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Abstract
Simultaneous control of the current profile and normalized plasma beta is an essential control
problem in the development of advanced tokamak scenarios. However, this control problem is
especially challenging due to the nonlinear nature of the current, heat, and particle transport
dynamics, as well as the difficulty to understand and accurately model such processes. In this
work, a nonlinear, robust, model-based controller for the simultaneous regulation of the
current profile and normalized beta has been designed using feedback linearization and
Lyapunov redesign techniques. Feedback linearization avoids approximate linearization of the
plasma dynamics, retaining the original physics content of the model. Moreover, the use of
Lyapunov redesign techniques makes the controller robust against the uncertainties arising
during the modeling process. The controller’s performance in the presence of unknown
dynamics is tested in nonlinear, one-dimensional simulations using the Control Oriented
Transport SIMulator (COTSIM) code, which employs plasma models that are significantly
more complex than those employed for control synthesis.
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1. Introduction

ITER’s main mission is to demonstrate the feasibility of
nuclear fusion as a sustainable, economically attractive means
of energy production. Generally speaking, there are two types
of plasma scenarios through which such goal may be attained:
inductively-driven scenarios, characterized by a relatively high
plasma current, high inductive-current fraction, and short pulse
duration, and advanced tokamak (AT) scenarios, characterized
by a relatively low plasma current, high non-inductive-current
fractions, and longer pulses [1]. Whereas inductive scenarios
are in principle easier to reproduce and operate, the possibil-
ity of achieving longer (ideally, steady-state) pulses by means
of AT scenarios makes the latter specially attractive. How-
ever, there are several challenges associated with the AT path.
First, the positive scaling of the energy confinement time, τE,

with the plasma current, Ip, requires that AT scenarios exhibit
particularly good confinement conditions in order to achieve
high enough Q gains (where Q is the ratio of fusion power
to auxiliary power). Second, a key feature to access steady-
state (or quasi-steady-state) conditions is the need for a high
bootstrap-current fraction [2], which is highly dependent on
the pressure gradient and total current profiles. Finally, this
coupling between the pressure gradient (which is sometimes
increased at low or negative magnetic-shear, s ! r

q
dq
dr , where q

is the safety factor and r is the minor radius) and the boot-
strap current (which is peaked off-axis and, therefore, con-
tributes to reducing s) may drive the normalized plasma beta,
βN , towards too high values. This may trigger magnetohy-
drodynamic (MHD) instabilities that substantially deteriorate
the plasma performance and, in the worst case, may terminate
the confined plasma. Therefore, due to all these challenges,
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AT scenarios may significantly benefit from active feedback
(FB) control to maintain a desired current profile and/or βN
evolutions that maximize the plasma confinement and boot-
strap current fraction.

Significant effort has been carried out within the fusion
community to develop control algorithms for the regulation
of the current profile and βN . First steps towards current pro-
file control can be found in [3] for Tore Supra (now WEST),
[4] for JT-60, or [5] for DIII-D. In these pieces of work, non-
model-based techniques were employed together with linear
control designs. Subsequent model-based work can be found in
[6–12], where different control design techniques such as opti-
mal control, robust control, and model predictive control were
employed. A quite common approach to model-based current-
profile + βN control is using an approximately linearized ver-
sion of the system dynamics at some point during the control
design. This makes the control synthesis tractable by reduc-
ing the mathematical complexity of the model, but with the
inevitable consequence of losing some physics information.
Pieces of work that propose fully nonlinear control designs
can be found, for example, in [13] (where backstepping tech-
niques are employed), in [14] (in which Lyapunov techniques
are applied), or in [15] (where passivity-based techniques are
utilized). Also, although some of the aforementioned pieces
of work do study and assess the robustness of the proposed
algorithms against uncertain and unmodeled dynamics, robust-
control techniques are not commonly employed. Based on lin-
earized versions of the system dynamics, a controller that uses
linear robust-control techniques is proposed in [16].

In this work, a model-based, nonlinear-robust controller is
synthesized for simultaneous current-profile + βN control by
means of FB linearization and Lyapunov redesign techniques
[17]. To the authors’ best knowledge, this is the first con-
troller for the current profile in tokamaks that uses nonlinear-
robust control techniques. The control-oriented model of
the current-profile + βN dynamics employed for control
design is similar to the one employed in previous work [18].
By means of FB linearization, a nonlinear controller for
current-profile regulation can be designed without recurring to
approximate linearization techniques. This removes the natu-
ral limitations imposed by a control design based on approxi-
mate linearization and/or linear techniques. First steps towards
FB-linearization-based current-profile control (without simul-
taneous βN control) can be found in [19, 20]. The controller
proposed in the present work employs the total plasma cur-
rent, Ip, modulation of the neutral beam injection (NBI) pow-
ers, and modulation of the electron-cyclotron (EC) power as
the available actuators for control. First, nonlinear, robust con-
trol laws are designed based on Lyapunov theory and Lya-
punov redesign techniques for the total injected power, Ptot,
to control βN , and for Ip to control the safety factor at the
plasma edge, qedge. These two control laws for Ptot and Ip can
be easily embedded in the FB-linearization control scheme.
Second, a study is carried out to analyze under what condi-
tions the current-profile subsystem is FB linearizable, and if
so, how many spatial locations of the current profile can be
controlled in conjunction with βN by means of FB lineariza-
tion. It will be shown that the nominal system is in fact FB

linearizable as long as the auxiliary sources have different
enough current-deposition profiles. Such analysis allows for
a very intuitive assessment of the current-profile + βN control
capability within a tokamak. Third, a FB-linearization nominal
control law is synthesized to control the current profile at the
interior nodes by means of the NBI and EC powers, assuming
no uncertainty. Finally, the FB-linearization nominal control
law is nonlinearly robustified by means of Lyapunov redesign
techniques, so that the controller is robust against unmodeled
dynamics in the evolution of ne and Te. The uncertainties in
ne and Te lead in turn to uncertainties in the plasma resistiv-
ity and current deposition from non-inductive sources, which
play a fundamental role in the current-profile dynamics. Such
model uncertainties may arise from our limited knowledge of
the complex physical processes impacting transport in a toka-
mak plasma such as MHD activity, fast-ion dynamics, and
impurity dynamics among others. These model uncertainties
may also arise from a decision of not explicitly including
all the physics impacting the evolution of ne and Te in the
model employed for control synthesis in order to keep the
control-design problem tractable.

The paper is organized as follows. The nonlinear plasma
model employed for control synthesis is briefly described in
section 2. The current profile + βN control algorithm is synthe-
sized in section 3. The controller is tested in one-dimensional
(1D) simulations using the Control Oriented Transport SIMu-
lation (COTSIM) code in section 4 based on plasma response
models more complex than those used for control synthesis.
Finally, some conclusions and possible future work are stated
in section 5. Appendices are provided with details of the model
derivation (appendix A) and to cover the basics of the Lya-
punov stability theory (appendix B) and Lyapunov redesign
techniques (appendix C).

2. Plasma model for control synthesis

2.1. Nominal plasma model

The q profile measures the pitch of the magnetic field lines in
a tokamak. It is given by

q(ρ̂, t) = − Bφ,0ρ

∂ψ(ρ, t)/∂ρ
= − ρ2

bBφ,0ρ̂

∂ψ(ρ̂, t)/∂ρ̂
, (1)

where Bφ,0 is the vacuum magnetic field at the magnetic axis,
ρ is the mean effective minor radius, ρb is the mean effec-
tive minor radius of the last-closed magnetic-flux surface,
ρ̂ ! ρ/ρb is the normalized mean effective minor radius, which
is employed as the spatial coordinate in this work, and ψ is the
poloidal stream function. The time evolution of ψ is given by
the magnetic diffusion equation (MDE) [21],

∂ψ(ρ̂, t)
∂t

=
η(ρ̂, t)

µ0ρ2
bF̂(ρ̂)2ρ̂

∂

∂ρ̂

(
ρ̂F̂(ρ̂)Ĝ(ρ̂)Ĥ(ρ̂)

∂ψ(ρ̂, t)
∂ρ̂

)

+ η(ρ̂, t)R0Ĥ(ρ̂) jni(ρ̂, t), (2)

where t is the time, η is the plasma resistivity, µ0 is the vac-
uum permeability, F̂, Ĝ and Ĥ are geometric factors that cor-
respond to a particular plasma equilibrium, R0 is the tokamak
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major radius, and jni ! ⟨⃗ jni · B⃗⟩/Bφ,0 is the contribution from
non-inductive sources (⃗ jni is the non-inductive plasma cur-
rent density, B⃗ is the magnetic field, and ⟨·⟩ denotes a flux-
surface average). The boundary conditions associated with (2)
are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0R0

2πĜ(ρ̂ = 1)Ĥ(ρ̂ = 1)
Ip(t) = −kIpIp(t),

(3)

where Ĝ is a geometric factor, and kIp ! µ0R0/(2πĜ(ρ̂ =

1)Ĥ(ρ̂ = 1)) is a constant.
Models for η and jni that depend on the electron tempera-

ture, Te, and electron density, ne, are employed in this work.
Such models are given by

η(ρ̂, t) =
Zeffksp(ρ̂)
Te(ρ̂, t)3/2 , jni(ρ̂, t) = jaux(ρ̂, t) + jBS(ρ̂, t), (4)

jaux(ρ̂, t) =
i=NNBI∑

i=1

jdep
NBI,i(ρ̂)

Te(ρ̂, t)λNBI

ne(ρ̂, t)
PNBI,i(t)

+ jdep
EC (ρ̂)

Te(ρ̂, t)λEC

ne(ρ̂, t)
PEC(t), (5)

jBS(ρ̂, t) =
R0

F̂(ρ̂)

(
∂ψ(ρ̂, t)

∂ρ̂

)−1 [
2L31(ρ̂)Te(ρ̂, t)

∂ne(ρ̂, t)
∂ρ̂

+ (2L31(ρ̂) + L32(ρ̂) + α(ρ̂)L34(ρ̂))ne(ρ̂, t)

× ∂Te(ρ̂, t)
∂ρ̂

]
, (6)

where Zeff is the effective atomic number of the plasma ions,
jaux and jBS are, respectively, the auxiliary sources and boot-
strap current contributions to the total non-inductive current,
ksp, jdep

NBI,i and jdep
EC are spatial profiles, λNBI and λEC are con-

stant parameters that characterize the current-drive efficiency
of the auxiliary sources, PNBI,i, for i = 1, . . . , NNBI (NNBI is the
total number of NBI sources), are the individual NBI powers,
PEC is the total EC power, and L31, L32, L34, and α are spa-
tial profiles corresponding to a particular magnetic equilibrium
[22]. This simplified bootstrap-current model assumes a tight
coupling between the ion and electron species (i.e., T i = cTTe

and ni = cnne). In particular, the expression in (6) assumes
cT = cn = 1.

To close the MDE model (1)–(6), control-oriented mod-
els for Te and ne are employed by exploiting the difference
in dynamical timescales between kinetic and magnetic vari-
ables in a tokamak plasma. Thus, Te and ne are assumed to
be infinitely fast (i.e., no dynamics) in the magnetic timescale
and to directly scale with the inputs Ip, total power, Ptot, and
line-average electron density, n̄e, as

Te(ρ̂, t) = Tprof
e (ρ̂)Ip(t)γPtot(t)ϵn̄e(t)ζ , (7)

ne(ρ̂, t) = nprof
e (ρ̂)n̄e(t), (8)

where γ, ϵ and ζ are constant parameters, and Tprof
e and nprof

e are
spatial profiles. More details about these models can be found
in [18].

The dynamics of the plasma total energy, W, is modeled as

dW(t)
dt

= −W(t)
τE(t)

+ Ptot(t), (9)

where τE is the energy confinement time, which is estimated
using the IPB98(y,2) scaling,

τE(t) = 0.0562HH(t)Ip(t)0.93B0.15
T R1.97

0 M0.19ϵ0.58

× n̄e,19(t)0.41κ0.78Ptot(t)−0.69, (10)

where HH is the so-called H-factor, BT is the toroidal magnetic
field, M is the plasma effective mass in amu, ϵ ! a/R0 is the
inverse aspect ratio, a is the tokamak minor radius, n̄e,19 is the
line-average electron density in 1019 m−3, and κ is the plasma
elongation at the 95% flux surface/separatrix. It is assumed that

Ptot =
i=NNBI∑

i=1

PNBI,i + PEC, (11)

i.e., other sources of heating such as fusion heating, ohmic
heating or radiative heating are neglected when compared
with the heating by the auxiliary sources. This simplify-
ing assumption is well justified in many present-device AT-
scenario plasmas in which the fusion heating is virtually
zero, whereas the ohmic and radiative heating are significantly
smaller than the auxiliary heating during most of the discharge.
More importantly, the control-synthesis model needs to pri-
marily capture the response of the controlled variable (e.g., W)
to the actuator mechanisms (e.g., NBI and ECH) while all the
other uncontrollable inputs can be considered external distur-
bances. These and other simplifying assumptions like the one
adopted for the bootstrap current above are made only to facil-
itate the control-synthesis procedure. The level of simplifica-
tion adopted for the control-synthesis model usually involves
an iterative process, where the assessment of the control per-
formance in closed-loop simulation studies dictates the need
for more model complexity and accuracy followed by control
redesign. As it will be pointed out later in section 4, the simula-
tion studies are based on more sophisticated models that avoid
these simplifying assumptions.

2.2. Uncertainty modeling

One of the main issues when dealing with tokamak-plasma
control problems is the inherent uncertainty existing in the
modeling process of such a complex dynamical system. For
example, as of now, existing theories can explain certain
aspects of the plasma transport in a tokamak, but much of the
phenomena explaining transport processes is still not totally
understood. Moreover, there is only a certain degree of model
complexity that can be handled for control synthesis. In this
work, the modeling approach is based on the use of control-
oriented models with the addition of uncertainty terms provid-
ing a measure of the unknown or neglected dynamics. The goal

3



Nucl. Fusion 61 (2021) 036006 A. Pajares and E. Schuster

of this modeling approach is to guarantee performance met-
rics of the controller within predefined bounds of the model
uncertainties.

As a result, the dynamical models for Te and ne in (7) and
(8) are modified as

Te = Tprof
e (ρ̂)Ip(t)γPtot(t)ϵn̄e(t)ζ + δTe (ρ̂, t), ne

= nprof
e (ρ̂)n̄e(t) + δne (ρ̂, t), (12)

where δTe and δne are uncertain terms that model lack of phys-
ical knowledge and/or deviations in the modeled Te and ne

evolutions. Although δTe and δne are unknown,bounds for them
can be estimated based on experimental and physical con-
straints. Because η and jni are functions of Te and ne, they can
be written as

η(ρ̂, t) = ηnom(ρ̂, t) + δη(ρ̂, t),

jni(ρ̂, t) = jnom
ni (ρ̂, t) + δ jni (ρ̂, t), (13)

where ηnom and jnom
ni are given by (4)–(6), and δη and δ jni are

uncertain terms for which a bound can be estimated because
they are directly related to δTe and δne . The MDE, equation (2),
can be rewritten as

∂ψ(ρ̂, t)
∂t

=
ηnom(ρ̂, t)

µ0ρ2
bF̂(ρ̂)2ρ̂

∂

∂ρ̂

(
ρ̂Dψ(ρ̂)

∂ψ(ρ̂, t)
∂ρ̂

)

+ ηnom(ρ̂, t)R0Ĥ(ρ̂) jnom
ni (ρ̂, t) + δψ(ρ̂, t), (14)

where Dψ ! F̂ĜĤ, and δψ is an uncertain term given by

δψ(ρ̂, t) =
δη(ρ̂, t)

µ0ρ2
bF̂(ρ̂)2ρ̂

∂

∂ρ̂

(
ρ̂Dψ(ρ̂)

∂ψ(ρ̂, t)
∂ρ̂

)

+ R0Ĥ(ρ̂)
(
ηnom(ρ̂, t)δ jni (ρ̂, t)

+ jnom
ni (ρ̂, t)δη(ρ̂, t) + δη(ρ̂, t)δ jni (ρ̂, t)

)
, (15)

for which a bound can be estimated from δη, δ jni , the corre-
sponding model parameters and profiles in equation (15), and
the real-time estimation of the ψ profile.

The H-factor in equation (10) is also considered uncertain
to reflect unknown changes in confinement that may happen
during operation. It is modeled as

HH(t) = Hnom
H + δHH (t), (16)

where Hnom
H is a known constant, and δHH is a bounded, uncer-

tain term. The W-subsystem dynamics (9) can be rewritten as

dW
dt

= − W
τ nom

E
+ Ptot + δW , (17)

where the dependence on t has been dropped in all variables to
ease notation, τ nom

E is the value of τE when δHH = 0, and δW is
an uncertain term given by

δW =
W
τ nom

E
− W

Hnom
H +δHH (t)

Hnom
H

τ nom
E

, (18)

for which a bound can be estimated from δHH and a real-time
estimation of W.

Finally, it is assumed that the parameter kIp in (3) is not
well known for control-synthesis purposes, and only a constant
estimate, k∗Ip

, is available.

2.3. Uncertain plasma model

Introducing the definition of the poloidal flux gradient, θ !
∂ψ/∂ρ̂, taking derivative in the MDE with respect to ρ̂, and
using the finite differences method over N + 1 nodes between
ρ̂ = 0 and ρ̂ = 1 (see appendix A for a detailed derivation of
this model), (14) and (17) provide the system’s state-equation,

d
dt

[
W
θ̂

]
=

[
F(W, Ip, PNBI,i, PEC)

G(θ̂, Ip)u(Ip, PNBI,i, PEC)

]
+

[
δW

δ̂θ

]
, (19)

where θ̂ = [θ1, . . . , θm, . . . , θN−1]T is the vector of θ val-
ues at the interior discretization nodes, θm = θ(ρ̂m),
ρ̂m = (m − 1)∆ρ̂ (m = 2, . . . , N), ∆ρ̂ ! 1/N is the
step employed in the finite differences discretiza-
tion, δ̂θ = [δθ(ρ̂1), . . . , δθ(ρ̂N−1)]T , where δθ ! ∂δψ/∂ρ̂,
F ! −W/τ nom

E + Ptot, u = [uη, uNBI,1, . . . , uNBI,NNBI , uECuBS]T

is the virtual input vector, which is a function of the physical
inputs to the system Ip, PNBI,i, PEC, and n̄e,

uη = I−3γ/2
p P−3ϵ/2

tot n̄−3ζ/2
e , (20)

uNBI,i = I
γ(λNBI− 3

2 )
p P

ϵ(λNBI− 3
2 )

tot n̄
ζ(λNBI− 3

2 )−1
e PNBI,i, (21)

uEC = I
γ(λEC− 3

2 )
p P

ϵ(λEC− 3
2 )

tot n̄
ζ(λEC− 3

2 )−1
e PEC, (22)

uBS = I−γ/2
p P−ϵ/2

tot n̄1−ζ/2
e , (23)

and G ∈ R(N−1)× (NNBI+3) is a matrix whose structure is
explained next. First, for convenience, G can be written in
terms of three components, i.e.,

G(θ̂, Ip) = [Gη(θ̂, Ip), Gaux, GBS(θ̂, Ip)], (24)

where Gη ∈ R(N−1)× 1 is the component associated with uη , and
is given by

Gη(θ̂, Ip) =

⎡

⎢⎢⎢⎢⎢⎣

γ1θ1 + β1θ2

α2θ1 + γ2θ2 + β2θ3
...

αN−2θN−3 + γN−2θN−2 + βN−2θN−1

αN−1θN−2 + γN−1θN−1 − βN−1kIpIp

⎤

⎥⎥⎥⎥⎥⎦
, (25)

where γ(·), β(·) and α(·) are constants that depend on
the model parameters and profiles (see appendix A,
equations (A.7)–(A.9) and (A.26)), Gaux ∈ R(N−1)× Naux is
a constant component associated with uNBI,i and uEC, and is
given by

Gaux =

⎡

⎢⎢⎢⎢⎢⎣

h1
NBI,1 . . . h1

NBI,NNBI
h1

EC

h2
NBI,1 . . . h2

NBI,NNBI
h2

EC
...

. . . ...
...

hN−2
NBI,1 . . . hN−2

NBI,NNBI
hN−2

EC

hN−1
NBI,1 . . . hN−1

NBI,NNBI
hN−1

EC

⎤

⎥⎥⎥⎥⎥⎦
(26)
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where h(·)
NBI,i and h(·)

EC are constant parameters that depend on the
deposition profiles associated with the Naux ! NNBI + 1 aux-
iliary sources (see appendix A, equations (A.16) and (A.27)),
and GBS ∈ R(N−1)× 1 is the component associated with uBS, and
is given by

GBS(θ̂, Ip) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
BS,1

θ1
−

h1
BS,2

θ2
1

θ2

2∆ρ̂
h2

BS,1

θ2
−

h2
BS,2

θ2
2

θ3 − θ1

2∆ρ̂
...

hN−2
BS,1

θN−2
−

hN−2
BS,2

θ2
N−2

θN−1 − θN−3

2∆ρ̂
hN−1

BS,1

θN−1
−

hN−1
BS,2

θ2
N−1

−kIpIp − θN−2

2∆ρ̂

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

where hBS,(·) are constant parameters that depend on the model
profiles and parameters related to the bootstrap current term
(see appendix A, equations (A.20) and (A.27)).

For mathematical simplicity during the control synthesis,
the variables θ and W are employed instead of the related vari-
ables q and βN , respectively. The relationship between θ and
q is given by (1) together with the definition of θ ! ∂ψ/∂ρ̂,
whereas the relationship between W and βN is given by

βN ! βt[%]
aBφ,0

Ip
, βt =

2
3 W/V

B2
φ,0/(2µ0)

, (28)

where V is the plasma volume.
The controllable inputs are Ip, PNBI,i, and PEC, whereas n̄e is

considered as a non-controllable input to the system. Control
by means of n̄e is left out of the scheme because accurate den-
sity control in tokamaks can be a really challenging problem,
and it would overestimate the real actuation capability existing
for current-profile control.

Finally, the boundary condition (3) at ρ̂ = 1 determines the
evolution of q at the edge, qedge, as given by

θN = −kIpIp, qedge = −Bφ,0ρ2
b

θN
, (29)

where θN ! θ(ρ̂ = 1).

3. Control synthesis

3.1. Boundary control (qedge control) by means of Ip
modulation

The first step in the control design is to synthesize a control
law for Ip in order to regulate qedge around a desired target,
q tar

edge, or equivalently, to regulate θN around a desired value
θtar

N = −Bφ,0ρ2
b/q tar

edge. If Ip is taken as

Ip = −θtar
N

k∗Ip

+ Kq

∫ t

t0

(
θN − θtar

N

)
dt

=
Bφ,0ρ2

b

kIpq tar
edge

+ Kq

∫ t

t0

(
θN − θtar

N

)
dt, (30)

where k∗Ip
is the estimate for kIp previously introduced, Kq > 0

is a design parameter, and t0 is the initial time, then θN in (29)
can be rewritten as

θN =
kIp

k∗Ip

θtar
N − kIpKq

∫ t

t0

(
θN − θtar

N

)
dt. (31)

Re-arranging terms in equation (31), and defining θ̃N ! θN −
θtar

N , it is found that

θ̃N =
kIp − k∗Ip

k∗Ip

θtar
N − kIpKq

∫ t

t0

θ̃N dt. (32)

and taking time derivative, (32) becomes

dθ̃N

dt
=

kIp − k∗Ip

k∗Ip

dθtar
N

dt
− kIpKq θ̃N −

dkIp

dt
Kq

∫ t

t0

θ̃N dt. (33)

In the case of constant or slowly varying θtar
N and kIp (i.e., the

plasma equilibrium changes slowly, so R0, Ĝ, and Ĥ, and thus
kIp , vary slowly), equation (33) becomes,

dθ̃N

dt
= −kIpKq θ̃N , (34)

which is an asymptotically stable system with, for example,
a Lyapunov function V = 1

2 θ̃
2
N (for a definition of asymptoti-

cal stability and its proof via Lyapunov theory, see appendix B,
equations (B.5) through (B.9)). It can be noted that the assump-
tions of constant or slowly varying θtar

N and kIp are often well
satisfied at some point of the tokamak-plasma discharge, spe-
cially at the flat-top phase and/or in steady-state conditions.
More importantly, even when these conditions are not satis-
fied, the control law (30) guarantees tracking of θtar

N , although
with a non-zero tracking error.

3.2. Diffusion control (W control) by means of Ptot

modulation

The second step in the control design is to synthesize a control
law for Ptot in order to regulate W around a desired target, W tar,
or equivalently, to regulate βN around a desired target βtar

N !
4
3 µ0W tara
Bφ,0IpV . This control law for Ptot is composed of two contri-

butions: a nominal component, Pnom
tot (derived in section 3.2.1),

and a robust component, Prob
tot (derived in section 3.2.2), i.e.,

Ptot = Pnom
tot + Prob

tot .

3.2.1. Nominal W control via Lyapunov theory. First, the nom-
inal W-subsystem (δW = 0) is considered, i.e.,

dW
dt

= − W
τ nom

E
+ Ptot, (35)

which, using the deviation variable W̃ ! W − W tar, can be
rewritten as

dW̃
dt

= − W
τ nom

E
+ Pnom

tot − dW tar

dt
. (36)

5
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If the right-hand side of (36) is set as

− W
τ nom

E
+ Pnom

tot = −KEW̃ +
dW tar

dt
, (37)

where KE > 0 is a design parameter, then (36) is reduced to
dW̃/dt = −KEW̃, which ensures asymptotical stability of the
nominal W-subsystem with, for example, a Lyapunov function
VW = 1

2 W̃2 (for a definition of asymptotical stability and its
proof via Lyapunov theory, see appendix B, equations (B.5)
through (B.9)). Because Ip is determined by the control law
(30) and n̄e is assumed to be a non-controllable input, Pnom

tot
is the only variable that needs to be determined within the
nominal energy confinement time, τ nom

E . Thus, the nonlinear
equation (37) allows for computing the value of Pnom

tot that
stabilizes the nominal W-subsystem.

3.2.2. Robust W control via Lyapunov redesign. In the pres-
ence of the uncertainty δW , the extra term Prob

tot is added so
that Ptot = Pnom

tot + Prob
tot makes the W-subsystem robustly sta-

ble. The extra term Prob
tot is designed using Lyapunov redesign

techniques. The derivation in this section follows the same
steps as those shown in appendix C. If Prob

tot is taken as

Prob
tot = −δmax

W
W̃
|W̃|

, (38)

where δmax
W > 0 is the maximum attainable δW (i.e., |δW | "

δmax
W ), the W-subsystem dynamics in (19) can be written as

dW̃
dt

= − W
τ nom

E
+ Ptot −

dW tar

dt
+ δW = −KEW̃ + Prob

tot + δW ,

(39)
where the definition W̃ ! W − W̄ and (37) have been
employed. Using the Lyapunov function VW = 1

2 W̃2, it is
found that

V̇W = −KEW̃2 − δmax
W

W̃2

|W̃|
+ δWW̃

" −KEW̃2 − δmax
W |W̃| + δmax

W |W̃| = −KEW̃2, (40)

so the W-subsystem dynamics remains asymptotically stable
even in the presence of δW . However, the robust control law
(38) needs to be modified to avoid division by zero when
|W| → 0. First, a design parameter ϵ > 0 is defined. When
|W| # ϵ/δmax

W , the singularity in the control law (38) is not an
issue because ϵ > 0 by design, so |W| > 0 as well. On the other
hand, when |W| < ϵ/δmax

W , if Prob
tot is taken as

Prob
tot = −(δmax

W )2 W̃
ϵ

, (41)

then the time derivative of VW becomes

V̇W = −KEW̃2 −
(
δmax

W

)2 W̃2

ϵ
+ δWW̃

" −KEW̃2 −
(
δmax

W

)2 W̃2

ϵ
+ δmax

W |W̃|

" −KEW̃2 +
ϵ

4
, (42)

where the term g ! −
(
δmax

W

)2 W̃2

ϵ + δmax
W |W̃| has been bounded

by ϵ/4 because it has a maximum at δmax
W |W̃| = ϵ/2. The bound

to V̇W found in (42) actually applies to V̇W in the region
|W| # ϵ/δmax

W as well, so it fulfills the conditions in (B.10) and
(B.11) with µ < ϵ/(4KE), and W̃ is in fact bounded as stated
in (B.12) and (B.13) (see appendix B). Therefore, it can be
concluded that the control law

Prob
tot = −δmax

W
W̃
|W̃|

, if δmax
W |W| # ϵ, (43)

Prob
tot = −(δmax

W )2 W̃
ϵ

, if δmax
W |W| < ϵ, (44)

ensures |W̃| " ϵ/(4KE) after some finite time, so it is necessary
to set ϵ→ 0 in order to have a bound that is tight enough.

3.3. Interior q-profile control by means of PNBI,i and PEC
modulation

3.3.1. Analysis of the nominal dynamics for feedback lineariza-
tion. In this section, the nominal θ̂-subsystem (δ̂θ = 0) is
studied in order to determine if a FB-linearization control law
for the interior nodes of the q profile can be found together
with the Ip control law (30) for qedge control and the Ptot control
laws (37), (43) and (44) for βN control. Through FB lineariza-
tion [17], a change of variables z = T(θ̂) and/or a control law
u = r(θ̂, v) are sought so that the nominal θ̂-dynamics in (19)
can be rewritten as a linear system, i.e., so that the dynamical
equation

dθ̂
dt

= G(θ̂, Ip)u

= Gηuη + Gaux[uNBI,1, . . . , uNBI,NNBI , uEC]T

+ GBSuBS, (45)

can be rewritten as

dz
dt

= Az + Bv, (46)

for some constant matrices A and B, and an input vector v.
First, the deviation variable θ̃ can be defined as θ̃ ! θ̂ − θ̂tar,

where θ̂tar is the desired target for θ̂. Equation (45) can be
rewritten as

dθ̃
dt

= Gu − dθ̂tar

dt

= Gηuη + Gaux[uNBI,1, . . . , uNBI,NNBI , uEC]T

+ GBSuBS −
dθ̂tar

dt
. (47)

By inspection, it can be noted that if z = θ̃, and the right-hand
side of (47) is set as

Gηuη + Gaux[uNBI,1, . . . , uNBI,NNBI , uEC]T

+ GBSuBS −
dθ̂tar

dt
= Aθ̃ + Bv, (48)

6
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then the nominal θ-subsystem (45) is in fact linearized by FB.
The key is to see whether G (or its components Gη, Gaux, and
GBS) actually allows for obtaining u = r(θ̂, v) by solving (48).

It can be seen that Gη and GBS do not play a role for FB
linearization purposes. Under qedge + βN FB, Ip is determined
by (30), Ptot is determined by (37) together with (43) and (44),
and n̄e is assumed as a non-controllable variable in this work.
Therefore, uη and uBS in (20) and (23) are also determined by
the qedge + βN FB control laws. The only virtual inputs avail-
able for interior q-profile control are uNBI,1, . . . , uNBI,NNBI , uEC.
It must also be noted that uNBI,1, . . . , uNBI,NNBI , uEC are not inde-
pendent due to the constraint imposed by the Ptot control law
(37), (43) and (44) (see the definition of Ptot in (11)). Rear-
ranging terms and embedding (11) within the FB linearization
scheme, (48) can be rewritten as

[
G∗

aux
1 . . . 1

]
[PNBI,1, . . . , PNBI,NNBI , PEC]T

=

⎡

⎣ Aθ̃ + Bv +
dθ̃tar

dt
− (Gηuη + GBSuBS)

Ptot

⎤

⎦ , (49)

where G ∗
aux[PNBI, 1, . . . , PNBI, NNBI , PEC]T = Gaux [uNBI, 1, . . . ,

uNBI,NNBI , uEC]T (see the definition of the virtual inputs u(·),
equations (20)–(23)), and Ptot is the value obtained from (37)
together with (43) and (44). The following matrix

G∗ =

[
G∗

aux
1 . . . 1

]
∈ RN× Naux , (50)

defines whether u = r(θ̂, v) can actually be obtained from the
linear system (49). In other words, for (49) to effectively
achieve the FB linearization of (45), there must exist at least
one solution for PNBI,1, . . . , PNBI,NNBI , PEC. This, in general,
can only be ensured if G∗ is a full row-rank matrix, i.e., if
G∗ spans RN , which in turn requires that Naux # N. If G∗ is
not full row rank, a solution of (49) is possible only in the case
that the right-hand side of the equation lies within the subspace
spanned by G∗, i.e., only for particular values of θ̂tar, Ip, and
Ptot (which define the right-hand side of (49)). Therefore, if
G∗ is not full row rank, only ‘approximate’ (e.g., in a least-
squares sense) FB linearization of the system can be guaran-
teed in general (see, for example, our previous work [19]). On
the other hand, having Naux > N would imply that an extra
number of Naux − N interior nodes could be controlled inde-
pendently as long as physical saturation limits are not reached.
Because it seems reasonable to control as many points of the
current profile as possible, the finite-differences discretization
is carried out with N = Naux, yielding a square G∗ matrix.
This results in (49) being a square, linear system with Naux

unknowns and equations, which has a unique solution as long
as G∗ is full rank.

It can be noted that, in order to fulfill the full rank condi-
tion when G∗ is square, its structure requires that the deposi-
tion profiles j(·),idep ((·) = NBI, EC) produce linearly independent
columns (this idea was first considered for DIII-D in [20], but
using the whole matrix G). If that is not the case, then the
approach presented in this work is only practical if the NBI/EC

sources are ‘grouped’ so that their deposition profiles compose
a linearly independent set of vectors. In the particular case in
which all the auxiliary sources have the same deposition pro-
file, then only one group exists. Such case would correspond to
having just one controllable input (the total power, Ptot), thus
it would not be possible to combine interior q-profile control
with qedge and βN control. This would not be an issue of the
FB-linearization control approach, but just a lack of actuation
capability for interior q-profile control within a given tokamak.

A few interesting conclusions can be drawn from the FB-
linearization analysis presented in this section. The first con-
clusion is that the number of controllable nodes for q-profile
control + βN control is not only limited by the number of
available auxiliary sources whose power can be controlled
individually, but also by the shape of the deposition profiles
of such sources. If βN + qedge are controlled by Ptot and Ip

but the auxiliary sources do not have different deposition pro-
files, the model employed for control synthesis tells us that it
is not possible to directly control the q profile at any interior
node. Both Ip and Ptot would univocally determine the current
diffusion rate by means of the plasma resistivity η, as well
as the non-inductive current contribution, jni, and therefore
βN + qedge control could not be carried out independently of
interior q-profile control (see, for example, [5]). Even if qedge is
not directly controlled and Ip is used for interior q-profile con-
trol instead, the effect of Ip on the interior q profile would be
limited by diffusion. Moreover, Ip modulation may be limited
by technological constraints (such as the current through the
poloidal coils) and physics constraints (e.g., disruptions and/or
MHD instabilities), so it may not be suitable to control q at the
core.

A second conclusion is that G∗ is in fact the tensor relat-
ing the subspace of auxiliary power signals, P(·),i ((·) = NBI,
EC), and the dθ̂/dt subspace. This is an interesting interpre-
tation, as studying G∗ in terms of its singular values indicates
the input directions in which q-profile control can be carried
out most efficiently, the output directions in which the q pro-
file is more easily controllable, and the maximum/minimum
achievable time-derivative for θ̂. Also, the image of the linear

transformation G∗ : P(·) → ˙̂θ subject to physical actuator con-
straints determines the reachable set of θ profiles (and there-
fore, q profiles) for given qedge and βN values. Such tool may
be of significant interest for tokamak-scenario planning and
development.

3.3.2. Nominal q-profile control via state-feedback. As
demonstrated in the previous section, the control law (49)
reduces the nominal θ-subsystem (δθ = 0) to equation (46)
with z = θ̃ assuming a square, full rank G∗ matrix. For
example, using a state-FB control law1 given by

v = vnom = −Kθ̃, (51)

1 This is just one of many control techniques that could be applied to the
feedback-linearized model. State-feedback control is chosen in this work
because of its relative theoretical and practical simplicity.

7
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where K ∈ R(N−1)× (N−1) is a design matrix, (46) is reduced to

˙̃θ = (A − BK)θ̃. (52)

Exploiting the fact that B ∈ R(N−1)× (N−1), it is possible to set
A = O and B = I (O and I are the zero and identity matri-
ces, respectively, of dimension R(N−1)× (N−1)) without loss of
generality in order to guarantee controllability. In this case it
is always possible to find a matrix K to arbitrarily place the
eigenvalues of the closed-loop matrix A − BK and stabilize the
θ̃ evolution. It must be taken into account that, although (49)
always has a solution for P(·), it may not be within the feasible
set due to physical actuation limits. A careful control design
of the matrix K together with a reasonable choice of θ̂tar must
be carried out to avoid actuator saturation for too long periods
of time, and the poor performance that it may imply.

3.3.3. Robust q-profile control via Lyapunov redesign. In this
section, the uncertainty in the θ-subsystem is not zero (δ̂θ ̸= 0).
The control law is modified so that the θ-subsystem is stabi-
lized even in the presence of this uncertainty. This section fol-
lows the same steps as those shown in appendix C. Under the
control law (49), equation (46) with z = θ̃ and δ̂θ ̸= 0 becomes

˙̃θ = Aθ̃ + Bv + δ̂θ, (53)

and taking A = O, B = I as for the nominal control law,

˙̃θ = v + δ̂θ. (54)

The virtual input v is decomposed as v = vnom + vrob, where
vnom is given by (51), and vrob is taken as

vrob = −δmax
θ

θ̃

∥θ̃∥2
, (55)

where δmax
θ > 0 is the maximum two-norm attainable by δ̂θ,

i.e., ∥δ̂θ∥2 " δmax
θ . The use of a Lyapunov function Vθ = 1

2 θ̃
T θ̃

yields

V̇θ = θ̃T(v + δ̂θ) = −θ̃T Kθ̃ − θ̃Tδmax
θ

θ̃

∥θ̃∥2
+ θ̃T δ̂θ. (56)

The stability of the nominal system (52) with A = O, B = I,
and v = vnom given by (51) implies that all eigenvalues of K
must be positive. Therefore, the first term on the right-hand
side of (56) must fulfill the following inequality,

θ̃T Kθ̃ # Kθ∥θ̃∥2
2, (57)

where Kθ > 0 is the smallest eigenvalue of K. Also, as θ̃T δ̂θ "
δmax
θ ∥θ̃∥2 and−θ̃Tδmax

θ
θ̃

∥θ̃∥2
= −δmax

θ ∥θ̃∥2, equation (56) can be
rewritten as

V̇θ " Kθ∥θ̃∥2
2. (58)

Thus, the system remains asymptotically stable despite δ̂θ ̸= 0.
However, as also discussed in section 3.2.2, the robust control
law (55) must be slightly modified when ∥θ̃∥2 → 0 to avoid
division by zero. First, a design parameter ϵ∗ > 0 is defined. It

can be noted that, when ∥θ̃∥2 # ϵ∗/δmax
θ , the control law (55)

is fully defined. When ∥θ̃∥2 < ϵ∗/δmax
θ , if the control law (55)

is modified as

vrob = −
(
δmax
θ

)2

ϵ∗
θ̃, (59)

then the time derivative of Vθ becomes

V̇θ = −θ̃TKθ̃ − θ̃T(δmax
θ

)2 θ̃

ϵ∗
+ θ̃T δ̂θ (60)

" −Kθ∥θ̃∥2
2 −

(
δmax
θ

)2∥θ̃∥2
2

ϵ∗
+ δmax

θ ∥θ̃∥2

" −Kθ∥θ̃∥2
2 +

ϵ∗

4
, (61)

where g∗ ! −
(
δmax
θ

)2
∥θ̃∥2

2
ϵ∗ + δmax

θ ∥θ̃∥2 is bounded by ϵ∗/4
because it has a maximum at δmax

θ ∥θ̃∥2 = ϵ/2. The bound
found in (61) also applies to V̇θ in the region ∥θ̃∥2 # ϵ∗/δmax

θ .
Therefore, the conditions in (B.10) and (B.11) are fulfilled with
µ = ϵ∗/(4K), so ∥θ̃∥2 is in fact bounded as stated in (B.12)
and (B.13) (see appendix B). It can be concluded that a robust
control law given by

vrob = −
(
δmax
θ

∥θ̃∥2
+ K

)
θ̃, if δmax

θ ∥θ̃∥2 # ϵ∗, (62)

vrob = −
((

δmax
θ

)2

ϵ∗
+ K

)
θ̃, if δmax

θ ∥θ̃∥2 < ϵ∗, (63)

ensures ∥θ̃∥2 " ϵ∗/(4Kθ) after some finite time, so it is nec-
essary to have ϵ∗ → 0 to have a bound that is a tight as
possible.

4. One-dimensional simulation study

4.1. Closed-loop performance assessment based on the
COTSIM

The performance of the proposed controller is tested in this
section using the COTSIM, a code developed by the Plasma
Control Group at Lehigh University. In this simulation study,
COTSIM evolves the one-dimensional plasma states by using
the MDE (2) with boundary conditions (3), the control-
oriented models for η and jni (4)–(6), and the electron heat-
transport equation,

3
2
∂neTe

∂t
=

1
ρ2

bĤρ̂

(
ĜĤ2

F̂
χene

∂Te

∂ρ̂

)
+ Qe, (64)

where χe is the electron thermal diffusivity, and Qe is the
electron heat deposition from different sources. For χe, a
mixed, semi-empirical Bohm/Gyro-Bohm model based on
dimensional analysis is employed [23],

χe =
Te(eV)

Bφ,0
F

(
ρ∗, q,

a∇pe

pe
, ρ̂,

dq
dρ̂

,
a∇Te

Te

∣∣∣∣
ρ̂=ρ̂TB

)
, (65)

where F is a non-dimensional function which depends on the
normalized gyro-radius, ρ∗, q and its spatial derivative, the

8
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electron pressure, pe, and its gradient, ρ̂, Te and its gradient,
and ρ̂TB is the ρ̂-coordinate of the edge transport barrier. It is
known that heat transport normally increases at higher pressure
gradients, but decreases at higher currents and low to nega-
tive magnetic shear, thus χe increases with q and ∇pe, but
decreases with dq/dρ̂. It can be noted that both current and
heat transport are coupled through χe (which is a function of
q and its spatial derivative) and η (which is a function of Te).

As another difference from the model used for control syn-
thesis (section 2), ohmic, radiation, and collision effects are
considered in the simulation study. Therefore, the electron
heating is modeled as

Qe = Qaux + QOhm − Qrad + Qcollisions, (66)

where Qaux is the heating produced by auxiliary heating meth-
ods (NBI, ECH, etc), QOhm is the ohmic heating power, Qrad
represents the radiation losses, and Qcollisions is the energy
gain/loss of the electrons due to collisions with ions. In this
simulation study, the auxiliary heating is modeled in COTSIM
as

Qaux(ρ̂, t) =
i=NNBI∑

i=1

Qprof
NBI,i(ρ̂)PNBI,i(t) + Qprof

EC (ρ̂)PEC(t), (67)

where Qprof
(·) (ρ̂) is a deposition profile (fixed in time) associated

with the corresponding auxiliary source. The ohmic heating,
QOhm, is modeled as

QOhm(ρ̂, t) = η(ρ̂, t) jtor(ρ̂, t)2, (68)

where jtor(ρ̂, t) is the toroidal current density. The radiative
losses, Qrad, considered in this study are Bremsstrahlung losses
only, which are modeled as

Qrad(ρ̂, t) = kbremZeffne(ρ̂, t)2
√

Te(ρ̂, t), (69)

where kbrem is the Bremsstrahlung constant. Finally, the
collision-associated heating, Qcollisions, is modeled as

Qcollisions(ρ̂, t) = νe(ρ̂, t)ne(ρ̂, t) (Ti(ρ̂, t) − Te(ρ̂, t)) , (70)

where T i is the ion temperature, and νe is the electron–ion
collisionality, given by

νe(ρ̂, t) = 0.041
ne(ρ̂, t)

Te(ρ̂, t)
3
2 Ai

, (71)

where Ai is the effective mass of the plasma ions. The total
plasma energy, W, is obtained from 1D profiles as

W =
3
2

∫

V
(neTe + niTi)dV , (72)

where ni is the ion density. For ne, a 0.5D model like that in (8)
is employed. In addition, ni and T i are calculated as ni = cnne,
T i = cTTe, for some constants cn and cT.

It must be noted that, although several simplifying assump-
tions are still made, the model used for the simulation study
definitely represents an increase in complexity with respect to
the model employed for control synthesis in section 2. This,

therefore, provides an effective testbed to assess the robust-
ness of the controller against model uncertainties. COTSIM
provides a fast, reliable, closed-loop simulation platform for
assessing the performance of a controller during the iterative
control-design process before experimental testing. Due to its
modular nature, physics complexity in source and transport
models can be added if needed. For instance, a more realis-
tic model for Qaux(ρ̂, t) taking into account the influence of
ne or Te on the auxiliary power deposition could be easily
added, a different model for χe could be adopted, or differ-
ent assumptions on the ion density and temperature could be
made.

4.2. Simulation studies in DIII-D H-mode scenario

The simulation scenario in these studies corresponds to an AT
DIII-D scenario. In particular, the experimental inputs from
DIII-D shot 147 634 are employed to run a simulation in COT-
SIM. Relevant magnitudes during shot 147 634 are shown in
figure 1, whereas other relevant machine and plasma parame-
ters are given by BT = 1.7 T, R0 = 1.8 m, a = 0.6 m, κ = 1.7,
and fNI ≈ 75% (where fNI is the non-inductive current frac-
tion). More details about this shot can be found, for example, in
[24]. In addition, the physical saturation limits considered are
Pmax

NBI,ON = 10 MW, Pmax
NBI,OFF = 6 MW, and Pmax

EC = 3.5 MW.
Finally, based on experimental data, cn = 1 and cT = 2 are
employed in these simulations. This assumption for T i is dif-
ferent from the one made in section 2 for the control-synthesis
model. Moreover, all sources of heating are considered during
the simulation studies as stated in (66). This represents another
test of the robustness of the controller against unmodeled
dynamics in the control-synthesis model.

The evolutions for q and βN predicted by this simulation
using the experimental inputs from shot 147 634 are denoted
as qexp and βexp

N , respectively. Both qexp and βexp
N are employed

in the three simulation cases presented in this section to define
the target evolutions to be tracked by the FB controller. Three
groups of auxiliary sources are considered, i.e., Naux = 3.
Those groups are on-axis NBI’s (whose power is denoted by
PNBI,ON), off-axis NBI’s (whose power is denoted by PNBI,OFF)
and EC. This ensures that G∗ is always full rank, and that the
FB-linearization control law (49) is always defined. As a result,
2 interior nodes of the q profile are controllable. The controller
is configured to control q at the nodes ρ̂ = 0.1 and ρ̂ = 0.4, as
regulation of the value of q at these nodes may allow for sig-
nificant shaping of the current profile. However, this choice
is arbitrary from an unsaturated controllability perspective as
discussed in section 3.3.1 and only pretends to illustrate the
capabilities of the controller.

4.2.1. Simulation study 1: reproduction of target shot via feed-
back control. The goal of this first simulation study is to
test the controller’s ability to reproduce a given target shot
by correcting through FB the chosen feedforward (FF) actu-
ator trajectories. The targets for q and βN are chosen in this
case simply as q tar = qexp and βtar

N = βexp
N , i.e., the goal is to

reproduce the simulated version of DIII-D shot 147 634 via
FB regulation. However, in order to demonstrate the nonlinear

9
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Figure 1. Time evolution of plasma magnitudes during DIII-D shot 147 634: (a) line-average electron density, n̄e, and plasma current, Ip; (b)
NBI power, PNBI, EC power, PEC, radiative power, Prad, and ohmic power, Pohm.

Figure 2. Simulation study 1: time evolutions for qedge and Ip in FF-only (dashed-dotted magenta) and FF + FB (solid blue) simulations,
together with the target qtar

edge and the experimental Ip from shot 147 634 (dashed red). The FB controller modifies Ip in order to achieve the
value of qedge obtained with the experimental inputs from shot 147 634.

Figure 3. Simulation study 1: time evolutions for βN and Ptot in FF-only (dashed-dotted magenta) and FF + FB (solid blue) simulations,
together with the target βtar

N and the experimental Ptot from shot 147 634 (dashed red). The FB controller modulates Ptot in order to achieve a
βN evolution in FF + FB that matches the βN evolution obtained with the experimental inputs from shot 147 634, βexp

N .

FB controller’s capabilities, the FF inputs must be chosen dif-
ferently from the experimental inputs from shot 147 634 used
to predict qexp and βexp

N . Therefore, in this simulation study
the FF actuator trajectories are defined as follows: Ip is taken
from shot 147 634 but decreased by 0.05 MA, n̄e is adopted
as in shot 147 634, both on-axis and off-axis NBI powers are

chosen as constants, with PNBI,ON = 4 MW and PNBI,OFF = 1
MW, and the EC power is defined as a step function going from
PEC = 0 to PEC = 2 MW at 3 s. Figures 2–6 compare the abil-
ities of both the FF-only and the FF + FB controllers to track
the desired targets. In the latter case, the FB component of the
controller, given by the nonlinear robust control law proposed

10
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Figure 4. Simulation study 1: time evolutions for q at ρ̂ = 0.10, 0.40 in FF-only (dashed-dotted magenta) and FF + FB (solid blue)
simulations, together with the target qtar (dashed red). Successful q-profile tracking is achieved by the FB controller.

Figure 5. Simulation study 1: comparison of q profiles at t = 0.7, 2, 4, and 6 s in FF-only (dashed-dotted magenta) and FF + FB (solid
blue) simulations, together with the target qtar (dashed red) and spatial locations for interior q-profile control (red triangles). The q profile is
shaped by the FB controller so that it matches the q profile obtained with the experimental inputs from shot 147 634, qexp.

in this work, corrects the FF component to effectively recover
the experimental inputs from shot 147 634 and track the target
q and βN . Figure 2 shows the qedge evolutions together with
the target q tar

edge, as well as the Ip trajectories. Figure 3 shows
the βN evolutions together with the target βtar

N , as well as the
Ptot trajectories. Figure 4 shows the q-profile evolutions and
the corresponding target, qtar, at the two control nodes ρ̂ = 0.1
and ρ̂ = 0.4. Figure 5 shows the q profiles at particular instants
in time (t = 0.7 s, 2 s, 4 s, and 6 s) together with the target
q tar. The spatial locations for interior q-profile control are also
marked in this figure. Finally, figure 6 shows the NBI and EC
power trajectories.

Figure 2 shows that the controller regulates qedge around
q tar

edge in FF + FB, achieving rapid convergence (in about
0.2 s). This is done by increasing Ip with respect to its
FF value until it reaches the experimental value from shot
147 634. Also, figure 3 shows howβN is successfully regulated
in FF + FB around βtar

N , which is significantly higher than the
βN evolution in FF. This is achieved by modulating Ptot until
around 2.5 s, and then increasing it substantially. The resulting
FF + FB trajectory for Ptot is not a superposition of step sig-
nals as in the FF case, and instead it follows the trend of the
experimental evolution of Ptot from the target shot 147 634.
It must be emphasized, however, that the controller has no
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Figure 6. Simulation study 1: time evolution for PEC, PNBI,ON, and PNBI,OFF in FF-only (dashed-dotted magenta) and FF + FB (solid blue),
together with the experimental inputs from shot 147 634 (dashed-red target). In FF + FB, the actuator trajectories calculated by the
controller are very close to the experimental trajectories from shot 147 634 despite having no information about them.

Figure 7. Simulation study 2: time evolutions for βN and Ptot in FF-only (dashed-dotted magenta) and FF + FB (solid blue) simulations,
together with the target βtar

N (dashed red). By increasing Ptot and shaping the q profile, βN can be increased and βtar
N can be successfully

tracked.

information about the experimental inputs Ip and Ptot from shot
147 634 (only q tar

edge and βtar
N are fed into the controller).

Figures 4 and 5 demonstrate the capability of the controller
to reproduce the current-profile evolution from shot 147 634.
From figure 4, it can be seen that q is properly regulated
around qtar in FF + FB at the two control locations ρ̂ = 0.1
and ρ̂ = 0.4. Fastest converge of q towards q tar is achieved
in FF + FB at ρ̂ = 0.4, possibly due to the lower Te at such
location (which implies a higher η, and therefore, a higher
capability to initially modify the q profile), as well as having
direct EC current-deposition in such region. Tracking of q at
ρ̂ = 0.1 seems slightly more challenging, particularly in the
beginning of the simulation, when it takes around 1 s for q to
be driven close to q tar. In any case, successful q-profile reg-
ulation is also achieved at ρ̂ = 0.1 in FF + FB, whereas the
FF evolution notably drifts away from qtar. Moreover, target
tracking is better at ρ̂ = 0.1 than at ρ̂ = 0.4 around t = 2.5 s,
when the target becomes flat, showing no overshoot. In FF, q
remains close to qtar at ρ̂ = 0.4 as a result of the global q pro-
file shape (see figure 5), but convergence of q towards q tar at
the two control locations is not guaranteed in the FF case.

From figure 5, it can be seen that the current profile in
FF + FB has a significantly different shape than in the FF case.
Whereas q is reduced in FF + FB with respect to the FF evolu-
tion in the region ρ̂ $ 0.4, it is increased in the region ρ̂ % 0.4,

yielding a substantial change in the q-profile shape. It can also
be appreciated that, in this simulation case, controlling q at
three spatial locations (i.e., the edge ρ̂ = 1 together with the
two interior locations ρ̂ = 0.1 and ρ̂ = 0.4) actually allows for
accurately matching the whole target profile. This is a direct
consequence of the controllability limits since, in order to con-
trol three spatial locations of the q profile together with βN , all
the degrees of freedom in terms of actuation must be exploited.
Under these conditions there is one possible control solution
to track the targets, which is for the controller to recover the
experimental inputs associated with the target shot as shown
in the figures. It is therefore not surprising that the whole
q profile is recovered as well. Figure 5 shows that the
q profile responds more rapidly to boundary control actions
(i.e., qedge control by means of Ip) than to interior control
actions by means of PNBI,ON, PNBI,OFF, and PEC, but both actu-
ation mechanisms are necessary for an efficient regulation of
the whole q profile. Figure 6 shows how heavily the con-
troller needs to correct the FF trajectories for PNBI,ON, PNBI,OFF,
and PEC in order to track the desired targets for q(ρ̂ = 0.1),
q(ρ̂ = 0.4), and βN . It also shows how the controller finds, on
its own, trends for the actuator trajectories very similar to those
from the target shot.

4.2.2. Simulation study 2: shot modification using βN + inte-
rior q-profile control. Both in present devices and future
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Figure 8. Simulation study 2: time evolutions for q at ρ̂ = 0.10, 0.40 in FF-only (dashed-dotted magenta) and FF + FB (solid blue)
simulations, together with the target qtar (dashed red). Good tracking at both interior nodes is achieved by raising and shaping the q profile
by means of FB control.

Figure 9. Simulation study 2: comparison of q profiles at t = 0.7, 2, 4, and 6 s in FF-only (dashed-dotted magenta) and FF + FB (solid
blue) simulations, together with the target qtar (dashed red) and spatial locations for interior q-profile control (red triangles). Very low
magnetic shear (≈ 0) is achieved in the region ρ̂ " 0.2.

reactor-grade tokamaks, and due to physical and technologi-
cal reasons, it may be convenient (or even mandatory) to have
a predetermined Ip trajectory. Therefore, regulation of the q
profile by means of boundary control may not be an available
actuation method. The goal of this second simulation study
is to show how the controller is capable of modifying the q-
profile and βN evolutions from shot 147 634 only by means of
diffusion control (i.e., Ptot control) and interior control (i.e.,
PNBI,ON, PNBI,OFF, and PEC control). In this simulation case
the experimental evolution of Ip from shot 147 634, shown in
figure 2 (right), is adopted. Targets for q and βN are generated

from qexp and βexp
N , respectively, as

q tar = (1.12 − 0.12ρ̂)qexp, βtar
N = 1.06βexp

N , (73)

when t " 3 s, and as

q tar = (1.12 − 0.12ρ̂)qexp(t = 3s), βtar
N = 1.06βexp

N (t = 3 s),
(74)

when t > 3 s, i.e., the q-profile and βN targets are kept con-
stant in time after 3 s. In this simulation study, the experimental
actuator trajectories from shot 147 634 used to predict qexp and
βexp

N are adopted as the FF inputs. Figures 7–10 compare the

13



Nucl. Fusion 61 (2021) 036006 A. Pajares and E. Schuster

Figure 10. Simulation study 2: time evolutions for PEC, PNBI,ON, and PNBI,OFF in FF-only (dashed-dotted magenta) and FF + FB (solid blue)
simulations.

Figure 11. Simulation study 3: time evolutions for βN and Ptot in FF-only (dashed-dotted magenta) and FF + FB (solid blue) simulations,
together with the target βtar

N (dashed red). The FF evolution for βN is not shown because it is identical to βtar
N .

abilities of both the FF-only and the FF + FB controllers to
track the desired targets. In the latter case, the FB component
of the controller corrects the FF inputs, which are identical to
the experimental inputs from shot 147 634, to effectively track
q tar and βtar

N , which are modified versions of the q and βN pre-
dicted in simulations by using the experimental inputs from
shot 147 634 (i.e., modified versions of qexp and βexp

N as given
by (73) and (74)).

Figure 7 shows the βN and Ptot evolutions, figure 8 shows
the q-profile evolutions at ρ̂ = 0.1 and ρ̂ = 0.4, figure 9 shows
the q profiles at t = 0.7 s, 2 s, 4 s, and 6 s, and figure 10 shows
the NBI and EC power trajectories. These plots demonstrate
the FB controller’s capability to simultaneously regulate βN
and q at ρ̂ = 0.1 and ρ̂ = 0.4. In order to increase βN towards
βtar

N , the controller increases Ptot during the whole simulation
(see figure 7). The increase in βN is correlated with an increase
in Te, which implies a decrease in η, and contributes to a rise
of q in the region ρ̂ % 0.5 (see figure 9). In the outer region
ρ̂ $ 0.5, the effect of Ptot is significantly smaller. This was
expected because the auxiliary sources normally heat and drive
current at the innermost part of the plasma, making Ip modu-
lation (not considered in this simulation study) the dominant
actuation mechanism for the outer region of the current profile.
The regulation of q at ρ̂ = 0.1 and ρ̂ = 0.4 is successfully car-
ried out (see figure 8) by modulating PNBI,ON, PNBI,OFF, and PEC

(see figure 10) while delivering the Ptot needed for βN control.
A good matching of the desired q tar profile is achieved within
the ρ̂ % 0.5 region, delivering very low magnetic shear in the

ρ̂ " 0.2 region. However, a match of the whole target profile
is not observed in this simulation case. This is a consequence
of the arbitrariness of the chosen target profile. It is important
to realize that qtar was obtained by arbitrarily modifying qexp.
While it is guaranteed that qexp is physically feasible, there is
no such guarantee for qtar. However, the controllability prop-
erties of the system guarantee that this arbitrary target profile
can indeed be tracked at two spatial locations, as confirmed
by the simulation results. It must also be noted that, although
q achieves an almost stationary value, the controller requests
some fluctuations in PNBI,ON, PNBI,OFF, and PEC. This happens
because, due to the ne and Te variations normally found dur-
ing the discharge (due to small fluctuations in both q and n̄e),
the controller must vary the power of the auxiliary sources to
obtain the desired auxiliary-source-driven currents.

4.2.3. Simulation study 3: shot modification using interior
q-profile control. In addition to keeping a predetermined Ip

trajectory, it may be of interest to maintain a particular βN
evolution already proven experimentally to ensure MHD sta-
bility. For instance, increasing the target for βN as done in the
previous simulation study may also increase the risk of trigger-
ing MHD instabilities, which can lead to a decrease in plasma
performance and eventually to a plasma disruption with the
potential of machine damages. The goal of this third simu-
lation study is to demonstrate the FB controller’s capability
of modifying q from shot 147 634 while keeping the same βN
evolution. As in the previous simulation case, the Ip evolution
from shot 147 634 is maintained, and the regulation of q at
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Figure 12. Simulation study 3: time evolutions for q at ρ̂ = 0.10, 0.40 in FF-only (dashed-dotted magenta) and FF + FB (solid blue)
simulations, together with the target qtar (dashed red). Although tracking could be improved if actuator saturation were not present during
some periods of time, convergence towards qtar is achieved.

Figure 13. Simulation study 3: comparison of q profiles at t = 0.7, 2, 4, and 6 s in FF-only (dashed-dotted magenta) and FF + FB (solid
blue) simulations, together with the target qtar (dashed red) and spatial locations for interior q-profile control (red triangles).

the two control points is achieved only by means of interior
control (i.e., PNBI,ON, PNBI,OFF, and PEC control) while reg-
ulating βN around βexp

N by using diffusion control (i.e., Ptot

control).
Whereas the βN evolution predicted by the inputs from

shot 147 634 is adopted as the βN target, i.e., βtar
N = βexp

N , the
q-profile target is chosen as

q tar =
[
1 + 0.33(ρ̂− 1)2] qexp, if ρ̂ # 0.4 (75)

q tar = q tar(ρ̂ = 0.4), if ρ̂ < 0.4 (76)

if t " 3 s, and as

q tar =
[
1 + 0.33(ρ̂− 1)2] qexp(t = 3 s), if ρ̂ # 0.4

(77)

q tar = q tar(ρ̂ = 0.4, t = 3 s), if ρ̂ < 0.4 (78)

if t > 3 s. This choice represents a q-profile shape that is sig-
nificantly more challenging to achieve than the one chosen in
the previous simulation study. It should be noted that qtar in
(75)–(78) depends on ρ̂2 and sets the goal of raising q(ρ̂ = 0)
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Figure 14. Simulation study 3: time evolutions for PEC, PNBI,ON, and PNBI,OFF in FF-only (dashed-dotted magenta) and FF + FB (solid
blue), together with the experimental inputs from shot 147 634 (dashed-red target). Whereas PNBI,ON is reduced, PNBI,OFF and PEC are
substantially increased and saturate for some periods of time.

a 33% with respect to the value obtained from the simulation
for shot 147 634.

In this simulation study, the experimental actuator trajecto-
ries from shot 147 634 used to predict qexp and βexp

N are once
again adopted as the FF inputs. Figures 11–14 compare the
abilities of both the FF-only and the FF + FB controllers to
track the desired targets. In the latter case, the FB compo-
nent of the controller corrects the FF inputs to effectively track
q tar and βtar

N . While q tar is a modified version of qexp, as given
by (75)–(78), βtar

N is identical to βexp
N . Figure 11 shows the

βN and Ptot evolutions, figure 12 shows the q-profile evolu-
tions at ρ̂ = 0.1 and ρ̂ = 0.4, figure 13 shows the q profiles at
t = 0.7 s, 2 s, 4 s, and 6 s, and figure 14 shows the NBI and EC
power trajectories. The FB controller’s capability to regulate q
at ρ̂ = 0.1 and ρ̂ = 0.4 by interior actuation only, while keep-
ing the βN evolution from shot 147 634, is shown in figures 11
and 12. This is achieved by modulating the NBI and EC pow-
ers, in such a way that PNBI,ON is decreased while PNBI,OFF and
PEC are increased (see figure 14), so that q is raised in the
region ρ̂ % 0.5 (see figure 13). In fact, PNBI,OFF and PEC are
saturated for a good part of the simulation (see figure 14), mak-
ing it difficult to accurately control q(ρ̂ = 0.1) and q(ρ̂ = 0.4)
during some parts of the simulation. This is a natural result
of employing the very demanding q-profile target (75)–(78),
which requires a significant increase of q in the inner part of
the plasma. However, it can be appreciated that, during most
of the simulation, a lower Ptot suffices to achieve the same βN
as in shot 147 634 (see figure 11). This suggests a plasma-
confinement improvement due to q-profile shaping (achieving
negative magnetic shear in the region ρ̂ % 0.25), which is con-
sistent with some experimental observations in negative shear
AT scenarios [2]. It can be observed, nonetheless, that the q-
profile shape in the region ρ̂ % 0.5 is in general not the same as
the target qtar. As discussed for the previous case, this happens
because of the arbitrariness of the chosen q tar and the controlla-
bility limits guaranteeing regulation only at two interior points
(ρ̂ = 0.1 and ρ̂ = 0.4).

5. Conclusions and possible future work

A robust, nonlinear, model-based controller has been pre-
sented in this work for simultaneous q-profile + βN control.
By means of 1D simulations for a DIII-D H-mode scenario, the

capability of the controller to change the q-profile shape, some-
times in conjunction with βN and qedge regulation, has been
demonstrated. FB linearization techniques allow for a very
intuitive assessment of the actuation capability for q-profile
+ βN control within a tokamak, providing a quantification
of controllability based on both the total number of auxil-
iary sources and their current deposition profiles. Robustifica-
tion techniques using Lyapunov redesign ensure that the error
dynamics remains bounded despite very general uncertainties
included in the modeling process. In other words, Lyapunov
redesign reduces the level of model accuracy needed to guaran-
tee acceptable closed-loop performance. The proposed robust
controller is capable of rejecting a variety of disturbances,
including MHD events, due to the FB mechanism. The per-
formance of the controller in presence of MHD disturbances
will depend however on how they affect the efficiency of the
actuation mechanisms and the plasma dynamics. Simultane-
ous regulation of βN and the q-profile shape may allow for
improving plasma performance, confinement, and steadiness
while avoiding MHD instabilities, which is an important goal
in fusion research. Future work includes experimental testing
of the control algorithm in DIII-D.
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Appendix A. Details of the model for the θ
dynamics

By taking derivative in the MDE, equation (2), with respect to
ρ̂,

∂

∂ρ̂

(
∂ψ

∂t

)
=

∂

∂ρ̂

[
η

µ0ρ2
bF̂2

1
ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)]

+
∂

∂ρ̂

[
ηR0Ĥ jni

]
, (A.1)

and introducing the definition of the poloidal flux gradient,θ !
∂ψ
∂ρ̂ , and the definition for jni in equation (4), the application of
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the chain rule leads to

∂θ

∂t
=

1
µ0ρ2

b

⎧
⎨

⎩
∂
(

η
F̂2

)

∂ρ̂

[(
Dψ

ρ̂
+ D′

ψ

)
θ + Dψθ

′
]

+
η

F̂2

∂

∂ρ̂

[(
Dψ

ρ̂
+ D′

ψ

)
θ + Dψθ

′
]}

+
i=Naux∑

i=1

R0
∂

∂ρ̂

[
ηĤ jaux

]
+ R0

∂

∂ρ̂

[
ηĤ jBS

]
, (A.2)

where the index (′) denotes derivative with respect to ρ̂. Fur-
ther development of the first two terms in equation (A.2)
yield

∂

∂ρ̂

(
η

F̂2

)[(
Dψ

ρ̂
+ D′

ψ

)
θ + Dψθ

′
]

=

[
η′

F̂2
− 2

F̂′η

F̂3

] [(
Dψ

ρ̂
+ D′

ψ

)
θ + Dψθ

′
]

,

∂

∂ρ̂

[(
Dψ

ρ̂
+ D′

ψ

)
θ + Dψθ

′
]

=

[(
ρ̂D′

ψ − Dψ

ρ̂2 + D′′
ψ

)
θ +

(
Dψ

ρ̂
+ 2D′

ψ

)
θ′ + Dψθ

′′

]
,

so equation (A.2) can be rewritten as

∂θ

∂t
=

1
µ0ρ2

b
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− 2
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)(
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η
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ψ
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∂

∂ρ̂

[
ηĤ jaux

]
+ R0

∂

∂ρ̂

[
ηĤ jBS

]
. (A.3)

The expression for η in (4) and its derivative with respect to ρ̂
can be rewritten as

η = gη(ρ̂)uη(t), η′ = g′
η(ρ̂)uη(t), (A.4)

where gη(ρ̂) ! ksp(ρ̂)Zeff(
Tprof

e (ρ̂)nprof
e (ρ̂)ζ

)3/2 and uη(t) ! Ip(t)
−3γ

2

Ptot(t)
−3ϵ

2 n̄e(t)
−3ζ

2 . By defining

h11(ρ̂) ! 1
µ0ρ2

b

gη

F̂2
Dψ, (A.5)

h12(ρ̂) ! 1
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(A.6)

h13(ρ̂) ! 1
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b
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ψ

)]
, (A.7)

it is found that equation (A.3) can be rewritten as

∂θ

∂t
=

[
h11(ρ̂)θ′′ + h12(ρ̂)θ′ + h13(ρ̂)θ

]
uη(t)

+ R0
∂

∂ρ̂

[
ηĤ jaux

]
+ R0

∂

∂ρ̂

[
ηĤ jBS

]
. (A.8)

The expression in (5) related to the auxiliary-source driven cur-
rent, jaux, can be rewritten using the models for Te and ne given
in (7) and (8) as

jaux =
i=NNBI∑

i=1

gNBI,i(ρ̂)uNBI,i(t) + gEC(ρ̂)uEC(t), (A.9)

where

gNBI,i(ρ̂) ! jprof
NBI(ρ̂)

g(ρ̂)λNB

nprof
e (ρ̂)

,

gEC(ρ̂) ! jprof
EC (ρ̂)

g(ρ̂)λEC

nprof
e (ρ̂)

, (A.10)
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2
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p P
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e PNBI,i, (A.11)

uEC ! I
γ
(
λEC− 3

2

)

p P
ϵ
(
λEC− 3

2

)

tot n̄
ζ
(
λEC− 3

2

)
−1

e PEC, (A.12)

with g(ρ̂) ! Tprof
e (ρ̂)nprof

e (ρ̂)ζ . Then, the second term on the
right-hand side of (A.8) becomes

R0
∂

∂ρ̂

[
ηĤ jaux

]
=

i=NNBI∑

i=1

R0
∂

∂ρ̂

[
Ĥgη(ρ̂)gNBI,i(ρ̂)

]
uNBI,i(t)

+ R0
∂

∂ρ̂

[
Ĥgη(ρ̂)gEC(ρ̂)

]
uEC(t), (A.13)

and defining

hNBI,i(ρ̂) ! R0
∂
(
Ĥgη(ρ̂)gNBI,i(ρ̂)

)

∂ρ̂
,

hEC(ρ̂) ! R0
∂
(
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)

∂ρ̂
,

(A.14)

then (A.13) becomes

R0
∂

∂ρ̂

[
ηĤ jaux

]
=

i=NNBI∑

i=1

hNBI,i(ρ̂)uNBI,i(t)

+ hEC(ρ̂)uEC(t). (A.15)
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In order to rewrite the last term on the right-hand side of
equation (A.8), jBS given by equation (6) can be expressed,
using the definition of θ and equations (7)–(8), as

jBS =
R0

F̂(ρ̂)
1
θ

[
2L31(ρ̂)g(ρ̂)

[
nprof

e (ρ̂)
]′

+ (2L31 + L32 + αL34)nprof
e (ρ̂)g′(ρ̂)

]

× Ip(t)γPtot(t)ϵn̄e(t)ζ+1, (A.16)

and therefore, the last term in (A.8) becomes

R0
∂

∂ρ̂

[
ηĤ jBS

]
=

∂

∂ρ̂

[
R0Ĥgη(ρ̂)

R0

F̂(ρ̂)
1
θ

×
[
2L31(ρ̂)g(ρ̂)[nprof

e (ρ̂)]′

+ (2L31 + L32 + αL34)nprof
e (ρ̂)g′(ρ̂)

] ]

× Ip(t)−γ/2Ptot(t)−ϵ/2n̄e(t)−ζ/2+1. (A.17)

By defining

hBS(ρ̂) ! Ĥgη
R0

F̂

[
2L31g[nprof

e ]′

+ (2L31 + L32 + αL34)nprof
e g′] (A.18)

uBS(t) ! Ip(t)−γ/2Ptot(t)−ϵ/2n̄e(t)−ζ/2+1, (A.19)

equation (A.17) can be rewritten as

R0
∂

∂ρ̂

[
Ĥη(Te) jBS

]
=

∂

∂ρ̂

[
hBS(ρ̂)

θ

]
uBS(t), (A.20)

and the MDE (A.8) adopts the following shape

∂θ

∂t
=

[
h11θ

′′ + h12θ
′ + h13θ

]
uη +

i=NNBI∑

i=1

hNBI,iuNBI,i

+ hECuEC +
∂

∂ρ̂

[
hBS

θ

]
uBS. (A.21)

The finite differences method is employed to discretize
equation (A.21) in the ρ̂ domain. A total number N + 1 nodes
are used within the interval ρ̂ = [0, 1]. For the mth inner node
(m = 1, 2, . . . , N − 1), the equation that gives the evolution of
the θ profile is given by

∂θ(ρ̂m, t)
∂t

=

[
h13(ρ̂m)θ(ρ̂m, t) + h12(ρ̂m)

θ(ρ̂m+1, t) − θ(ρ̂m−1, t)
2∆ρ̂

+ h11(ρ̂m)
θ(ρ̂m+1, t) + θ(ρ̂m−1, t) − 2θ(ρ̂m, t)

∆ρ̂2

]
uη(t)

+
i=Naux∑

i=1

haux,i(ρ̂m)uaux,i(t) +

[
1

θ(ρ̂m)
dhBS

dρ̂
(ρ̂m)

− hBS(ρ̂m)
θ(ρ̂m)2

θ(ρ̂m+1, t) − θ(ρ̂m−1, t)
2∆ρ̂

]
uBS(t),

(A.22)

where ρ̂m = m∆ρ̂ and ∆ρ̂ = 1/N. Re-arranging terms, and
using the following notation and definitions,

θm ! θ(ρ̂m, t), (A.23)

αm ! h13(ρ̂m) − 2h11(ρ̂m)
∆ρ̂

, βm ! h11(ρ̂m)
∆ρ̂2 +

h12(ρ̂m)
2∆ρ̂

,

γm ! h11(ρ̂m)
∆ρ̂2 − h12(ρ̂m)

2∆ρ̂
, (A.24)

hm
NBI,i ! hNBI,i(ρ̂m), hm

EC ! hEC(ρ̂m),

hm
BS,1 ! dhBS

dρ̂
(ρ̂m), hm

BS,2 ! hBS(ρ̂m),
(A.25)

equation (A.22) can be written as

θ̇m =
[
γmθm + βmθm+1 + αmθm−1

]
uη(t)

+
i=NNBI∑

i=1

hm
NBI,iuNBI,i(t) + hm

ECuEC(t)

+

[
1
θm

hm
BS,1 −

hm
BS,2

θ2
m

θm+1 − θm−1

2∆ρ̂

]
uBS(t). (A.26)

The application of equation (A.26) at each of the inner
nodes (m = 1, 2, . . . , N − 1) yields a set of N − 1 equations
that, together with the boundary conditions θ0 = 0 and
θN = −k∗Ip

Ip(t), closes the model that defines the evolution of
θ at the N + 1 nodes. For the inner nodes, the system can be
written in matrix form as

θ̇ = G(θ, Ip)u, (A.27)

where θ = [θ1, θ2, . . . , θm, . . . , θN−1]T ∈ R(N−1)× 1, u=[uη(t),
uNBI, 1 (t), uNBI, 2 (t), . . . , uNBI, NNBI (t), uEC (t), uBS (t) ]T ∈
R(NNBI+3)× 1, and G(θ, Ip) ∈ R(N−1)× (NNBI+3) is given by

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1θ0 + β1θ2 + γ1θ1

...
αmθm−1 + βmθm+1 + γmθm

...
αN−1θN−2 − βN−1kIp Ip − γN−1θN−1

h1
NBI,1 . . . h1

EC

...
.. . ...

hm
NBI,1 . . . hm

EC

...
.. . ...

hN−1
NBI,1 . . . hN−1

EC

h1
BS,1

θ1
−

h1
BS,2

θ2
1

θ2 − θ0

2∆ρ̂

...
hm

BS,1

θm
−

hm
BS,2

θ2
m

θm+1 − θm−1

2∆ρ̂

...
hN−1

BS,1

θN−1
−

hN−1
BS,2

θ2
N−1

−kIp Ip − θN−2

2∆ρ̂

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix B. Lyapunov theory basics

The Lyapunov stability theory is the basis of the controller
design shown in this paper. Consider a nonlinear, autonomous
system

ẋ = g(x, u), (B.1)

where x ∈ Rn is the state vector, u ∈ Rp is the input vec-
tor, and g : Rn × Rp → Rn is a nonlinear function. It is
assumed that a control law u = unom(x) is known and set such
that g(x, unom(x)) ! f(x), and also that the resulting function
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f : Rn → Rn is locally Lipschitz. It is said that x = x̄ is an
equilibrium of the system if

f (x̄) = 0. (B.2)

Without loss of generality, it is possible to use the change of
variables x̃ = x − x̄ so that (B.1) can be rewritten as

˙̃x = f (x̃), (B.3)

which is a system with an equilibrium at the origin. It is nec-
essary to define stability, asymptotical stability, and global
asymptotical stability of an equilibrium. The equilibrium
x̃ = 0 of the system (B.3) is stable if, for each ϵ > 0, there
exists δ = δ(ϵ) > 0 such that

∥x̃(0)∥ < δ ⇒ ∥x̃(t)∥ < ϵ, ∀t # 0. (B.4)

Such equilibrium is asymptotically stable if it is stable and δ
can be found such that

∥x̃(0)∥ < δ ⇒ lim
t→∞

x̃(t) = 0, (B.5)

and it is globally asymptotically stable if ∥x̃(0)∥ can be taken
arbitrarily large.

The main Lyapunov theorem exploited in this work for the
design of nominal control laws says that, if a continuously dif-
ferentiable function V : Rn → R can be found for the system
(B.3) such that

V(0) = 0, (B.6)

V(x̃) > 0, ∀ x̃ ̸= 0, (B.7)

∥x̃∥→∞ ⇒ V(x̃) →∞, (B.8)

V̇(x) < 0, ∀ x ̸= 0, (B.9)

then the equilibrium x̃ = 0 is globally asymptotically stable.
If the domain of applicability for the conditions (B.6)–(B.9)
is restricted from Rn to some domain D (for example,
because of physical actuator constraints), then globality can-
not be claimed. In general, finding the function V , known
as Lyapunov function, is a complicated problem. Typical
candidates for Lyapunov functions are quadratic functions,
V = x̃T Px̃ (P > 0), such that V̇ = −x̃T Qx̃ with Q > 0. In this
work, the control-design problem is not only finding the Lya-
punov functions themselves, which are given by relatively sim-
ple quadratic functions, but also finding the stabilizing FB laws
u = unom(x) at the same time.

A second theorem that is exploited in this work for the
design of robust control laws via Lyapunov redesign (see
appendix C) says that, if a continuously differentiable function
V : Rn → R can be found such that

α1(x) # V(x̃) # α2(x), ∀ x̃ ̸= 0, (B.10)

V̇(x) " −W3(x), ∀ ∥x∥ # µ > 0, (B.11)

whereα1 is a class K function2, α2 is a class K∞ function3 and
W3 > 0 is continuous, and if µ < α−1

2 (α1(r)), for some r > 0,
then there exists a class KL function4 β such that

∥x̃∥ " β(∥x(t0)∥, t − t0), ∀ t0 " t " t0 + T, (B.12)

∥x̃∥ " α−1
2 (α1(µ)), ∀ t # t0 + T, (B.13)

for some T # 0 and any initial state x(t0). When α1 = α2 can
be found, ∥x̃∥ is ultimately bounded by µ. A more extensive
introduction to Lyapunov stability theory can be found in [17].

Appendix C. Lyapunov redesign basics

Lyapunov redesign is the technique employed in this work
to design a robust, nonlinear controller. Consider a nonlinear,
autonomous, uncertain system with the following shape

ẋ = f (x) + G(x)[u + δ(x, u)], (C.1)

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, δ ∈
Rp is the uncertainty vector, and f : Rn → Rn, G : Rn → Rn× p

and δ : Rn × Rp → Rp are locally Lipschitz in x and u. It is
assumed that a control law u = unom(x) and a Lyapunov func-
tion V(x) have been found such that the origin of (C.1) is an
asymptotically stable equilibrium in closed loop for the nom-
inal system (δ = 0). A control law u = unom + urob is sought
such that (C.1) is asymptotically stable when δ ̸= 0. The time
derivative of V is given by

V̇ =
∂V
∂x

( f + Gunom) +
∂V
∂x

G
(
urob + δ

)
, (C.2)

where the dependence on x and u has been dropped to simplify
notation. The term ∂V

∂x ( f + Gunom) corresponds to the time
derivative of V when the control law u = unom(x) is employed
for the nominal system (δ ≡ 0), which is negative by design.
Therefore ∂V

∂x ( f + Gunom) < −αc(∥x∥), where αc is a class K
function. Then, it is found that

V̇ < −αc(∥x∥) +
∂V
∂x

G
(
urob + δ

)
. (C.3)

The term urob must be designed such that V̇ < 0, regardless of
the value of δ. Using the Cauchy–Schwarz inequality, (C.3)
can be rewritten as

V̇ < −αc(∥x∥) +
∂V
∂x

Gurob +

∥∥∥∥
∂V
∂x

G

∥∥∥∥ 2 ∥δ∥2. (C.4)

If there exists a bound to δ given by
∥∥δ(x, unom + urob)

∥∥
2 " δmax, (C.5)

2 A function f(x) belongs to class K iff (1) it is strictly increasing with x, and
(2) f(0) = 0.
3 A function f(x) belongs to class K∞ iff (1) it is class K, (2) x can extend to
infinity, and (3) limx→∞ f(x) = ∞.
4 A function f(x, y) belongs to class KL iff (1) for each fixed y∗, the function
f(x, y∗) belong to class K and (2) for each fixed x∗, the function f(x∗, y) is
decreasing and tends to zero as y →∞.
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then

V̇ < −αc(∥x∥) +
∂V
∂x

Gurob +

∥∥∥∥
∂V
∂x

G
∥∥∥∥ δ

max. (C.6)

If urob is taken as

urob = −δmax

(
∂V
∂x G

)T

∥∥ ∂V
∂x G

∥∥
2

, (C.7)

then the second-to-last term on the right-hand side of
equation (C.6) becomes

∂V
∂x

Gurob = −δmax

∥∥∥∥
∂V
∂x

G
∥∥∥∥ 2, (C.8)

so
V̇ < −αc(∥x∥). (C.9)

Therefore, all the conditions (B.6)–(B.9) are satisfied, so the
origin of (C.1) is asymptotically stable under the control law
u = unom + urob, with urob given by (C.7), as long as a bound
(C.5) can be found. Finally, it can be noted that, if G is the
identity matrix and V = 1

2 x̃2 (as is the case in the derivations
shown in this work), G ∂V

∂x has a pretty simple form, G ∂V
∂x = x̃.

It must be noted that the control law (C.7) has a singular-
ity at

∥∥ ∂V
∂x G

∥∥
2 = 0, so its practical implementation is limited.

In order to avoid this limitation, control law (C.7) is mod-
ified as follows. First, a design parameter ϵ > 0 is defined.
This parameter ϵ also needs to be small, ϵ→ 0, for reasons
that will be shown later in this section. It can be seen that
the singularity does not affect the control law (C.7) in the
domain defined by

∥∥ ∂V
∂x G

∥∥
2 # ϵ/δmax. For the domain defined

by
∥∥ ∂V

∂x G
∥∥

2 < ϵ/δmax, if the control law is modified as

urob = −
(
δmax)2

(
∂V
∂x G

)T

ϵ
, (C.10)

then

V̇ < −αc(∥x∥) +
∂V
∂x

Gurob +

∥∥∥∥
∂V
∂x

G
∥∥∥∥ δ

max

" −αc(∥x∥) −
(
δmax)2 ∥ ∂V

∂x G∥2

ϵ
+

∥∥∥∥
∂V
∂x

G
∥∥∥∥ δ

max

" −αc(∥x∥) +
ϵ

4
, (C.11)

where the fact that −(δmax)2 ∥ ∂V
∂x G∥2

ϵ + ∥ ∂V
∂x G∥δmax " ϵ

4 , for all
values of ∥ ∂V

∂x G∥δmax, has been employed. The bound given
in (C.11) allows for using theorem (B.10) and (B.11) to con-
clude that, after some time, the norm of the state vector ∥x̃∥
bounded by a class K function of ϵ. Therefore, choosing ϵ→ 0

small enough ensures that ∥x̃∥ is also small. A more detailed
introduction to Lyapunov redesign techniques can be found in
[17].
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