
International Atomic Energy Agency Nuclear Fusion

Nucl. Fusion 61 (2021) 106040 (10pp) https://doi.org/10.1088/1741-4326/ac207e

Neural network model of the multi-mode
anomalous transport module for
accelerated transport simulations

S.M. Morosohk∗ , A. Pajares , T. Rafiq and E. Schuster

Lehigh University, Bethlehem, Pennsylvania 18015-3085, United States of America

E-mail: morosohk@lehigh.edu

Received 28 May 2021, revised 26 July 2021
Accepted for publication 24 August 2021
Published 8 October 2021

Abstract
A neural network version of the multi-mode anomalous transport module, known as MMMnet,
has been developed to calculate plasma turbulent diffusivities in DIII-D with a calculation time
suitable for control applications. MMMnet uses a simple artificial neural network structure to
predict the ion thermal, electron thermal, and toroidal momentum diffusivities while
reproducing Multi-Mode Model (MMM) data with good accuracy and keeping the calculation
time as a fraction of that associated with MMM. Model-based control techniques require
models with fast calculation times, making many existing physics-oriented predictive codes
unsuitable. The control-oriented predictive code Control Oriented Transport Simulator
(COTSIM) calculates the most significant plasma dynamics in response to the different
actuators while running at a speed useful for control design. In order to achieve this calculation
speed, COTSIM often relies on scaling laws and control-level models. Replacing some of
these scaling laws and control-level models with neural network versions of more complex
physics-level models has the potential of increasing the range of validity and the level of
accuracy of COTSIM without compromising its computational speed. In this work, MMMnet
is integrated into COTSIM to improve the turbulent diffusivity predictions, which will in turn
improve the prediction accuracy associated with the dynamics of many plasma properties.

Keywords: neural network, Multi-Mode Model, Control Oriented Transport Simulator,
control, nuclear fusion

(Some figures may appear in colour only in the online journal)

1. Introduction

In order for tokamak plasmas to achieve both stable operation
and high performance, the 1D spatial distributions of plasma
parameters such as density, temperature, current, and momen-
tum must be carefully controlled. The evolution of these pro-
files in time is described by a system of nonlinear transport
equations that are too complicated to be modeled from first
principles with reasonable calculation times using presently
available real-time hardware systems. Reduced physics-based
models are available, but they are still too computationally
intensive to be well suited for control applications.

∗ Author to whom any correspondence should be addressed.

Model-based control applications require response mod-
els with fast (on the order of seconds, e.g. for closed-
loop offline simulations) to extremely fast (on the order of
milliseconds, e.g. for real-time control and estimation) calcu-
lation times, making well-established physics-oriented predic-
tive transport codes challenging or impossible to use. Instead,
control-oriented models with significantly faster calculation
times must be developed; however, this speed often comes
with a cost. Reducing physics models to the point that they
run at the required speeds can also reduce accuracy beyond
the point where the model is useful. Empirical scaling laws
can achieve high levels of accuracy, but may only be valid
for specific plasma scenarios. Machine learning models have
the uncommon ability to meet all three goals: high levels of

1741-4326/21/106040+10$33.00 1 © 2021 IAEA, Vienna Printed in the UK

https://doi.org/10.1088/1741-4326/ac207e
https://orcid.org/0000-0002-3133-5095
https://orcid.org/0000-0001-9251-9675
https://orcid.org/0000-0002-2164-1582
mailto:morosohk@lehigh.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ac207e&domain=pdf&date_stamp=2021-10-8

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Figure 1. Structure of a multi-layer perceptron neural network [8].

accuracy, fast calculation times, and applicability to a broader
range of plasma scenarios. Recently, neural-network versions
of a number of physics-based codes for both transport coef-
ficients [1, 2] and current, particle, and heat sources [3, 4]
have been developed, which significantly reduce the calcula-
tion time required while maintaining relatively high predic-
tion accuracies across many different scenarios. Inspired by
these recent developments on machine-learning-basedplasma-
response modeling, a neural network that reproduces the pre-
dictions of the Multi-Mode Model (MMM) [5] for anomalous
transport has been developed for DIII-D. This neural network
is known as MMMnet.

The MMMnet model has been trained to reproduce the
calculation of the ion thermal, electron thermal, and toroidal
momentum turbulent diffusivities. A simple artificial neural
network structure (see figure 1) was used with three hidden
layers and 100 nodes per hidden layer. Five separate networks
were trained with different initializations of the weights; the
final prediction returned is the average of the five predictions.
A low standard deviation between the predictions indicates
that the training effectively eliminates any randomness intro-
duced by the initial weights. Training data was generated by
calling 1000 predictive TRANSP [6, 7] runs based on 83 dif-
ferent DIII-D shots and using MMM as the transport model.
Instead of relying on a convolutional neural network to han-
dle spatially-varying data, principle component analysis was
applied to the plasma profiles to reduce the amount of data
used to describe each profile. This reduced the number of input
and output nodes in the network, thereby limiting the network
complexity and calculation time.

The Control Oriented Transport Simulator (COTSIM) is a
1D transport code designed to run at speeds useful for control
applications. It uses either a prescribed MHD equilibrium or
a fixed-boundary analytical solver, although the coupling with
a free-boundary numerical solver is currently in progress. It
uses a modular configuration which allows the user to easily
choose from transport and source models of varying complex-
ities, ranging from empirical scalings to reduced analytical
models to machine learning models. A neural network version
of NUBEAM [4] is already available to calculate beam driven
current, heating, and torque. Depending on the models cho-
sen, COTSIM takes between a fraction of a second and several

seconds to simulate a full DIII-D discharge. In this work, the
neural network version of MMM is integrated into COTSIM
to enhance its fast prediction capabilities.

This paper is organized as follows. In section 2, the process
used to obtain the dataset needed to train and evaluate the neu-
ral network model is described. In section 3, the method used
to process the data and determine the topology and training
parameters of the model is explained. In section 4, the results
of the final neural network model are presented. In section 5,
the neural network is integrated into COTSIM and predictive-
simulation results are shown. In section 6, conclusions and
plans for future work are discussed.

2. Dataset development

The input data used in this work was taken from a set of
1000 predictive TRANSP runs using MMM7.1 as the trans-
port model and evolving the electron and ion temperature pro-
files. Using TRANSP helps to ensure that the inputs to MMM
are in a physically reasonable range for DIII-D Deuterium
plasmas. The TRANSP runs are based on 83 different shots
from the 2018 DIII-D campaign, including both L-mode and
H-mode plasmas. For each TRANSP run, using a random num-
ber generator, the mean effective charge (Zeff) was assigned a
value between 1.5 and 5, the edge neutral density (n0,out) was
assigned a value between 5 × 1010 and 1 × 1013.5 cm− 3, and
the anomalous fast ion diffusivity (D f) was assigned either a
classical, flat, or peaked shape and a maximum value between
1 and 50,000 cm2 s− 1. Changing the values of Zeff directly
affects the calculation of the diffusivities by MMM. Changing
n0,out and D f changes the calculation of the effects of neutral
beam injection by NUBEAM, which changes the temperature
inputs to MMM and thus indirectly alters the calculated diffu-
sivities. By this process, the original 83 shots are expanded to
1000 TRANSP runs, or 201,612 total time steps in the dataset.

The total dataset is then divided into three subsets used
for training, validation, and testing. One of the main concerns
when training a neural network is that the network could be
learning the exact training data more than the underlying func-
tion which describes the data; this issue is referred to as over-
fitting. If this is the case, for any point that was not included in
the original training set, the network would be unable to gen-
eralize and would produce less useful predictions. In order to
check for this, a portion of the data is held back during train-
ing. The training set, made up of 80% of the TRANSP runs in
the total dataset, is what the neural network actually sees dur-
ing the training process. Another 10% of the TRANSP runs go
into the validation set, which is used during the parameter tun-
ing process to determine the values of the manually assigned
network parameters, or hyperparameters (see section 3.2). The
remaining 10% of the TRANSP runs make up the testing set,
and are used to assess the performance of the final model.

2.1. Model inputs and outputs

The inputs used in this network are most of the inputs used
by the standalone version of MMM. The parallel velocity was
assumed to be equal to the toroidal velocity, and the mean

2

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

atomic mass of ions was derived from the average charge and
the atomic mass of impurities. The inputs listed in table 1 pro-
vide enough information for the neural network to learn the
diffusivity calculations. For some of the input quantities, the
normalized gradient is also used and is treated as a separate
input, as also indicated in table 1. Figure 2 shows the range
of each input in the training dataset. Because machine learn-
ing models cannot extrapolate, this gives a lower-dimensional
representation of the range for which the neural network pre-
dictions will be valid. The outputs of the neural network are
listed in table 2. The version of MMM used in this work is not
valid in the pedestal region of H-mode plasmas, so the values
of the diffusivity outputs have only been calculated in these
TRANSP runs in the spatial region 0 ! ρ̂ ! 0.8. MMMnet is
only trained to produce valid predictions in that region.

3. Model structure

3.1. Data preprocessing

When predicting spatially-varying data, a typical approach is
to use a convolutional neural network (CNN). This technique
is well-suited to datasets with two or three spatial dimensions
and is often used in image recognition and computer vision
applications. However, it is a more complicated architecture
than the multi-layer perceptron (MLP), and can therefore have
slightly higher calculation times. Given the goal of develop-
ing a network with as fast a prediction time as possible, it was
decided to use an MLP in this work. In order to use this sim-
pler approach, each profile must be reduced to a set of scalar
points. This can be accomplished using a principle component
analysis (PCA), which projects each profile, including gradi-
ents, onto a set of basis functions and determines how much of
the total variance in the data each basis function accounts for.
In this work, the PCA for each profile and gradient includes
every basis function that explains at least 0.1% of the variance
in the data. This results in the retention of at least 99.5% of
the total variance of each profile. The number of basis func-
tions retained for each profile, and its gradient if the gradi-
ent is included, is seen in tables 1 and 2. It is important to
point out that the PCA for each profile is derived from the train-
ing dataset, and is therefore only valid for profiles in the same
range as those in the training data. Just as the neural network
cannot extrapolate to regions far from any training data point,
the PCA cannot accurately deconstruct and reconstruct a pro-
file that is significantly different from any profile in the training
data.

Before the data can be fed to the neural network, each input
and output is standardized to a mean of 0 and a standard devia-
tion of 1. The normalized value is calculated as z = (x − µ)/s
where x is the absolute value, µ is the average and s is the
standard deviation of the training dataset. This ensures that all
inputs are given equal weight in the prediction, that inputs such
as densities with a higher absolute value do not overpower the
other inputs, and that all outputs are given equal weight when
calculating the loss function. For each prediction the neural
network makes, the profile data is reduced to a set of scalars
through the PCA, all the inputs are standardized, the neural

Figure 2. Range of inputs in the training dataset. x-axes show
quantities, y-axes reflect the range of values of each quantity, and the
width of the green space represents the frequency that that value is
seen in the training dataset.

network makes its prediction, the network outputs go through
the reverse of the standardization process, and the final profiles
are reconstructed by the PCA.

3

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Table 1. Inputs to the neural network model.

Inputs

Symbol Name Units PCA Modes

Zimp Average charge of impurities
Aimp Average atomic mass of impurities amu
Zeff Mean effective charge 1
κ Elongation 4
R Major radius m 4
r Minor radius m 4
Bt Toroidal magnetic field T 2
ne Electron density m− 3 5
gne Normalized electron density gradient 2
ni Ion density m− 3 6
gni Normalized ion density gradient 2
nh Hydrogenic ion density m− 3 5
gnh Normalized hydrogenic ion density gradient 2
nz Impurity density m− 3 5
gnz Normalized impurity density gradient 2
nf Fast ion density m− 3 2
Te Electron temperature keV 4
gTe Normalized electron temperature gradient 2
T i Ion temperature keV 4
gTi Normalized ion temperature gradient 2
q Safety factor 5
gq Normalized safety factor gradient 7
ωE× B E × B shear rad s− 1 8
vφ Toroidal velocity m s− 1 4
gvφ Normalized toroidal velocity gradient 7
vθ Poloidal velocity cm s− 1 1
gvθ Normalized poloidal velocity gradient 6

Table 2. Outputs of the neural network model.

Outputs

Symbol Name Units PCA Modes Kept

χi Ion thermal diffusivity m2 s− 1 15
χe Electron thermal diffusivity m2 s− 1 14
χφ Toroidal momentum diffusivity m2 s− 1 12

3.2. Determination of hyperparameters

The term hyperparameters refers to all of the network param-
eters which are not learned during the training process. These
include the structure of the network and length of the train-
ing process, among others. It is up to the person training the
neural network to choose values of these parameters that yield
good results. Methods of determining these parameters include
genetic-algorithm optimization [9] and Bayesian optimization
[10]. However, the most common approach is still to conduct
a grid search, or a brute force testing of different hyperpa-
rameter values. In this work, network architectures ranging
from 1 to 4 hidden layers and 50 to 200 neurons per hidden
layer were tested, and the validation accuracy and calculation
times for each model are shown in figure 3. Subplots 3(a) and
3(b) show the model accuracy and time per prediction, respec-
tively, plotted against the model architecture. Subplots 3(c)

and 3(d) show the model accuracy and time per prediction,
respectively, plotted against the number of learned parame-
ters in the model. Model accuracy in subplots 3(a) and 3(c)
is reported as the correlation between the neural network pre-
diction and MMM-predicted data for each point in the valida-
tion dataset, measured as the R2 value of a linear regression.
Note that the calculation times shown in subplots 3(b) and (d)
came from Python and include the compilation time. They are
shown here as a comparison between different model archi-
tectures, but should not be taken as the true calculation time
for the model. In order to balance the two simultaneous goals
of high accuracy and low calculation time, the architecture of
3 hidden layers with 100 neurons per layer was chosen. This
architecture displays essentially the same level of accuracy as
more complicated architectures, implying that there is enough
flexibility for this model to learn the underlying function well.
In addition, the calculation time is relatively short compared

4

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Table 3. Hyperparameters determined
by results of parameter tuning.

Number of hidden layers 3
Nodes per hidden layer 100
Number of epochs 16
Batch size 9

Table 4. Other inputs to the Keras model.

Solver ‘sgd’
Hidden layer activation function ‘relu’
Output layer activation function ‘linear’
Loss ‘mse’
Metrics ‘accuracy’

to architectures which display similar levels of accuracy. The
length of the training process was determined in a similar way.
The length of the training process is measured in epochs, or
number of times that the network sees each data point in the
training set during the training process. If training is allowed
to run for too long, the network will begin to memorize (over-
fit) the exact training data instead of learning the underlying
function, and the network predictions will not be as accurate
on any data point not in the training set. Indications of over-
fitting can be seen in figure 4 as the difference in R2 between
the training and validation sets increases with the number of
epochs. In order to both maximize validation accuracy and
minimize overfitting, training of the final model was limited
to 16 epochs. The batch size, or the number of data points
seen by the network in between each update of the weights,
was chosen to maximize R2 on the validation data. The final
model was trained with a batch size of 9. The hyperparame-
ters chosen through the parameter tuning process are listed in
table 3. All other parameters of the Keras [11] model are listed
in table 4.

One source of uncertainty in the model stems from the ini-
tial randomization of the weights. There is a possibility that,
during the training process, the weights are converging to a
local minimum of the loss function instead of the global min-
imum. In order to account for this, five separate models were
trained in parallel using the same hyperparameters and the
same training data, but different random initial weights. When
all five parallel networks converge to the same minimum of
the loss function, that is most likely the global minimum. The
final network reports the average, standard deviation, mini-
mum, and maximum of the five predictions. If the network is
being used for an application that requires even faster calcu-
lation times, the user can choose to not use all five parallel
networks or to use parallel computing.

4. Model evaluation

Results of the final neural network model are shown in
this section. The correlations between MMM-predicted and
MMMnet-predicted data for each output on the training and
testing datasets are seen in table 5. Predictions are shown
for TRANSP run 176052T05, which is in the testing dataset.

Table 5. Correlations (R2) between MMM and MMMnet
predictions for shots in training and testing datasets.

R2 values: training data R2 values: testing data

χi 0.961 0.883
χe 0.941 0.843
χφ 0.928 0.878

Figure 5 shows the evolution of the MMM and MMMnet pre-

dictions at the spatial location
̂
ρ = 0.612 over the course of

TRANSP run 176052T05 for (a)χi, (b)χe, and (c)χφ. Figure 6
shows the MMM and MMMnet profiles at time t = 1.82 s for
(a)χi, (b)χe, and (c)χφ, and figure 7 shows the same results at
time t = 2.32 s, both for the same TRANSP run. The red lines
show the MMM-predicted data, the dark blue lines show the
average of the five MMMnet predictions, and the blue shaded
areas show one standard deviation above and below the aver-
age prediction. Figure 5 shows that the neural network is able
to follow changes in the diffusivities over time. Figures 6 and
7 show that the neural network is able to reconstruct a variety
of different profile shapes, even using PCA instead of a CNN.
Note that the plots in figures 6 and 7 do not extend all the way
to the plasma edge, but cover only the section of the profile
that MMMnet predictions are valid for.

In the Cython [12] programming language executed on
a non-real-time computer, the model takes an average of
1.35 ms to make a prediction per time step. The calculation
time has not yet been tested on the DIII-D plasma control sys-
tem computer, but is expected to be faster than the Cython
value. This would make the network well-suited for real-time
control.

5. Integration into COTSIM

5.1. Electron heat transport modeling

COTSIM has the capability to calculate the electron temper-
ature profile as the numerical solution to the electron heat
transport equation [13],

3
2
∂

∂t
[neTe] =

1
ρ2

bĤ
1
ρ̂

∂

∂ρ̂

[
ρ̂

ĜĤ2

F̂

(
χene

∂Te

∂ρ̂

)]
+ Qe, (1)

which depends on the electron thermal diffusivity χe, as
well as electron density ne, heat deposition Qe, and the mean
effective minor radius of the plasma boundary ρb. The mean
effective minor radius is defined as ρ "

√
Φ/(Bφ,0π), where

Bφ,0 is the vacuum toroidal magnetic field at the major radius,
R0, and Φ is the toroidal magnetic flux. A normalized version
of ρ is defined as ρ̂ " ρ/ρb. The spatially varying geometrical
factors F̂, Ĝ, and Ĥ are related to the magnetic configuration
of a particular plasma equilibrium. The electron thermal diffu-
sivity contains both neoclassical and anomalous components,
but for the scenarios COTSIM is attempting to simulate in this
work the neoclassical component is assumed to be negligible
in comparison to the anomalous component, and is therefore
neglected. COTSIM’s model library includes multiple options
to calculate the anomalous component of χe, including the

5

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Figure 3. (a) Computation accuracies averaged across all outputs as a function of model architecture (number of layers and nodes per layer),
(b) prediction times as a function of model architecture (number of layers and nodes per layer), (c) computation accuracies averaged across
all outputs as a function of the number of learned parameters, and (d) prediction times as a function of the number of learned parameters. In
plots (c) and (d), the circled values represent 3 hidden layers with 100 nodes per layer, which is the architecture chosen for the final network.

Figure 4. Prediction accuracy on the validation dataset and
difference in accuracy between training and validation data vs
number of epochs.

Bohm/gyro-Bohm model [14], the Coppi-Tang model [15],
and now MMMnet. Most of the inputs to MMMnet are either
already simulated in COTSIM or can be calculated from values
already simulated in COTSIM; the few that cannot, such as the
fast ion density, are assigned a prescribed value representative

of the scenario of interest. A pedestal model [16] is used to
calculate the edge of the electron temperature profile. A fixed
pedestal width is chosen based on the pedestal width found in
the simulation scenario, and the model is tuned to match the
experimental pedestal height. An extrapolation is made for the
MMMnet χe prediction from the spatial region where MMM-
net is valid to the spatial region where the pedestal model is
applied.

The results of two COTSIM simulations of shot 147634,
one using MMMnet and the other using the Bohm/gyro-Bohm
model to predict χe, are shown in figure 8. The COTSIM
results are compared to TRANSP run 147634S01, which is an
analysis run and therefore uses the experimental Te profiles.
Note that COTSIM is not expected to perfectly replicate exper-
imental data, but to provide an approximate plasma response
that is accurate enough for control purposes. The COTSIM
simulations match each other exactly at the edge because they
both use the pedestal model, but both the magnitude and the
shape of the Te profile in the core match the experimental
profile much more closely when MMMnet is used.

The results of the same two COTSIM simulations of shot
147621 are shown in figure 9. The COTSIM results are com-
pared to TRANSP analysis run 147621S01. There is a slight
over-prediction of Te in the core at t = 2 s, but overall the

6

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Figure 5. Evolution of a single point (ρ̂ = 0.612) in the profile over time for (a) χi, (b) χe, and (c) χφ for TRANSP run 176052T05. Five
parallel neural network predictions are made, and the average and standard deviation are shown.

Figure 6. Prediction of the profile at time t = 1.82 s for (a) χi, (b) χe, and (c) χφ for TRANSP run 176052T05. Five parallel neural network
predictions are made, and the average and standard deviation are shown up to a normalized toroidal flux of 0.8.

Figure 7. Prediction of the profile at time t = 2.32 s for (a) χi, (b) χe, and (c) χφ for TRANSP run 176052T05. Five parallel neural network
predictions are made, and the average and standard deviation are shown up to a normalized toroidal flux of 0.8.

prediction of the Te profile using MMMnet is closer to the
experimental profile than when the Bohm/gyro-Bohm model
is used.

5.2. Momentum transport modeling

COTSIM has the capability to calculate the rotation profile
as the numerical solution to the toroidal angular momentum

equation [17],

nimi⟨R2⟩∂Ωφ

∂t
+ mi⟨R2⟩Ωφ

∂ni

∂t
= τnbi

+
1
ρ̂Ĥ

∂

∂ρ̂

[
ρ̂Ĥnimiχφ⟨R2(∇ρ̂)2⟩∂Ωφ

∂ρ̂

]
, (2)

7

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Figure 8. COTSIM prediction of the Te profile for shot 147634 using χe from MMMnet and from the Bohm/gyro-Bohm (B/g-B) model
compared to experimental data at (a) t = 1 s and (b) t = 2 s.

Figure 9. COTSIM prediction of the Te profile for shot 147621 using χe from MMMnet and from the Bohm/gyro-Bohm (B/g-B) model
compared to experimental data at (a) t = 1 s and (b) t = 2 s.

where Ωφ is the toroidal angular velocity. This equation
depends on the toroidal momentum diffusivity χφ, as well as
ion density ni, ion mass mi, major radius R, auxiliary torque
deposition τ nbi, and the geometrical factor Ĥ. Some analyti-
cal options to calculate diffusivities in COTSIM (Bohm/gyro-
Bohm and Coppi-Tang) only calculate χe, so when one of
those models is used an assumption must be made. In the
Bohm/gyro-Bohm simulations shown here, it is assumed that
the anomalous component of χφ is a scalar multiple of χe. If
the χe and χφ profiles have different shapes, this assumption
can make it difficult to accurately reproduce the shape of the
rotation profile. MMMnet predicts χφ separately from χe, and
is therefore expected to be better able to predict the shape of
χφ. An extrapolation is made of the MMMnet prediction of
χφ in the region where 0.8 ! ρ̂ ! 1 because the neural net-
work is not trained to produce valid results in that region.

The MMM model does not provide toroidal momentum trans-
port in the center of the profile and overpredicts transport in the
confinement region for the discharges studied, and MMMnet
replicates this behavior. As a consequence of the zero predic-
tion in the center, a neoclassical component is added to the
MMMnet prediction of χφ in the region from 0 ! ρ̂ ! 0.3.
The neoclassical component of χφ is assumed to be equal to
the Chang–Hinton [18] neoclassical prediction of χi. To com-
pensate for the overprediction of χφ in the core region, which
leads to an underprediction of toroidal rotation, a coefficient
is introduced to the MMMnet momentum transport. Predic-
tions of the rotation profile using the χφ derived in this way are
shown in figure 10 for shot 147634 and in figure 11 for shot
147621. For both shots the predictions using χφ from MMM-
net are noticeably better than when a scalar multiple of the
Bohm/gyro-Bohm χe prediction is used.

8

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

Figure 10. COTSIM prediction of the Ω profile for shot 147634 using χφ from MMMnet and from the Bohm/gyro-Bohm (B/g-B) model
compared to experimental data at (a) t = 1 s and (b) t = 2 s.

Figure 11. COTSIM prediction of the Ω profile for shot 147621 using χφ from MMMnet and from the Bohm/gyro-Bohm (B/g-B) model
compared to experimental data at (a) t = 1 s and (b) t = 2 s.

6. Conclusions and future work

A multi-layer perceptron neural network with 3 hidden layers
and 100 nodes per layer has been trained to emulate the results
of MMM. This network is shown to be capable of meeting all
three goals of control-oriented models: it reproduces MMM
calculations with a high level of accuracy and a calculation
time suitable for real-time control across a variety of plasma
scenarios. In addition, an application of MMMnet in offline
control-oriented predictive simulation is shown. MMMnet has
been integrated into COTSIM and used to predict the elec-
tron thermal and toroidal momentum diffusivities. Preliminary
results show that the use of MMMnet could produce electron
temperature and rotation profile predictions closer in shape to
the experimental profiles.

A number of improvements to MMMnet are being consid-
ered for future work. Other outputs of MMM, including impu-
rity, poloidal momentum, and electron particle diffusivities,

could be included as additional outputs of the neural network.
Also, training data could be extended so that the network pre-
dictions are valid across the whole spatial domain, from the
magnetic axis to the boundary, once MMM itself is updated
to be valid in the pedestal region. An enlarged training data
set could also extend applicability to an even broader range
of plasma scenarios. These improvements would significantly
increase the number of applications MMMnet is useful for. In
COTSIM, future work will include testing on a wider variety
of shots to determine the effect of using the neural network
in different plasma scenarios. In addition, when a transport
equation is added to COTSIM to calculate ion temperature, the
MMMnet prediction of ion thermal diffusivity will be utilized.

Disclaimer

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the

9

Nucl. Fusion 61 (2021) 106040 S.M. Morosohk et al

United States Government nor any agency thereof, nor any
of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accu-
racy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not neces-
sarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

Acknowledgments

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of Fusion
Energy Sciences, using the DIII-D National Fusion Facility,
a DOE Office of Science user facility, under Awards DE-
FC02-04ER54698, DE-SC0010661, DE-SC0013977, and by
the National Science Foundation Graduate Research Fellow-
ship Program under Grant No. 1842163.

ORCID iDs

S.M. Morosohk https://orcid.org/0000-0002-3133-5095
A. Pajares https://orcid.org/0000-0001-9251-9675
T. Rafiq https://orcid.org/0000-0002-2164-1582

References

[1] Meneghini O. et al 2017 Nucl. Fusion 57 086034
[2] Citrin J. et al 2015 Nucl. Fusion 55 092001
[3] Boyer M. et al 2019 Nucl. Fusion 59 056008
[4] Morosohk S.M., Boyer M.D. and Schuster E. 2021 Fusion Eng.

Des. 163 112125
[5] Rafiq T., Kritz A.H., Weiland J., Pankin A.Y. and Luo L. 2013

Phys. Plasmas 20 032506
[6] Hawryluk R. 1981 Physics of Plasmas Close to Thermonuclear

Conditions (Oxford: Pergamon)
[7] Breslau J., Gorelenkova M., Poli F., Sachdev J. and Yuan

X. 2018 TRANSP (Computer Software) (https://doi.org/10.
11578/dc.20180627.4)

[8] Nielsen M.A. 2015 Neural Networks and Deep Learning (San
Francisco: Determination Press)

[9] Bernardos P.G. and G.-C.V. 2007 Eng. Appl. Artif. Intell. 20 365
[10] Klein A., Falkner S., Bartels S., Hennig P. and Hutter F. 2017

Fast Bayesian optimization of machine learning hyperparam-
eters on large datasets (Proc. 20th Int. Conf. Artificial Intel-
ligence and Statistics 20 - 22 April 2017) (Fort Lauderdale,
FL, USA vol 54) (PMLR) pp 528–36 (http://proceedings.
mlr.press/v54/klein17a/klein17a.pdf)

[11] Chollet F. et al 2015 Keras (https://github.com/fchollet/keras)
[12] Behnel S. et al C-extensions for Python (https://cython.org/)
[13] Basiuk V. et al 2003 Nucl. Fusion 43 822
[14] Erba M., Aniel T., Basiuk V., Becoulet A. and Litaudon X. 1998

Nucl. Fusion 38 1013
[15] Jardin S.C., Bell M.G. and Pomphrey N. 1993 Nucl. Fusion 33

371
[16] Onjun T., Bateman G., Kritz A.H. and Hammett G. 2002 Phys.

Plasmas 9 5018
[17] Goldston R. 1986 Topics in confinement analysis of tokamaks

with auxiliary heating Basic Physical Processes of Toroidal
Fusion Plasmas: Proceedings of the Course and Workshop
Held at Villa Monastero vol 1 ed G.P. Lampis (Citt̀a di
Castello) (Italy: Monotypia Franchi) pp 165–86

[18] Chang C. and Hinton F. 1982 Phys. Fluids 25 536

10

https://orcid.org/0000-0002-3133-5095
https://orcid.org/0000-0002-3133-5095
https://orcid.org/0000-0001-9251-9675
https://orcid.org/0000-0001-9251-9675
https://orcid.org/0000-0002-2164-1582
https://orcid.org/0000-0002-2164-1582
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/1741-4326/ab0762
https://doi.org/10.1088/1741-4326/ab0762
https://doi.org/10.1016/j.fusengdes.2020.112125
https://doi.org/10.1016/j.fusengdes.2020.112125
https://doi.org/10.1063/1.4794288
https://doi.org/10.1063/1.4794288
https://doi.org/10.11578/dc.20180627.4
https://doi.org/10.11578/dc.20180627.4
https://doi.org/10.1016/s0952-1976(07)00065-6
https://doi.org/10.1016/s0952-1976(07)00065-6
http://proceedings.mlr.press/v54/klein17a/klein17a.pdf
http://proceedings.mlr.press/v54/klein17a/klein17a.pdf
https://github.com/fchollet/keras
https://cython.org/
https://doi.org/10.1088/0029-5515/43/9/305
https://doi.org/10.1088/0029-5515/43/9/305
https://doi.org/10.1088/0029-5515/38/7/305
https://doi.org/10.1088/0029-5515/38/7/305
https://doi.org/10.1088/0029-5515/33/3/i01
https://doi.org/10.1088/0029-5515/33/3/i01
https://doi.org/10.1063/1.1518474
https://doi.org/10.1063/1.1518474
https://doi.org/10.1063/1.863768
https://doi.org/10.1063/1.863768

	Neural network model of the multi-mode anomalous transport module for accelerated transport simulations
	1. Introduction
	2. Dataset development
	2.1. Model inputs and outputs

	3. Model structure
	3.1. Data preprocessing
	3.2. Determination of hyperparameters

	4. Model evaluation
	5. Integration into COTSIM
	5.1. Electron heat transport modeling
	5.2. Momentum transport modeling

	6. Conclusions and future work
	Disclaimer
	Acknowledgments
	ORCID iDs
	References

