, it only implements the
inputs at timestep k, and the control inputs for the future times
(green-dashed) are discarded. At the next time step, k+ 1, a
new optimization will proceed, identifying the desired inputs
for that time step.

The nonlinear model derived in section 2 can be used to pre-
dict the states while implementing MPC. However, optimiza-
tion using nonlinear models can be computationally expensive
and therefore are often difficult to implement in a real-time
optimization algorithm. To reduce the computational time of
the optimization process, the nonlinear system (9) can be lin-
earized around a reference trajectory by employing first-order
Taylor series expansion,

ż≈ F(zref,uref)+
∂F
∂z

∣∣∣∣
zref,uref︸ ︷︷ ︸
Â

(z− zref)+
∂F
∂u

∣∣∣∣
zref,uref︸ ︷︷ ︸
B̂

(u−uref) . (10)

Note that the reference vectors uref and zref represent an
equilibrium point of the system, i.e. F(zref,uref) = 0. This
establishes a linear time-invariant (LTI) model describing the
plasma dynamics. New variables z̃≜ z− zref, and ũ≜ u−uref
are defined. Substituting these variables into (10) results in a
linear system of the form

˙̃z= Âz̃(t)+ B̂ũ(t) , (11)

3
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Figure 1. Schematic showing a state and input evolution that are chosen by the MPC over a given prediction horizon, which is Np timesteps.
The input parameters are altered until the timestep Ncl after which they are kept constant.

where z̃ ∈ RM×1 and ũ ∈ RN×1. In this section, each input can
be considered a continuous variable, and a specific input can
be denoted ũn, where the index n ∈ {1, 2, . . . , N}. However,
it is important to note that in later sections a distinction will
be made between continuous and discrete inputs. For prac-
tical implementation of this model, the system is discretized
onto a temporal grid, tk = k∆t, k ∈ {0, 1, . . .}, where ∆t is
a constant time interval. By approximating temporal deriv-
atives as ˙̃z≈ (z̃k+1 − z̃k)/∆t, the system is transformed from
continuous-time to a discrete-time framework,

z̃k+1 = Az̃k+Bũk, (12)

where A=∆tÂ+ I and B=∆tB̂. The variables z̃k and ũk rep-
resent the state and input at time tk.

To mitigate steady-state error, it is desired to incorporate an
integrator into the MPC framework. One way to accomplish
this is to convert the plant model into velocity form so that the
input is the control increment ∆ũk rather than the control ũk.
The model in (12) is rewritten into,

∆z̃k+1 = A∆z̃k+B∆ũk, (13)

where, ∆z̃k+1 = z̃k+1 − z̃k, and ∆ũk = ũk− ũk−1. A new state
vector is defined as,

x=
[
∆z̃k, z̃k

]T
, (14)

and (13) is combined with the definition of ∆z̃k+1 to form an
enlarged plant,

xk+1 = Ãxk+ B̃∆ũk, (15)

z̃k = C̃xk, (16)

where

Ã=

[
A 0M×M

A IM×M

]
∈ R2M×2M, B̃=

[
B
B

]
∈ R2M×N,

C̃=

[
0M×M

IM×M

]T
∈ RM×2M. (17)

The inputs are constrained to model mechanical limitations
of the actuators. In this work, the NBI’s are subjected to value
constraints, and the plasma current is subjected to value and
rate constraints,

Pmin
nb ⩽Pnb,l ⩽ Pmax

nb , (18)

Imin
p ⩽Ip ⩽ Imax

p , (19)

dImin
p /dt⩽dIp/dt⩽ dImax

p /dt, (20)

where Pmin
nb and Imin

p are the minimum possible values of each
NBI and the plasma current, and Pmax

nb and the Imax
p are the max-

imum possible values. Similarly, the variables dImin
p /dt and

dImax
p /dt are the minimum and maximum rates of the plasma

current.
By using a numerical approximation of derivatives, these

constraints can be written as,

un ⩽ ukn ⩽ un, (21)

dun ⩽
ukn− uk−1

n

∆t
⩽ dun, (22)

where un is the minimum value of the nth input, un is the max-
imum value of that input, dun is the minimum rate of that
input, and dun is the maximum rate of that input. The value
constraints on each total input value ukn can be converted to a
constraint on the input to our system ∆ũkn,

un− uref,n− ũk−1
n︸ ︷︷ ︸

∆ũkn

⩽∆ũkn ⩽ un− uref,n− ũk−1
n︸ ︷︷ ︸

∆ũ
k
n

. (23)

Note that while the original value constraints (21) were con-
stant in time, the constraints on our system input depend on
previous input values, and are thus time-varying. Using a sim-
ilar conversion, the rate constraint can be expressed as,

dun∆t⩽∆ũkn ⩽ dun∆t. (24)

The value and rate constraints expressed in (23), and (24) can
be succinctly written as,

Ak∆ũk ⩽ bk, (25)

4
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where Ak ∈ RN×N and bk ∈ RN×1. Further explanation of this
process can be found in [11].

To reach the desired control objectives, the enlarged plant
and input constraints are combined with a user-defined cost
function. This creates the full MPC problem statement,

min
∆ũi

J=
Np+k−1∑
i=k

(
z̃i+1 − z̃i+1

tar

)T
Q
(
z̃i+1 − z̃i+1

tar

)
+
(
∆ũi

)T
R
(
∆ũi

)
(26)

s.t xi+1 = Ãxi+ B̃∆ũi, z̃i = C̃xi, (27)

Ai∆ũi ⩽ bi. (28)

The first term in the cost function (26) measures the devi-
ation between the predicted output (∆z̃i+1) and target output
(∆z̃i+1

tar ) for each step in the prediction horizon Np, while the
second term measures the control effort. The variables Q and
R are positive-definite weight matrices. Solving this optimiz-
ation problem yields the optimal input values to approach the
target output.

In order to speed up computation, it is desired to rewrite
the summation of the cost function into matrix form. First, an
extended vector is created that includes input values for all
time steps in the prediction horizon

∆ũk|Np =
[
∆ũk, ∆ũk+1, . . . , ∆ũk+Np−1

]T ∈ RNpN×1.

(29)

Then, the constraints for each time step are combined into a
singular inequality,

Ã∆ũk|Np ⩽ b̃, (30)

where Ã= diag(Ak, . . . , Ak+Np−1) ∈ RNpN×NpN and b̃=
[bk, . . . , bk+Np−1]T ∈ RNpN×1. The system dynamics (27)
are substituted into the cost function (26) with the summation
rewritten in matrix form. The details of this process can be
found in appendix A. The original problem statement (26)–
(28) can then be expressed as,

min
∆ũk|Np

J=
1
2

(
∆uk|Np

)T
H∆uk|Np + f∆uk|Np + J0, (31)

s.t. Ã∆ũk|Np ⩽ b̃, (32)

whereH and f arematrices built from the system dynamics and
cost function. The term J0 is a constant and therefore can be
disregarded in theminimization. By rewriting the optimization
problem in this form, it is possible to use quadratic program-
ming (QP) to solve the constrained minimization problem. In
this work, the Matlab function quadprog solves the QP prob-
lem via the active-set method.

4. Pulse-width modulation

In the previous section, the MPC algorithm treated each input
to the system as a continuous variable. However, as previ-
ously mentioned, each NBI actuator operates in discrete bin-
ary steps, either delivering a set power level, Pmax

nb , or no

power. Traditionally, control schemes have implementedMPC
algorithms such as the one discussed in section 3 and conver-
ted the continuous power requests given by the controller to
discrete signals implemented by the actuator using a technique
known as pulse-width modulation (PWM).Within a fixed time
interval, known as a cycling time (tc), an NBI actuator turns
on for a period of time considered a pulse-width request time
(tpw ⩽ tc), and turns off for the remainder. The NBI does so
in such a way so that the average power across the cycle time
is equal to the controller’s power level request. In this sense,
the power requested by the controller is converted to a time
request for the actuator,

tpw =
Pnb tc
Pmax
nb

, (33)

where Pnb represents the continuous power level requested by
the MPC to a generic NBI actuator. Figure 2 shows how PWM
converts a power request to a pulse-time request for a specific
cycle time. However, due to mechanical limitations, tpw cannot
encompass any value between 0 and tc. Minimum on and off
times (tonmin, t

off
min) prevent rapid fluctuation of the power that

is either mechanically infeasible or potentially harmful to the
actuator. In this work, the minimum times will be considered
equivalent to each other and one-fourth the cycle time,

tonmin = toffmin = tmin = tc/4. (34)

These minimum times restrict the feasible range of tpw, caus-
ing it to become piecewise in nature, with a continuous region
nested between two discrete variables. Figure 3 explains how
the region of tpw is converted from a continuous domain to
a piecewise domain. When the requested power is in the
range 1/4⩽ Pnb/Pmax

nb ⩽ 3/4, the minimum time constraints
do not apply. However, outside that range, the PWM algorithm
chooses one of two values. In the 0⩽ Pnb/Pmax

nb < 1/4 range,
tpw is restricted to be either 0 or tmin, and in the 3/4<
Pnb/Pmax

nb ⩽ 1 range, tpw is restricted to be either tc − tmin,
or tc.

The minimum times constraints, coupled with the PWM
conversion, can induce notable deviations between the reques-
ted power waveform and the delivered power to the actuator,
a phenomena that is not considered by the control algorithm
of traditional MPC’s such as the one outlined in section 3.
This phenomena is demonstrated by figure 4, which shows
the impact of these minimum time constraints on a given
power signal requested by the controller. The continuous
power waveform requested by the controller (black dashed)
is converted to a discrete signal using the PWM algorithm
for three cases with different minimum times, (a): tmin = 10
ms, (b): tmin = 40 ms, and (c): tmin = 100 ms. As expected,
as the minimum time (and correspondingly the cycle time)
increases, the length of the average pulse increases. The pulses
for tmin = 10 ms (red shaded) are barely imperceptible, while
the pulses for tmin = 40 ms (blue shaded) are wider and more
noticeable, and this trend continues for tmin = 100 ms (purple
shaded). When tpw is in the continuous region (green region in
figure 3), the time constraints are not in effect, and the average

5
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Figure 2. Conversion of the controller’s continuous power request (Pnb) to a pulse width request time (tpw) for a single cycle time.

Figure 3. The PWM filtering converts a continuous power level Pnb to a request time tpw. However, due to mechanical constraints of NBIs,
if tpw falls in either the yellow and dark blue region or the orange and light blue region, it must be rounded to one of two discrete values.
This introduces a piecewise nature to the range of tpw.

Figure 4. Diagram demonstrating the impact of PWM time constraints on the actuator response. The power requested by the controller is
converted to a discrete signal using PWM while increasing the minimum pulse time constraints. The delivered power as well as the average
delivered power are shown for: (a) tmin = 10 ms (b) tmin = 40ms, (c) tmin = 100 ms.
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PWM power over a single cycle time can match the reques-
ted power from the MPC. However, once a power level is
requested that causes tpw to leave the continuous region, in this
case Pnb/Pmax

nb > 3/4, the requested power cannot be perfectly
recreated due to the minimum time constraints. This causes an
oscillation to occur in the average delivered power. The mag-
nitude and frequency of this oscillation is dependent on the
size of these time constraints. When the constraints are rel-
atively small, the oscillation is not significant. When tmin =
10 ms, the average delivered power (red line) closely tracks
the requested power without substantial deviation. However,
when tmin = 40 ms (blue line), the oscillations have grown in
magnitude, and there is now a clear deviation between the
requested power and average delivered power for a specific
time. When tmin = 100 ms (purple line), these oscillations are
even larger in both magnitude and pulse width. This demon-
strates that, in certain cases, theminimum time constraints lead
to a noticeable discrepancy between the controller requested
power and the average delivered power, which can potentially
diminish the control efficacy. Consequently, a modification
of the MPC algorithm has been developed that considers the
discrete nature of the NBI actuators with the overall goal of
enhancing controller performance.

5. Hybrid MPC design

The hybrid MPC scheme takes the conventional MPC scheme
in section 3 and incorporates discrete constraints originating
from the operational behavior of NBI actuators. First, it is
beneficial to separate the input vector into continuous-time and
discrete-time inputs,

∆ũk =
[
∆ũkc, ∆ũkd

]T
, (35)

where ∆ũkc ∈ RNc×1 contains the continuous inputs, and
∆ũkd ∈ RNd×1 contains the discrete inputs. Note that Nc +
Nd = N, and in this work Nc = 1 (only the plasma current is
continuous) and Nd = L (the discrete inputs are equal to the
number of NBI’s). The vector l= [1, 2, . . . , L] indexes each
discrete input (NBI power).

At each time step, for l ∈ {1, . . . , L}, each discrete input is
restricted to two values,

∆ũkNc+l ∈
{
∆ũkNc+l,∆ũ

k
Nc+l

}
, (36)

which guarantees that the total power of the associated NBI
actuator will either be 0 orPmax

nb . Note that the variables∆ũkNc+l

and∆ũ
k
Nc+l are identical to the minimum andmaximum inputs

values identified in (23). However, these variables are indexed
differently in (36) because this Boolean constraint is only
applicable to the discrete inputs.

Next, the minimum time constraints of the actuator are
incorporated. This requires memory of prior input values.
Specifically, the controller must know tswl , the last time step
when the lth NBI switched on or off. Before optimizing the

inputs, the controller verifies whether the time width of each
NBI power pulse has exceeded the minimum pulse time, in
other words checks the condition, tk− tswl < tmin. If this condi-
tion is true, this input is subject to the time constraint, and the
total power of the lth NBI is not varied from the previous time
step. Therefore, ũkNc+l = ũk−1

Nc+l
, and consequently ∆ũNc+l =

0. To succinctly express these constraints, new variables are
defined,

if tk− tswl ⩾ tmin set skl = 1, else skl = 0, (37)

vkl = 1− skl , (38)

which are combined into the vectors,

sk =
[
sk1, . . . , skL

]
∈ R1×L, vk =

[
vk1, . . . , vkL

]
∈ R1×L.

(39)

These vectors are used to create the matrices Ŝk =
diag ([01×Nc , s

k]) ∈ RN×N, and V̂k = diag ([01×Nc , v
k])

∈ RN×N. Finally, the matrices Sk ∈ RL̂×N and Vk ∈ R(L−L̂)×N

are created by combining all non-zero rows of Ŝk and V̂k,
where the variable L̂⩽ L denotes the number of active discrete
inputs that are not subject to the time constraint at a particular
timestep. The matrix Sk is now associated with these active
discrete inputs, effectively picking them from the input vector
∆ũk, and the matrix Vk is associated with all discrete inputs
that are subject to the time constraint (and thus removed from
the optimization). As the k superscript indicates, these time-
constraints are dynamic and therefore the skl and v

k
l variables,

as well as their associated matrices, are fluctuating throughout
time.

It is also necessary to introduce a vector pk that indexes
the NBIs that are active in the optimization, i.e. not subject to
the minimum time constraint. This vector is formed by first
multiplying each skl by the corresponding index of the discrete
input, which can be succinctly written as,

p̂k = sk ∗ l ∈ R1×L, (40)

where the (∗) symbol denotes element-wise multiplication.
Then the vector pk = [pk1, p

k
2, . . . , p

k
L̂
] ∈ R1×L̂ is constructed

by removing all zero values from p̂k. The end result is a sub-
set of the vector l that has removed the indices of all discrete
inputs currently subject to the time constraint. It is important to
note that this pk vector is both non-sequential and, as indicated
by the superscript k, changes at each time step.

Finally, the input constraints (28) are now only relevant for
the continuous variables. A new matrix is defined,

T=
[
INc 0Nc×L

]
∈ RNc×N. (41)

By multiplying this matrix T to either side of the inequal-
ity (28), the constraint applies only to the continuous variables
in the input vector.
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The Hybrid MPC problem statement can now be expressed
as,

min
∆ũi

J=
Np+k−1∑
i=k

(
z̃i+1 − z̃i+1

tar

)T
Q
(
z̃i+1 − z̃i+1

tar

)
+
(
∆ũi

)T
R
(
∆ũi

)
(42)

s.t xi+1 = Ãxi+ B̃∆ũi, z̃i = C̃xi, (43)

TAi∆b̃
i ⩽ Tbi, (44)

Sk∆ũi ∈
{
∆ũkpk1

,∆ũ
k
pk1

}
× ·· ·×

{
∆ũkpk

L̂
,∆ũ

k
pk
L̂

}
, (45)

Vk∆ũi = 0(L−L̂)×1. (46)

This optimization problem statement modifies (26)–(28)
by adding constraints related to the Boolean nature of
the inputs (45), and the minimum time constraint (46).
Additionally, the continuous input constraints (44) now only
apply to the continuous inputs, ∆ũkc.

The addition of the constraint (45) introduces Boolean vari-
ables into the fixed-horizon optimization problem, causing
the associated QP problem in section 3 to become a mixed-
integer quadratic programming (MIQP) problem. Therefore,
new optimization techniques must be employed to efficiently
solve this type of problem. The first technique used, Penalty
Term Homotopy (PTH), remodels the discrete constraints as a
penalty term in the to-be-minimized cost function, converting
the MIQP problem to a QP problem. The second technique,
Branch and Bound (BNB), methodically introduces the dis-
crete constraints as the algorithm systematically searches seg-
ments of the solution space. Detailed descriptions of both of
these methods can be found in appendices B and C.

6. Simulation testing in COTSIM

Two hybrid MPC’s were developed in this work, one solv-
ing the MIQP problem using penalty-term homotopy and
another using branch and bound. Both of these hybrid MPC’s
have been tested against a continuous MPC using pulse
width modulation. The Control Oriented Transport SIMulator
(COTSIM) [23] was used to simulate the plasma dynamics.
The COTSIM model was based on the output of the plasma
transport code TRANSP (run 204738S33), which itself was
predicated on the NSTX-U discharge 204738 from the 2016
experimental campaign. There are twoNBI systems onNSTX-
U with three beamlines each, so the model considered six NBI
inputs, i.e. L= 6, each having a power level of Pmax

nb = 2.1
MW, [24]. As mentioned, Nc = 1, since the plasma current is
the only continuous input. The prediction horizon was set to
four time steps ahead, i.e. Np = 4. The weighting matrices
were set atQ= diag(50IM−1, 10) andR= 0.01IN, where IM−1

and IN were chosen as identity matrices of sizesM− 1 and N,
respectively.

Two simulation studies were run. The goal of each control-
ler was to track a given q-profile+w evolution, which is col-
lectively deemed a target output. For each simulation study, a
reference trajectory (uref, zref) was created by setting the inputs

to constant values and running a COTSIM simulation. Then,
a target was created by varying the input waveforms and run-
ning a new simulation that produces a different plasma-state
evolution for each simulation case. The goal of eachMPC is to
use this reference trajectory, as discussed in section 2, in order
to modify the input variables to recreate the target outputs.

The first simulation study, Test 1, keeps Ip identical to the
reference to isolate the influence of the NBI waveform evol-
utions on the desired targets. The NBIs are turned on at 1
second, at which simultaneously feedback is turned on. The
PWM constraints are set to, tmin = 50 ms and tc = 200 ms.
It should be emphasized that these PWM constraints heavily
impact the resultant performance of each controller. Figure 5
shows the power waveforms for the 6th NBI, and figure 6
shows the evolution of the safety factor at five spatial loca-
tions as well as the stored energy evolution. To demonstrate
how the PWM conversion process can reduce the perform-
ance of the continuous MPC controller, both the continuous
MPC with a hypothetically continuous NBI (blue dashed) and
a continuous MPC working with a realistic NBI via PWM
(pink) are shown. As expected, the continuous MPC with a
continuous NBI is able to nearly perfectly recreate the tar-
get actuator waveforms. However this is not possible once
PWM is applied, leading to a significant reduction in con-
trol performance, as evidenced by the reduced tracking by the
pink line in figure 6. Notably, the continuous MPC+PWM
exhibits significant oscillatory behavior, a degree of which
was expected due to the Boolean nature of the NBI actuator.
However, for the case of the stored energy w, this degrades
tracking effectiveness to potentially unacceptable levels. The
PTH hybrid MPC (green) and the BNB hybrid MPC (cyan)
each demonstrate a significant improvement on the continu-
ous MPC+PWM. In the case of the stored energy, oscillat-
ory behavior is completely eliminated and the target is tracked
effectively throughout the simulation. The safety factor pro-
file tracking still exhibits a degree of oscillation, however not-
ably these oscillations are diminished in magnitude, become
more regular, and are largely absent of any steady state error.
Additionally, figure 5 shows that the pulsed waveforms of each
hybridMPC is more regular than the continuousMPC+PWM.
While both hybrid MPC’s exhibit very similar behavior in
steady state, the BNB hybrid MPC shows slight improvement
over the PTH hybrid MPC in the transient region (1− 2 s).

The second simulation study, Test 2, modifies the plasma
current to demonstrate how each hybrid MPC performs with
varying continuous and discrete inputs. The PWM constraints
are reduced to tmin = 30 ms, and tc = 120 ms. The plasma cur-
rent magnitude constraint was set at 0.5 MW ⩽ Ip ⩽ 2 MW
and the rate constraint is set at −0.2 MW s−1 ⩽ dIp/dt⩽ 0.5
MW s−1 . The Ip trajectory used to create the target is purpose-
fully violating the Ip rate constraint, in order to demonstrate
how each controller performs when the target is unachiev-
able. Figure 7 shows this plasma current evolution as well as
the waveform for one of the NBI powers. Similar to the pre-
vious case, the continuous MPC paired with a theoretically
continuous NBI closely matches the target trajectories, how-
ever the plasma current evolution is not perfectly recreated
due to the rate constraint. Figure 8 presents the evolution of

8
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Figure 5. NBI 6 power evolutions: (a) shows the reference (red), target (black), and conventional MPC without PWM (blue dashed), (b)
shows the conventional MPC with PWM (pink), (c) shows the PTH hybrid MPC (green), and (d) shows the BNB hybrid MPC (cyan).

Figure 6. Time evolution of the safety factor at ρ̂= 0.1, ρ̂= 0.2, ρ̂= 0.3, ρ̂= 0.5, ρ̂= 0.7, and the stored energy for the reference case
(red), target (black), conventional MPC without PWM (blue dashed), conventional MPC with PWM (pink), PTH hybrid MPC (green), and
BNB hybrid MPC (cyan).

the safety factor at five spatial locations, as well as the stored
energy. While the reduction of the PWM constraints leads
to some improvement with the conventional MPC+PWM,
there is still noticeable oscillatory behavior. Once again, each
hybrid MPC demonstrates superior control than the continu-
ous MPC+PWM yet in distinct ways. The PTH hybrid MPC
significantly dampens the magnitude of the oscillations caused
by the PWM dynamic for both the safety factor profile and
the stored energy evolutions, however some oscillatory beha-
vior does persist. The BNB hybrid MPC demonstrates super-
ior dampening of the oscillatory behavior for the stored energy
evolution and the safety factor profile toward the plasma edge.
However, the dampening of the oscillations for the safety
factor toward the very core of the plasma is not significantly
improved over MPC+PWM. This behavior deserves more
attention and is being further investigated.

For these hybrid MPC schemes to be real-time viable, the
computational time of the controller must be below a certain

threshold. This work sought to keep the computational times
below 10ms, which was the sampling time of the controllers in
this simulation study. Table 1 shows the maximum computa-
tional times of each MPC algorithm running the simulation on
a Macbook Pro with an M1 Pro chip (10-core CPU, 16-core
GPU). It was found that the size of the minimum time con-
straints did not have significant impact on the maximum com-
putational times. The MPC schemes are solving a singular QP
problem at each sampling time, and therefore run faster than
the hybrid MPCs, which are each solving multiple QP prob-
lems. The continuous MPC runs in less than 1 ms, and the
PWM dynamics have only minimal impact. The PTH hybrid
MPC meets the 10 ms threshold, while the BNB MPC, which
is significantly slower, does not. This is expected, since the
PTH algorithm computation time scalesO(Nd)while the BNB
algorithm scales O(2Nd), with Nd being the number of bin-
ary decision variables. Consequently, the PTH solver appears
more conducive to real-time application. However, this should

9
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Figure 7. (a) Plasma Current evolution, (b)–(d) NBI 5 power evolutions. Subplot (b) shows the reference (red), target (black), and
conventional MPC without PWM (blue dashed), (c) shows the conventional MPC with PWM (pink), (d) shows the PTH hybrid MPC
(green), and (e) shows the BNB hybrid MPC (cyan).

Figure 8. Time evolution of the safety factor at ρ̂= 0.2, ρ̂= 0.3, ρ̂= 0.5, ρ̂= 0.7, ρ̂= 0.9, and the stored energy for each controller. Note
that the legend is the same as figure 6.
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Table 1. Computational Times of Each MPC algorithm.

Controller MPC MPC+PWM PTH MPC BNB MPC

Max Comp. Time 0.8 ms 0.9 ms 6.4 ms 67.5 ms

not exclude the possibility of using the BNB method in real-
time. Implementing BNB into the PCS could significantly
reduce the computation time of the algorithm. Additionally,
techniques such as parallel programming could be exploited
to reduce the overall computation time. A larger sampling
time could also be used for this control problem. The needed
sampling time is dependent on the timescale of the system,
and for relatively slow responses (such as magnetic profiles),
a larger sampling time is possible. Faster computation, pos-
sibly combined with a larger sampling time, could make the
BNB approach feasible in real-time.

7. Conclusions and future work

A hybrid MPC strategy has been devised to control the safety
factor profile and stored energy evolution while incorporat-
ing discrete actuator constraints inherent to NBI. The hybrid
MPC accounts for the Boolean operation of the inputs as
well as minimum pulse times due to mechanical limitations.
The addition of these constraints necessitates modifications to
the traditional optimization algorithm to incorporate discrete
components of the system. Both penalty term homotopy and
branch and bound are used to solve the optimization problem
associated with the hybrid system. During simulation studies
using COTSIM for an NSTX-U scenario, both hybrid MPC’s
demonstrate improved control of the target objectives over
a continuous MPC+PWM. The hybrid MPC schemes signi-
ficantly reduce any oscillatory behavior and eliminate steady
state error if it occurred. Future work involves testing these
hybrid MPC algorithms on an experimental case for NSTX-
U. Additionally, by including transport models for additional
properties of the plasma impacted by NBI such as the elec-
tron temperature or toroidal rotation, the hybridMPC schemes
presented in this work could be tested on alternative profiles
or even for simultaneous profile control. Finally, the control
design could be expanded even further by incorporating poten-
tial time delays in the NBI system if they are significant.
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Appendix A. Conversion of the MPC problem to
standard QP form

To solve the fixed-horizon optimal control problem (26)–(28),
it is posed in standard QP form. Similar to (29), the states are
stacked for each time step in the prediction horizon,

z̃k+1|Np =
[
z̃k+1, z̃k+2, . . . , z̃k+Np

]T ∈ R(M∗Np)×1. (A.1)

It is possible to replace the z̃i terms in the cost function (26)
using the linear model, (27). This is done by creating the state
transition matrices,

ON =
[
C̃ C̃Ã C̃Ã2 . . . C̃ÃNp−1

]T ∈ RNpM×2M, (A.2)

FN =



C̃B̃ 0 0 . . . 0 0
C̃ÃB̃ C̃B̃ 0 . . . 0 0
C̃Ã2B̃ C̃ÃB̃ C̃B̃ . . . 0 0

...
...

...
. . .

...
...

...
...

. . .
...

C̃ÃNp−1B̃ C̃ÃNp−2B̃ . . . . . . C̃ÃB̃ C̃B̃


∈ RNpM×NpN.

(A.3)

The state dynamics can now be expressed as,

z̃k+1|Np = ONÃx
k+FN∆ũ

k|Np . (A.4)

New weighting matrices Q̃ and R̃ are created that match the
dimensions of N∆ũk|Np ,

Q̃=


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 ∈ RNpM×NpM,

R̃=


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 ∈ RNpN×NpN, (A.5)
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and the state equation is substituted into the cost function, pro-
ducing the matrices

H= FTNQ̃FN+ R̃, (A.6)

f=
(
xk
)T
ÃTOT

NQ̃FN−
(
z̃
k+1|Np
tar

)T
Q̃FN, (A.7)

where H ∈ RNpN×NpN and f ∈ R1×NpN. These matrices are then
used to calculate the cost function while conducting the min-
imization of the standard QP problem (31) and (32).

Appendix B. Penalty-term homotopy

Penalty-term homotopy (PTH) incorporates discrete con-
straints as a large penalty term within the cost function J,
which allows for the hybrid problem to be solved using tradi-
tional QP [18, 25]. In this sense, these constraints are relaxed,
since the hard input constraint on discrete variables (45) is
removed. Therefore, discrete inputs could technically take
non-viable values. However, as the QP solver searches for a
minimum, it will be influenced by the penalty term which will
direct the solution to viable input values.

With the addition of the penalty term, the cost function
in (42) is transformed into,

Jβ = J+
Np+k−1∑
i=k

(
Ŝk∆ũi−Ŝk∆ũi

)T
β̂j

(
Ŝk∆ũ

i−Ŝk∆ũi
)

︸ ︷︷ ︸
Penalty Term

, (B.1)

where β̂j = diag(βj, . . . , βj) ∈ RN×N, and J is the original cost
function in (42). The variable βj is a scalar penalty term. As
will be discussed, this value is methodically iterated upon, and
each iteration is indexed using the subscript j ∈ {0, 1, . . .}.
Multiplying ∆ũi by the matrix Ŝk removes all continuous
inputs as well as any discrete inputs that are subject to the time
constraint, since these inputs are not relevant to the penalty
term. If the variable βj is large, any nonviable discrete input
will cause the penalty term to dominate the cost function, dis-
suading the QP algorithm from choosing that as an optimal
solution. However, it is also important to ensure that the pen-
alty term does not cause the influence of the other terms in the
cost function to become negligible. Therefore, an iterative pro-
cedure is followed, shown in figure B1. The variable βj is first
set at 0, and the QP problem is solved. Each discrete input is
then checked to determine if it is sufficiently close to a viable
value,

|∆ũiNc+l−∆ũiNc+l| or |∆ũ
i
Nc+l−∆ũ

i
Nc+l|⩽ ϵ, (B.2)

where ϵ denotes the acceptable error margin. If this condition
is not met for every active discrete input, then βj is increased
using the equation,

βj = β0β
j−1
v , (B.3)

where β0 and βv > 1 are constants that determine the initial
value and growth rate of βj. At the first iteration, j= 1, and
thus βj = β0. With each iteration, j increases by 1, causing βj
to grow at a rate dependent on βv. This iteration ends once the
condition (B.2) is met for each discrete input. At this point, the
algorithm has determined optimal inputs that also satisfy the
discrete constraints of the system.

To efficiently solve the QP problem at each iteration, the
optimization problem incorporating the cost function summa-
tion in (B.1) is converted to standard form, similar to (31)
and (32). The optimization problem becomes,

min
∆ũk|Np

Jβ =
1
2

(
∆uk|Np

)T
Hβ∆uk|Np + fβ∆uk|Np + J0,

(B.4)

s.t. Ã∆ũk|Np ⩽ b̃, (B.5)

Ṽk∆ũk|Np = 0Np(L−L̂)×1, (B.6)

whereHβ and f β areH and f modified due to the cost function
penalty term,

Hβ = H− 2β̃j (B.7)

fβ = f+
(
S̃k∆ũk|Np + S̃k∆ũ

k|Np
)T
β̃j. (B.8)

The matrices Ṽk, S̃k, and β̃j are built by stacking Vk, Ŝk, and β̂j,
respectively, for each time step in the prediction horizon,

Ṽk =


Vk 0 . . . 0
0 Vk . . . 0
...

...
. . .

...
0 0 . . . Vk


︸ ︷︷ ︸

Np(L−L̂)×NpN

, S̃k =


Ŝk 0 . . . 0
0 Ŝk . . . 0
...

...
. . .

...
0 0 . . . Ŝk


︸ ︷︷ ︸

NpN×NpN

,

β̃j =


β̂j 0 . . . 0
0 β̂j . . . 0
...

...
. . .

...
0 0 . . . β̂j


︸ ︷︷ ︸

NpN×NpN

. (B.9)

Since the discrete inputs are now treated as continuous vari-
ables, the inequality (B.5) is identical to (32). The equality
constraint (B.6) originates from (46) and handles the restric-
tions imposed by the minimal pulse times.
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Figure B1. Diagram of the PTH iterative procedure. The QP problem is repeatedly solved while increasing the penalty term βj, until all
discrete input variables are sufficiently close to viable inputs (within the threshold ϵ).

Figure C1. Diagram of the Branch and Bound Procedure. The numbers within the circles indicate the minimum cost function associated
with the solution to the QP problem. The algorithm begins with a relaxed QP and slowly unrelaxes discrete variables until it arrives at a
viable upper bound (UB) of the solution. The algorithm then systematically searches all unexplored branches, removing any branches
whose associated cost function is greater than the UB.

Appendix C. Branch and bound

Branch and bound (BNB) is one of the most common tech-
niques used to solve MIQP problems. It involves systematic-
ally varying discrete variables to explore subsets within the
solution space, eliminating any subsets (or branches) that dis-
play suboptimal performance. To demonstrate this method,
figure C1 outlines the procedure for a sample case. In this
case, the vector u= [uc, ud] are the inputs to a generic system.
This vector contains various continuous inputs uc and three
discrete inputs ud = [ud,1,ud,2,ud,3] that are limited between
0 and 1. The goal is to find the combination of discrete and
continuous inputs that minimize a cost function. This method
initially relaxes the integer constraint on each discrete variable,
and then solves the resulting QP problem. The cost function

associated with the solution establishes a lower bound (LB)
on the solution, which in the case of the example is 5. This
LB is the minimal cost function of the problem without any
discrete constraints considered. Now, the discrete input con-
straints are methodically introduced one at a time back into
the problem, which can be termed ‘unrelaxing’ a variable.
The first discrete input ud,1 is now set at both 0 and 1. Two
branches have now been created, one associated with ud,1 = 0,
and another with ud,1 = 1. The associated QP problem for each
branch is solved, keeping all other discrete variables relaxed.
One of these branches will yield a lower associated cost func-
tion solution to the QP problem. In this example case, set-
ting ud,1 = 1 produces a lower minimal cost function value
of 6, so the algorithm chooses the ud,1 = 1 branch to con-
tinue exploring, and temporarily disregards all sections of the
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solution space where ud,1 = 0. This process is repeated until
all discrete variables are unrelaxed. A viable solution has been
arrived at, which is now considered an upper bound (UB) for
exploring other potential branches. In figure C1, the dashed
black line shows the path that the algorithm took to arrive at
the upper bound by successively choosing each branch with
the lowest associated cost function. Once this upper bound
is reached, any previously unexplored branch undergoes ree-
valuation. If, at any point, the cost function of a branch sur-
passes the upper bound, that branch and all sub-branches are
eliminated. The green dashed line shows how the optimizer
retraces its steps to evaluate past branches, and the red dashed
line shows how branches and sub-branches are removed once
the associated cost function to that branch becomes greater
than the upper bound. This cycle continues until all branches
have been explored or removed, marking the point at which the
optimal solution is identified. In this example case, the optimal
solution is ud,1 = 0, ud,2 = 0, and ud,3 = 1 with an associated
cost function minimum of 11. Note how this optimal solution
is distinct from the upper bound. A more detailed explanation
of the procedure can be found in [26].

The hybridMPCusing branch and bound to solve theMIQP
problem maintains the general hybrid MPC problem state-
ment, (42)–(46). As discussed, the BNB procedure reduces the
MIQP problem to a series of QP problems. To represent one of
these QP problems, it is necessary to define the Boolean vari-
able λl ∈ {1,0}, whose value is determined by which branch
the algorithm is currently searching, i.e. whether the lth NBI
for this branch is on or off. These variables are combined into
a vector,

λ̂pj =
[
0Nc×1, λ1sk1, . . . , λpjs

k
pj , 0 . . . 0

]
∈ RN×1,

(C.1)

Λ̂pj = diag
(
λ̂pj

)
, (C.2)

and Λp̂l is constructed from the nonzero rows of Λ̂p̂l . Note that
variable pkj is used to denote a value within the index of act-
ive discrete inputs pk. The Λp̂l variable is used to set the active
unrelaxed discrete inputs ∆ũk

pk1
to ∆ũk

pkj
to a certain combina-

tion indicative of the branch. Note that the discrete variables
∆ũk

pkj+1
. . . ∆ũk

pk
L̂

remain relaxed, and are thus treated as con-

tinuous variables. At a given branch the QP problem becomes,

min
∆ũk|Np

J=
1
2

(
∆uk|Np

)T
H∆uk|Np + f∆uk|Np + J0, (C.3)

s.t. Ã∆ũk|Np ⩽ b̃, (C.4)

S̃kpkj
∆ũk|Np = Λ̃pkj

(
∆ũk|Np

)
+
(
S̃kpkj

− Λ̃pkj

)(
∆ũ

k|Np
)
,

(C.5)

Ṽk∆ũk|Np = 0Np(L−L̂)×1, (C.6)

which is similar to the continuous QP problem, (31) and (32),
except for the addition of the binary constraint (C.5) and
the time-constraint (C.6). The binary constraint is derived
from (45), and is effectively setting the unrelaxed discrete

inputs to one of the two allowable values, determined by the
Boolean variables in Λ̃p̂l . This constraint is the only thing that
is changing as the BNB algorithm searches for the optimal val-
ues of the discrete inputs. The matrix S̃pkj in (C.5) is composed
of stacking the matrices Spkj ,

S̃kpkj
=


Sk
pkj

0 . . . 0

0 Sk
pkj

. . . 0

...
...

. . .
...

0 0 . . . Sk
pkj

 ∈ RNpL̂×NpN, (C.7)

and Sk
pkj
is formed from removing the zero rows of Ŝk

pkj
,

skpkj =
[
0Nc×1, sk1, . . . , sk

pkj
, 0 . . . 0

]
∈ RNpN×1,

(C.8)

Ŝkpkj
= diag

(
skpkj

)
. (C.9)
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