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 A B S T R A C T

The Control-Oriented Transport Simulator (COTSIM) is a fast, modular code designed to predict the evolution of 
both equilibrium and internal profiles in the EAST tokamak. Built on MATLAB/Simulink®, COTSIM is tailored 
for iterative control design, making it suitable for applications such as pulse design, feedforward scenario 
optimization, feedback-control testing prior to implementation, and real-time estimation and optimization. 
Recent advancements have enhanced its prediction accuracy for EAST while maintaining computational 
efficiency through the integration of neural-network-based surrogate models for the Multi-Mode Anomalous 
Transport Module (MMM), GENRAY/CQL3D (Lower Hybrid Wave [LHW]), and NUBEAM (Neutral Beam 
Injection [NBI]). Additionally, the transport solver has been coupled with both fixed-boundary and free-
boundary equilibrium solvers. This study demonstrates the development and testing of model-based optimal 
feedback controllers in COTSIM simulations. These controllers regulate key plasma properties crucial for 
advanced tokamak scenarios, including the safety factor (𝑞) at various spatial locations, plasma internal energy 
(𝑊 ), normalized beta (𝛽𝑁 ), and internal inductance (𝑙𝑖). Control actuators include plasma current, plasma 
density, low-frequency (2.45 GHz) and high-frequency (4.60 GHz) LHW powers, and individual NBI powers. To 
validate these control algorithms, experimental testing has been conducted on EAST. Results from simulations 
and experiments demonstrate the ability to regulate scenario-defining plasma properties, suggesting COTSIM’s 
utility as a tool for advanced tokamak control development.
1. Introduction

The pursuit of sustainable fusion energy has driven significant 
advancements in tokamak research. Understanding and controlling 
plasma behavior is critical for minimizing instabilities, maintaining 
confinement, and sustaining the conditions required for efficient and 
stable fusion reactions. Accurate and efficient simulation of plasma 
transport across various operating conditions plays a vital role in op-
timizing experimental operation and control strategies. Fast transport 
simulators are essential in this effort, enabling the rapid analysis of 
prior shots, providing insights into internal plasma states, and sup-
porting between-shot planning. Moreover, they accelerate feedforward 
optimization, aid in training reinforcement learning algorithms for 
control strategies, and facilitate the design and implementation of 
model-based control systems.

Over the years, a variety of fast transport simulators have been 
developed to meet these needs. For example, METIS [1,2] enables 
rapid transport simulations by solving the current diffusion equation 
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with scaling laws for resistivity and non-inductive currents, while 
estimating equilibrium using simplified analytic models or scaling laws. 
It is often used for preliminary scenario development and prepara-
tion for more comprehensive simulations like those conducted with 
CRONOS [3]. RAPTOR [4] provides real-time plasma profile evolution 
and is particularly useful for optimizing plasma operation scenarios [5] 
and performing sensitivity analysis [6] due to its differentiability. 
TORAX [7], a new open-source core transport simulator implemented 
in Python, provides fast runtimes and automatic differentiation, making 
it ideal for rapid scenario modeling, pulse design, and optimization of 
actuator trajectories. Other codes like ASTRA [8], TRANSP [9], and 
JINTRAC [10] offer higher-fidelity simulations but require significant 
computational time, making them suitable for detailed physics studies.

However, despite the advancements offered by these simulators, 
there is still a need for tools specifically designed for control appli-
cations that balance computational efficiency with sufficient accuracy 
and flexibility. Thus, the Control-Oriented Transport SIMulator (COT-
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Fig. 1. Comparison of electron thermal diffusivity predictions between the MMMnet-
lite surrogate model and the original MMM outputs. (a). Correlation plot showing 
the relationship between MMMnet-lite predictions and MMM outputs; (b). Spatial 
distribution of electron thermal diffusivity, with error bars representing the prediction 
variability at each spatial point.

SIM) [11] has been developed to address this gap. COTSIM is tailored 
for control-oriented applications, combining several key features that 
make it well-suited for control system design. These features include 
efficient execution for rapid scenario exploration and optimization, 
differentiability to enable advanced optimization techniques, and a 
modular and flexible design that allows for the selection of model 
complexity appropriate to the simulation needs, ensuring that essen-
tial dynamics are accurately captured. Furthermore, COTSIM employs 
a state-space representation [12] (i.e., a mathematical method de-
scribing system dynamics using first-order differential equations) for 
control system design and it allows implementations of advanced con-
trol algorithms such as model predictive control and reinforcement 
learning.

To achieve computational efficiency without compromising accu-
racy, COTSIM integrates multiple modeling approaches combining 1D 
physics-based transport equations with empirical models [13], confine-
ment time scaling laws [14], and neural-network-based surrogate mod-
els for transport and sources [15–17]. This combination allows COTSIM 
to perform fast simulations while maintaining sufficient accuracy. Its 
modular structure supports ongoing development and customization, 
enabling integration with advanced physics models while retaining 
the computational speed needed for control system development and 
optimization. Furthermore, COTSIM offers flexibility by allowing the 
use of prescribed plasma equilibria or the coupling with fixed- and 
free-boundary equilibrium solvers [18–21]. These features make COT-
SIM ideal for between-shot analysis, feedback controller testing, and 
actuator trajectory optimization.

In this paper, fast neural network-based surrogate models are devel-
oped for NUBEAM, GENRAY, and the Multi-Mode Anomalous Transport 
Module (MMM) specifically for the EAST tokamak [22] and are inte-
grated into COTSIM. With the integration of these surrogate models, 
COTSIM is utilized to predict the evolution of internal profiles in 
EAST. COTSIM takes inputs such as plasma current (𝐼𝑝), line-averaged 
electron density (𝑛̄𝑒), and auxiliary heating and current drive (H&CD) 
sources. In this work, COTSIM solves the electron heat transport equa-
tion, the magnetic diffusion equation, and the toroidal rotation equa-
tion to predict the electron temperature, poloidal flux, and toroidal 
velocity profiles. COTSIM is utilized to develop and test model-based, 
optimal feedback controllers for critical plasma properties, such as the 
safety factor (𝑞) profile, internal inductance (𝑙𝑖), and normalized beta 
(𝛽𝑁 ).

This paper is organized as follows. Section 2 covers the development 
and implementation of neural-network-based surrogate models for the 
EAST tokamak. Section 3 describes the physics-based models used 
in the version of COTSIM employed in this work, including plasma 
equilibrium, poloidal magnetic diffusion, and electron heat transport 
equations. Section 4 presents feedforward validation by comparing 
2

COTSIM simulations with experimental results. Section 5 provides feed-
back controller validation, also comparing COTSIM with experimental 
data. Finally, Section 6 concludes with a summary and future research 
directions.

2. Neural network surrogate models

Achieving high prediction accuracy of plasma parameters such as 
temperature, density, and current profiles, while significantly reducing 
computational requirements, is essential for enabling fast transport 
simulations. Previously, comprehensive neural network surrogate mod-
els [15,17,23] were developed for NUBEAM [24], GENRAY [25], and 
MMM [26,27], providing full predictive capabilities of their origi-
nal codes. However, these surrogate models often entail substantial 
computational overhead, limiting their suitability for real-time applica-
tions. Thus, in this work, the above-mentioned limitation is addressed 
by developing three streamlined surrogate models optimized for fast 
execution within the COTSIM framework: NBInet-lite for NUBEAM, 
LHWnet-lite for GENRAY, and MMMnet-lite for MMM. Compared to the 
surrogate models presented in Refs. [15,17,23], which utilize the full 
input–output sets of the original codes, the network models developed 
in this work are designated with the suffix ‘‘lite’’ to reflect their re-
duced input requirements and simplified architectures, enabling rapid 
computations suitable for real-time applications. Each neural network-
based surrogate model is specifically designed to capture the essential 
input–output relationships of its corresponding original code while 
maintaining a consistent architectural framework to facilitate develop-
ment and integration into COTSIM. By focusing on the most critical 
aspects of the physical models, these ‘‘lite’’ versions achieve a balance 
between computational efficiency and predictive accuracy, making 
them highly suitable for integration into fast transport simulations and 
control systems. The inputs and outputs for each surrogate model are 
carefully selected and tailored to ensure compatibility with COTSIM 
and relevance to transport simulations. A sensitivity analysis [28] was 
employed to identify the most influential input parameters, systemati-
cally excluding variables with minimal impact on model predictions. 
Outputs, on the other hand, were chosen based on the specific re-
quirements of transport simulations, directly reflecting the key plasma 
parameters necessary for accurate modeling. This approach ensures 
that surrogate models are both efficient to compute and relevant to 
practical simulation objectives within COTSIM. Table  1 summarizes 
the inputs and outputs for each surrogate model. By utilizing deep 
learning techniques, specifically multilayer perceptrons (MLPs), these 
surrogate models emulate the complex physics of the original codes 
(i.e., NUBEAM, GENRAY, MMM) while providing computations fast 
enough for integration into COTSIM for simulations. Each neural net-
work is trained on a dataset generated by running the original codes 
over a wide range of plasma scenarios relevant to EAST operations. 
The range of 𝑍eff is from 1.5–2.5; the range of 𝐵𝜙 is from 2.3–3.5 T; 
the range of 𝜅 at plasma edge is from 1.6–2.4; the range of 𝑅 is from 
1.8–1.89 m; the range of 𝑎 is from 0.45–0.5 m; the range of central 
electron temperature is from 0.5–5 keV; the range of central electron 
density is from 0.5–1 × 1019 m−3; the range of 𝑞𝑚𝑖𝑛 is 1.1–2.8; the range 
of 𝛺 at plasma core is 0.47–2.6 × 105 rad/s; the range of 𝑉 𝑙𝑜𝑜𝑝 is 
from −1.1 to 2.1; and the range of 𝑃𝐿𝐻  and 𝑃𝑁𝐵𝐼  are from 0–3 MW 
and 0–4 MW, respectively. Data preprocessing involves normalizing the 
input and output data to improve training stability and convergence. All 
networks employed the Gaussian Error Linear Unit (GELU) activation 
function in the hidden layers due to its proven performance in deep 
learning applications, especially for capturing nonlinear relationships. 
NBInet-lite (the surrogate model for NUBEAM) consists of four layers: 
an input layer, two hidden layers with GELU activations, and an 
output layer with a linear activation function. MMMnet-lite mirrors the 
structure of NBInet-lite and also has four layers and similar activation 
functions. LHWnet-lite (the surrogate model for GENRAY) comprises 
five layers: an input layer, three hidden layers with GELU activations 
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Table 1
Tailored input and output data of neural network-based surrogate models for efficient COTSIM computation.
 Descriptions NBInet-lite LHWnet-lite MMMnet-lite 
 

Inputs

Mean effective charge 𝑍eff ✓ ✓ ✓  
 Toroidal magnetic field 𝐵𝜙 ✓ ✓ ✓  
 Elongation 𝜅 ✓ ✓  
 Major radius 𝑅 ✓ ✓ ✓  
 Minor radius 𝑎 ✓ ✓  
 Electron density 𝑛𝑒 ✓ ✓ ✓  
 Electron temperature 𝑇𝑒 ✓ ✓ ✓  
 Safety factor profile 𝑞 ✓ ✓ ✓  
 Toroidal rotation 𝛺 ✓  
 Plasma loop voltage 𝑉 𝑙𝑜𝑜𝑝 ✓  
 Lower hybrid wave power 𝑃𝐿𝐻 ✓  
 Neutral beam power 𝑃𝑁𝐵𝐼 ✓  
 

Outputs

Power density deposition profile for NBI ✓  
 Power density deposition profile for LHW ✓  
 Current density deposition profile for NBI ✓  
 Current density deposition profile for LHW ✓  
 Electron thermal diffusivity 𝜒𝑒 ✓  
Fig. 2. Correlation plots comparing the predictions of the neural network surrogate models with the outputs of the original codes. (a) LHW current deposition predicted by 
LHWnet-lite versus GENRAY outputs; (b) LHW power deposition predicted by LHWnet-lite versus GENRAY outputs; (c) NBI current deposition predicted by NBInet-lite versus 
NUBEAM outputs; (d) NBI power deposition predicted by NBInet-lite versus NUBEAM outputs.
Fig. 3. Comparison of surrogate model predictions with original code outputs, with error bars representing the root mean square error (RMSE). (a) LHW current deposition profiles 
predicted by LHWnet-lite compared to GENRAY outputs; (b) LHW power deposition profiles predicted by LHWnet-lite compared to GENRAY outputs; (c) NBI current deposition 
profiles predicted by NBInet-lite compared to NUBEAM outputs; (d) NBI power deposition profiles predicted by NBInet-lite compared to NUBEAM outputs.
to address the complexity of the GENRAY surrogate problem, and an 
output layer with a linear activation function. The decision to use MLPs 
with these specific configurations is based on balancing model complex-
ity and computational efficiency. The mean squared error (MSE) is used 
as the loss function to quantify the difference between the surrogate 
model predictions and the original code outputs. The Adam optimizer 
facilitates efficient gradient-based optimization during training.

The surrogate models are evaluated based on their ability to ac-
curately replicate the outputs of the original codes while significantly 
reducing computation time. Correlation analysis shows high correlation 
coefficients between the surrogate model predictions and the original 
code outputs, indicating strong predictive performance. Comparative 
plots (Figs.  1–3) demonstrate excellent agreement between the neural 
network predictions and ground truth data across the range of scenarios 
tested. The surrogate models achieve speedups of several orders of 
magnitude compared to the original codes, with a prediction time 
of approximately 0.1 ms to simulate multiple plasma profiles for a 
single time slice, containing 101 radial points, on a personal computer. 
3

This high efficiency makes them suitable for real-time and iterative 
simulations within COTSIM.

3. Physical model

The geometry of the magnetic arrangement is depicted in Fig.  4, us-
ing a cylindrical coordinate system defined by (𝑅,𝑍, 𝜙) and magnetic-
flux-surface-based coordinate system defined by (𝜌, 𝜃, 𝜙). The helical 
magnetic field, 𝐁, in a tokamak is composed of toroidal 𝐁𝜙 and poloidal 
𝐁𝜃 components, i.e., 𝐁 = 𝐁𝜙 + 𝐁𝜃 . The poloidal magnetic flux at 
a point 𝑃  within the tokamak, denoted by 𝛹 , is calculated as 𝛹 ≡
∫𝑆 𝐁𝜃 ⋅ d𝐒. Here, 𝑆 is a circular surface perpendicular to the 𝑍-axis 
whose circumference passes through point 𝑃  and 𝑑𝐒 is the differential 
surface vector. Regions of constant 𝛹 form nested surfaces. Critical 
plasma properties, including the safety factor, are constant on these 
flux surfaces. Thus, by adopting a spatial coordinate that indexes these 
nested surfaces and assuming axisymmetry, spatially varying plasma 
properties like the safety factor can be modeled as one-dimensional 
properties. In this work, the normalized mean effective minor radius, 
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Fig. 4. Sketch of magnetic configuration. The poloidal (𝐁𝜃) and toroidal (𝐁𝜙) magnetic 
fields are combined to produce a helical magnetic field 𝐁, which confines the plasma. 
In the poloidal plane (defined by the radial and vertical axes with coordinates 𝑅 and 𝑍, 
respectively), each point is identified by a value of the poloidal magnetic flux 𝛹 (𝑅,𝑍). 
Around the magnetic axis, points with identical 𝛹 (𝑅,𝑍) values define nested magnetic 
flux surfaces. Any quantity indexing these flux surfaces from the magnetic axis to the 
plasma boundary can be adopted as spatial coordinate 𝜌. The 𝛹 (𝑅,𝑍) is simplified 
as 𝛹 (𝜌̂, 𝜃) with the assumption that the toroidal flux is axisymmetry in the toroidal 
coordinate.

defined as 𝜌̂ ≡ 𝜌∕𝜌𝑏, is used as the spatial coordinate. Here, 𝜌 is defined 
as 𝜌 ≡

√

𝛷∕(𝐵𝜙,0𝜋), where 𝐵𝜙,0 is the vacuum toroidal magnetic field 
at the major radius 𝑅0 and 𝜌𝑏 is the value of 𝜌 at the plasma edge. The 
toroidal magnetic flux, denoted by 𝛷, is given by 𝛷 ≡ ∫𝑆𝜙 𝐁𝜙 ⋅ d𝐒𝜙, 
where 𝑆𝜙 is a surface perpendicular to the 𝜙-axis whose boundary 
includes point 𝑃  and 𝑑𝐒𝜙 is the differential surface vector normal to 
𝑆𝜙.

3.1. MHD equilibrium

Building upon the magnetic geometry in tokamaks, plasma equi-
librium is achieved when the pressure gradient within the plasma 
is exactly balanced by the magnetic forces arising from the plasma 
current and confining magnetic fields. This balance ensures that the 
plasma remains confined within the desired region. The theoretical 
framework for describing this balance is provided by magnetohydro-
dynamics (MHD), which combines principles from both fluid dynamics 
and electromagnetism.

The MHD equilibrium equations are derived from three fundamental 
principles: the conservation of magnetic flux (∇ ⋅ 𝐁 = 0), Ampère’s law 
(∇×𝐁 = 𝜇0𝐉), and the force balance condition (𝐉×𝐁 = ∇𝑝), where 𝐉 is 
the current density, 𝑝 is the plasma pressure, and 𝜇0 is the permeability 
of free space. By assuming axisymmetry, it leads to the Grad–Shafranov 
equation [29,30], which encapsulates the magnetic field configuration 
and plasma pressure distribution: 

𝛥∗𝜓(𝑅,𝑍) = 𝑅
𝜕𝑝
𝜕𝜓

+
𝑓
𝜇0𝑅

𝜕𝑓
𝜕𝜓

, (1)

where 𝑝(𝜓) is plasma kinetic pressure, 𝑓 is the diamagnetic function 
𝑓 (𝜓) ≡ 𝑅𝐵𝜙, and the operator 𝛥∗ is defined as 

𝛥∗ ≡ 𝑅 𝜕
𝜕𝑅

(

1
𝑅

𝜕
𝜕𝑅

)

+ 𝜕2

𝜕𝑍2
. (2)

Several methods are employed in COTSIM to solve the
Grad–Shafranov equation. Specifically, three fixed-boundary equilib-
rium solvers have been implemented [18–20], providing flexibility and 
accuracy in modeling plasma equilibria under prescribed boundary 
conditions. Recently, new free-boundary equilibrium solvers have been 
coupled into COTSIM [16,21], enabling simulations where the plasma 
boundary can evolve dynamically in response to internal and external 
conditions.

3.2. Current density and safety factor profile

The current density profile within a tokamak plasma is a fundamen-
tal aspect that significantly influences plasma behavior, stability, and 
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performance. In transport codes used for simulating tokamak plasmas, 
accurately modeling the current profile is crucial because it directly 
affects the magnetic configuration and the evolution of key plasma 
parameters. The evolution of the current density profile is governed 
by the Magnetic Diffusion Equation (MDE), which describes how the 
poloidal magnetic flux diffuses through the plasma over time. The MDE 
is derived from Maxwell’s equations and Ohm’s law under the assump-
tions of axisymmetry and cylindrical geometry. In this framework, the 
stream function 𝜓 represents the poloidal flux per radian inside the 
major radius 𝑅. The MDE dictates the evolution of the stream function 
and takes the form: 
𝜕𝜓
𝜕𝑡

=
𝜂

𝜇0𝜌2𝑏𝐹
2
1
𝜌̂
𝜕
𝜕𝜌̂

(

𝜌̂𝐷𝜓
𝜕𝜓
𝜕𝜌̂

)

+ 𝑅0𝐻̂𝜂
⟨𝐣𝑁𝐼 ⋅ 𝐁⟩
𝐵𝜙,0

, (3)

subject to the boundary conditions 
𝜕𝜓
𝜕𝜌̂

|𝜌̂=0 = 0,
𝜕𝜓
𝜕𝜌̂

|𝜌̂=1 = 𝑘𝐼𝑝𝐼𝑝, (4)

where 𝐼𝑝 is the plasma current, 𝜂 is the plasma resistivity, 𝑇𝑒 is the 
electron temperature. The parameters 𝐹 , 𝐺̂, and 𝐻̂ are geometric 
factors [13] capturing the topology of the MHD equilibrium. Users 
have the option to compute these factors using a prescribed plasma 
equilibrium, the fixed boundary solvers  [18–20], or the free boundary 
solver [21]. The notation ⟨ ⋅

⟩ is used to denote the flux-surface 
average of a quantity. The terms 𝐷𝜓  in and 𝑘𝐼𝑝  are defined as 𝐷𝜓 (𝜌̂) ≜
𝐹 (𝜌̂)𝐻̂(𝜌̂)𝐺̂(𝜌̂) and 𝑘𝐼𝑝 ≜ − 𝜇0

2𝜋
𝑅0

𝐺̂(1)𝐻̂(1)
. The non-inductive current drive 

(𝐣𝑁𝐼 ) is the sum of the self-generated bootstrap current (𝐣𝐵𝑆 ) and each 
of the auxiliary sources such as lower hybrid wave (𝐣𝑙ℎ𝑤) and neutral 
beam injection (𝐣𝑛𝑏𝑖), 
⟨𝐣𝑁𝐼 ⋅ 𝐁⟩
𝐵𝜙,0

=
𝑛𝑛𝑏𝑖
∑

𝑖=1

⟨𝐣𝑛𝑏𝑖𝑖 ⋅ 𝐁⟩
𝐵𝜙,0

+
𝑛𝑙ℎ𝑤
∑

𝑙=1

⟨𝐣𝑙ℎ𝑤𝑙 ⋅ 𝐁⟩
𝐵𝜙,0

+
⟨𝐣𝐵𝑆 ⋅ 𝐁⟩
𝐵𝜙,0

, (5)

where 𝑛𝑛𝑏𝑖 and 𝑛𝑙ℎ𝑤 are the number of NBI and LHW sources, respec-
tively. The EAST tokamak is equipped with 4 NBIs and 2 LHWs. The 
values 𝐣𝑛𝑏𝑖 and 𝐣𝑙ℎ𝑤 can be obtained from the NN-based surrogate as 
shown in Section 2, or by parameterized empirical laws [31]. The 
bootstrap current model is based on [32], which after incorporating 
the electron-ion tight coupling assumption reduces to 
⟨𝐣𝐵𝑆 ⋅ 𝐁⟩
𝐵𝜙,0

(𝜌̂, 𝑡) =
𝑅0

𝐹
(

𝜕𝜓
𝜕𝜌̂

)

[

1𝑇𝑒
𝜕𝑛𝑒
𝜕𝜌̂

+ 2𝑛𝑒
𝜕𝑇𝑒
𝜕𝜌̂

]

, (6)

where the spatial functions 1(𝜌̂) and 2(𝜌̂) depend on the magnetic 
configuration of the MHD equilibrium. Finally, the plasma resistivity 
follows the Spitzer model.

The 𝑞 profile at location 𝜌̂ and time 𝑡 is defined as 

𝑞(𝜌̂, 𝑡) = −𝐵𝜙,0𝜌2𝑏 𝜌̂
(

𝜕𝜓
𝜕𝜌̂

)−1
, (7)

where 𝜓 is the poloidal stream function defined as 𝜓 ≜ 𝛹∕2𝜋. Thus, 
the 𝑞 profile can be regulated by controlling the gradient of the stream 
function.

3.3. Electron heat transport equation

As evident from Eq. (3), the evolution of 𝜓 depends on the evolution 
of the electron temperature 𝑇𝑒. When heat diffusion is the dominant 
transport mechanism, the evolution of 𝑇𝑒 can be modeled using the 
electron heat transfer equation (EHTE), which can be expressed as 
3
2
𝜕
𝜕𝑡

[

𝑛𝑒𝑇𝑒
]

= 1
𝜌2𝑏𝐻̂

1
𝜌̂
𝜕
𝜕𝜌̂

[

𝜌̂ 𝐺̂𝐻̂
2

𝐹

(

𝜒𝑒𝑛𝑒
𝜕𝑇𝑒
𝜕𝜌̂

)]

+𝑄𝑒, (8)

with the boundary conditions 
𝜕𝑇𝑒
𝜕𝜌̂

|

|

|

|𝜌̂=0
= 0, 𝑇𝑒(1, 𝑡) = 𝑇𝑒,𝑏𝑑𝑟𝑦(𝑡), (9)

where 𝑇𝑒,𝑏𝑑𝑟𝑦 is the temperature at the plasma edge. The electron 
thermal diffusivity 𝜒 (𝜌̂, 𝑡) can be computed by different physics-based 
𝑒
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models such as Bohm/gyro–Bohm model [33], or neural network-based 
surrogate models. The total electron heating power density is denoted 
as 𝑄𝑒(𝜌̂, 𝑡), which is expressed as 

𝑄𝑒(𝜌̂, 𝑡) = 𝑄𝑜ℎ𝑚(𝜌̂, 𝑡) +
𝑛𝑎𝑢𝑥
∑

𝑖=1
𝑄𝑎𝑢𝑥𝑖 (𝜌̂, 𝑡) −𝑄𝑟𝑎𝑑 (𝜌̂, 𝑡), (10)

where 𝑄𝑜ℎ𝑚 is the ohmic power density, 𝑄𝑟𝑎𝑑 is the radiation power 
density, 𝑄𝑎𝑢𝑥 is the auxiliary power density, and 𝑄𝑓𝑢𝑠 is the fusion 
power (which is non-zero in the case of burning plasmas). The fusion 
power is usually multiplied by a coefficient 𝜂𝑓𝑢𝑠 that represents the 
effectiveness of the fusion reaction in heating the plasma. The auxiliary 
power density is computed by

𝑄𝑎𝑢𝑥 ≜ 𝑄𝑁𝐵𝐼 +𝑄𝐿𝐻 =
𝑛𝑛𝑏𝑖
∑

𝑖=1
𝑄𝑁𝐵𝐼𝑖 (𝑡) +

𝑛𝑙ℎ𝑤
∑

𝑖=1
𝑄𝐿𝐻𝑖

(𝑡),

where 𝑄𝑁𝐵𝐼  and 𝑄𝐿𝐻  are neutral beam injection and lower hybrid 
wave heating profiles, respectively. The values of 𝑄𝑁𝐵𝐼  and 𝑄𝐿𝐻  can 
either be calculated by empirical model [31] or be predicted by neural 
network-based surrogate models introduced in Section 2. The evolution 
of the electron density 𝑛𝑒 is modeled in this work as 

𝑛𝑒(𝜌̂, 𝑡) = 𝑛𝑝𝑟𝑜𝑓𝑒 (𝜌̂)𝑛̄𝑒(𝑡), (11)

where 𝑛𝑝𝑟𝑜𝑓𝑒  is a reference electron density profile and 𝑛̄𝑒 is the line 
average electron density. It is worth mentioning that, given the plasma 
conditions in this study, it is reasonable to assume strong electron-ion 
coupling, allowing the simplification 𝑇𝑖 = 𝑇𝑒. Additionally, assum-
ing a fully ionized, single-species, hydrogenic plasma, quasi-neutrality 
implies 𝑛𝑖 = 𝑛𝑒.

4. COTSIM validation: Feedforward simulations

The performance and accuracy of COTSIM are validated through a 
comparative study with TRANSP simulations, using experimental data 
from EAST discharge #128474. To ensure that the equilibrium condi-
tions in simulations closely match those observed experimentally, both 
TRANSP and COTSIM utilize the same EFIT data. Specifically, TRANSP 
takes the equilibrium profiles directly from EFIT, while COTSIM uses 
the boundary conditions extracted from the same EFIT data in its 
fixed-boundary equilibrium solver. The simulation inputs included the 
plasma current and auxiliary heating and current drive (H&CD) sources, 
specifically neutral beam injections NBI2 and NBI4, and 4.6 GHz lower 
hybrid wave. The actuator waveforms for inputs are presented in 
Fig.  5, aligning with the actual operational settings of the experi-
mental discharge. Both simulations use the same transport models for 
sources and transport processes to ensure meaningful comparisons. 
TRANSP employs the full physics models NUBEAM, GENRAY, and 
MMM to simulate neutral beam injection, radio frequency wave prop-
agation, and anomalous transport, respectively. Meanwhile, COTSIM 
utilizes the corresponding surrogate models NBInet-lite, LHWnet-lite, 
and MMMnet-lite for rapid computations. Additionally, the magnetic 
diffusion equation is solved using a hybrid solver, which combines 
explicit and implicit numerical methods, on a spatial grid of 101 points. 
It efficiently computes the evolution of the poloidal magnetic flux, 
which is crucial for determining the current density profile and the 𝑞
profile.

The results of the 𝑞-profile simulation at normalized radial positions 
0.1, 0.5, and 0.9 are shown in Fig.  5. The mean squared errors (MSE) 
between the COTSIM and TRANSP 𝑞-profiles are 0.0065 at 𝜌̂ = 0.1, 
0.007 at 𝜌̂ = 0.5, and 0.024 at 𝜌̂ = 0.9.  The larger MSE at the boundary 
is primarily due to the higher absolute values of 𝑞 in this region, 
which naturally result in larger squared differences. Despite the small 
biases in the predictions, the low MSE values indicate good agreement 
between the simulations. These slight differences are likely due to 
variations in the plasma equilibrium assumptions between COTSIM 
and TRANSP. Specifically, COTSIM assumes fixed boundary conditions 
5

Fig. 5. Comparison of 𝑞-profile evolution between COTSIM and TRANSP simulations, 
along with actuator waveforms for shot #128474: (a) 𝑞 at 𝜌̂ = 0.1; (b) 𝑞 at 𝜌̂ = 0.5; (c) 
𝑞 at 𝜌̂ = 0.9; (d) 𝐼𝑝 and auxiliary power inputs.

for the equilibrium, while TRANSP uses EFIT data to determine the 
equilibrium. The exact cause of these biases is still under investigation, 
but differences in equilibrium assumptions remain a possible expla-
nation. These small biases are considered relatively irrelevant in the 
context of feedback control applications, where controllers are designed 
with integral components to compensate for such biases. However, the 
biases may affect feedforward control applications such as scenario 
optimization in spite of their small magnitude, which justifies present 
efforts towards understanding the exact cause of these biases.

5. Validation of Feedforward + Feedback control simulations

To validate the capabilities of COTSIM and demonstrate its appli-
cability for testing control strategies and feedforward optimization, a 
series of experiments were conducted on the EAST tokamak involving 
both feedforward-only and combined feedforward and feedback con-
trol schemes. The feedback controllers tested in this work are Linear 
Quadratic Integral (LQI) controllers, as previously published in [34].

The first set of experiments focused on the regulation of the 𝑞
profile. To establish a baseline, an initial feedforward-only discharge, 
shot #103719, was executed using predetermined inputs for plasma 
current (𝐼𝑝) and 4.6 GHz lower hybrid wave power. This shot pro-
vided reference data for plasma behavior without feedback control. 
Subsequently, to generate feasible target evolutions for the 𝑞 profile, 
a second feedforward-only shot, discharge #103720, was performed 
with a different set of input waveforms compared to shot #103719. 
The 𝑞 profile obtained from this shot served as the target profile for the 
feedback control experiment. The feedforward-feedback shot #103737 
used the same feedforward inputs as shot #103719, with the LQI 
controller actively adjusting inputs to track the target 𝑞 profile from 
shot #103720. In this feedback-controlled experiment, the controller 
actively modified only the plasma current 𝐼𝑝 and the lower hybrid 
wave power 𝑃𝐿𝐻2, sending requests within predefined operational 
ranges of 𝐼𝑝 ∈ [0.3, 0.6] MA and 𝑃𝐿𝐻2 ∈ [1.0, 2.9] MW to ensure safe 
and feasible operation. The controller was set to activate at 2 s. As 
shown in Fig.  6, the controller effectively regulated the evolution of 
the 𝑞-profile at different radial positions, following predefined target 
trajectories. At the outer radius (𝜌̂ = 0.9), the target 𝑞-profile exhibited 
a trapezoidal shape, clearly designed to test the controller by requiring 
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Fig. 6. Comparison of 𝑞-profile evolution between COTSIM and TRANSP simulations and actuator waveforms for shot #103737: (a) 𝑞 at 𝜌̂ = 0.5; (b) 𝑞 at 𝜌̂ = 0.9; (c) Lower hybrid 
power; (d) Plasma current. The black dot-dashed lines represent trajectories from shot #103719, the blue dot-dashed lines correspond to trajectories from shot #103737, the blue 
solid lines show simulation results from COTSIM, and the red dashed lines indicate the target trajectories generated from shot #103720.
specific manipulations of the plasma current 𝐼𝑝. Initially, from about 
2.7 s, 𝐼𝑝 began decreasing to achieve the increasing phase of the 
𝑞(0.9) target trajectory. Subsequently, 𝑞(0.9) reached a plateau around 
3.2 s, during which 𝐼𝑝 remained nearly constant. After this flat phase, 
starting from around 4.7 s, the target 𝑞(0.9) decreased, requiring an 
increase in 𝐼𝑝. Finally, 𝑞(0.9) stabilized again as the plasma current 
leveled off towards the end of the discharge. Meanwhile, at mid-radius 
(𝜌̂ = 0.5), the control of the 𝑞-profile was predominantly influenced by 
the auxiliary lower hybrid power (𝑃𝐿𝐻2). A clear adjustment in 𝑃𝐿𝐻2
occurred around 4.1 s, coinciding with the target increase in 𝑞(0.5). This 
resulted in a noticeable rise in 𝑃𝐿𝐻2 to effectively track the targeted 
profile. These deliberate actuator manipulations clearly demonstrate 
the controller’s capability to independently regulate plasma parameters 
at different radial positions. Meanwhile, both the COTSIM simulations 
and the experimental results exhibited similar behavior, confirming 
that COTSIM accurately models the plasma response under feedback 
control conditions. This successful regulation of the 𝑞 profile highlights 
the effectiveness of the LQI controller and validates the use of COTSIM 
for controller testing and feedforward optimization.

The second set of experiments assessed the controller’s ability to 
simultaneously regulate the internal inductance (𝑙𝑖) and the normalized 
beta (𝛽𝑁 ). Initially, a feedforward-only shot, discharge #114107, was 
executed to serve as a baseline, providing reference data without 
feedback intervention. To obtain feasible target evolutions for 𝑙𝑖 and 
𝛽𝑁 , another feedforward-only shot, discharge #114106, was performed 
with input settings different from those used in shot #114107. The 
trajectories of 𝑙𝑖 and 𝛽𝑁  from this shot were used as the target trajecto-
ries for the subsequent feedback control experiment. The feedforward 
plus feedback controlled shot, discharge #114120, was then conducted 
using the same feedforward inputs as in shot #114107 but with the LQI 
controller adjusting the inputs to track the target 𝑙𝑖 and 𝛽𝑁  trajectories 
obtained from shot #114106. The controller was engaged at 2 s. As 
shown in Fig.  7, COTSIM simulations demonstrated consistent tracking 
of both 𝑙𝑖 and 𝛽𝑁  after the controller was turned on, closely following 
the target trajectories. In the experiment, however, 𝛽  and 𝑙  took 
6

𝑁 𝑖
Fig. 7. Comparison of 𝛽𝑁 and 𝑙𝑖 evolution between COTSIM and TRANSP simulations 
for EAST discharge #114120: (a) Feedback simulation and experimental results for 
𝛽𝑁 . (b) Feedback simulation and experimental results for 𝑙𝑖. The black dot-dashed lines 
represent the feedforward trajectory from shot #114106, the blue solid lines correspond 
to the COTSIM feedback simulation, the green solid lines show the experimental results 
from shot #114120, and the red dashed lines indicate the target trajectory from shot 
#114107.

longer to align with the target, with 𝛽𝑁  reaching effective tracking after 
approximately 0.5 s and 𝑙𝑖 after 2 s. Despite these initial discrepancies, 
both parameters eventually converged to the target, achieving a similar 
tracking performance as observed in the simulations. This alignment 
between COTSIM simulations and experimental results in regulating 
both 𝑙𝑖 and 𝛽𝑁  highlights COTSIM’s effectiveness in modeling plasma 
behavior under feedback control. These findings demonstrate that COT-
SIM can serve as a valuable tool for testing and optimizing control 
algorithms prior to their implementation in actual tokamak operations. 
By accurately replicating the plasma response to control inputs, COT-
SIM could be used to refine controller designs, reduce risks associated 
with experimental trials, and enhance the efficiency of experimental 
campaigns.
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6. Conclusions and future work

This work presents further development of the Control-Oriented 
Transport SIMulator (COTSIM), designed to deliver high predictive ac-
curacy with significantly reduced computational requirements by lever-
aging neural network-based surrogate models. The accuracy of COTSIM 
predictions is validated through comparisons with TRANSP simulations 
and experimental data from the EAST tokamak. COTSIM demonstrates 
qualitative agreement with TRANSP in predicting the evolution of criti-
cal plasma parameters, including the safety factor, internal inductance, 
and normalized beta. Regulation experiments using LQI controllers 
highlight COTSIM’s ability to accurately replicate the plasma response 
to real-time control adjustments, reinforcing its utility as a tool for 
control algorithm testing and optimization. COTSIM’s computational 
efficiency offers distinct advantages for between-shot planning, feed-
forward optimization, and iterative control strategy development. By 
enabling rapid, high-fidelity simulations that closely mirror experimen-
tal outcomes, COTSIM reduces risks associated with experimental trials 
and enhances the efficiency of experimental campaigns.

Future work will focus on further enhancing the accuracy of the 
surrogate models and expanding their applicability to a wider range 
of plasma conditions. Planned developments include integrating ad-
ditional transport equations, such as ion heat and particle transport 
equations, to improve simulation fidelity. Additionally, different op-
timization schemes coupling transport and free-boundary equilibrium 
solvers will be studied to enable simultaneous shape and profile opti-
mization over the duration of the discharge. These developments will 
further extend COTSIM’s capabilities, strengthening its applicability 
in advanced control design, scenario planning, and real-time tokamak 
operation.
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