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A B S T R A C T

Model-based optimization offers a systematic approach to advanced scenario planning. In this case, the
feedforward-control inputs (actuator trajectories) that are needed to attain and sustain a desired scenario are
obtained by solving a nonlinear constrained optimization problem. This class of problems generally minimize
a cost function that measures the difference between desired and actual plasma states. Several numerical
optimization algorithms, such as sequential quadratic programming, require repeated calculation of the cost
function gradients with respect to the input trajectories. Calculating these gradients numerically can be
computationally intensive, increasing the time needed to solve the feedforward-control optimization problem.
This work introduces a method to analytically calculate these cost function gradients from the current profile
evolution model. This can significantly reduce the computational time and allow for fast feedforward-control
optimization, which would eventually enable optimal scenario planning between discharges. The performance
of the feedforward optimizer with analytical gradients is compared to a traditional optimization algorithm
based on numerical gradients for different NSTX-U scenarios. The plasma dynamics in the optimization
algorithm are simulated using the Control Oriented Transport SIMulator (COTSIM). Results of the work
show that analytical gradients consistently reduce the computation time while achieving trajectories that are
comparable to those obtained by traditional optimization algorithms based on numerical gradients.
1. Introduction

Advanced tokamak scenarios are often difficult to realize due to the
nonlinear and highly-coupled dynamics governing plasma evolution.
One traditional method at reaching these scenarios is using an exper-
imental trial-and-error approach, which involves repetitive testing of
different combinations of actuator values with the goal of discovering
desirable plasma states. However, this method requires many costly and
time-consuming tokamak shots, and when testing in unexplored regions
of the tokamak operating space there is a risk of causing damage to the
machine. Another method is model-based scenario planning via feed-
forward optimization, which was proposed in [1] and developed for
numerous tokamak devices, such as DIII-D [2], EAST [3], NSTX- U [4],
and TCV [5].

Feedforward optimization relies on minimizing a cost function that
is defined in terms of the error between the actual state and the desired
state. One of the most commonly used set of techniques to solve such
an optimization problem is gradient-based methods. These methods
employ an iterative approach, which involves guessing the inputs,
running a simulation, and updating the guess based on the outputs
of that simulation. To update the input guess, gradients of the cost
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function are calculated for each iteration. The next step is taken in the
direction that has the greatest reduction of the gradient. Traditionally,
these gradients are calculated numerically. Numerical calculation of
the gradient requires knowledge of the state evolution generated by
different optimized parameters. Thus, multiple feedforward simulations
must be carried out to compute the numerical gradients. Depending
on the complexity of the simulation, this can be a computationally
intensive process and therefore significantly increases the calculation
time. This work proposes to calculate these gradients analytically to
significantly reduce the computational burden of the feedforward opti-
mization process. Particularly, a feedforward optimizer using sequential
quadratic programming (SQP) with analytical gradients has been devel-
oped to achieve a desired safety-factor (𝑞) profile evolution in NSTX-U
scenarios. The evolution of 𝑞 is modeled by the magnetic diffusion
equation, which is complemented by half-dimensional control-oriented
models. While this approach has already been followed in some pre-
vious work like [5], in this work a comparison between analytical
and numerical gradient computation is provided and quantified. The
addition of analytical gradients to the solver may allow for feedforward
optimization to be utilized in situations that may require fast scenario
vailable online 10 March 2023
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planning, such as in between tokamak discharges. For instance, if
there is an unexpected actuator failure during a tokamak run, fast
feedforward optimization can be used to update the trajectories of the
available actuators to achieve the desired target scenario as closely as
possible during the following tokamak run.

The advantage of the open-loop (feedforward) approach to scenario
control resides on the capability of dealing with transport models of
arbitrary complexity because all the computations are carried out off-
line. The disadvantage, on the other hand, resides in its sensitivity to
unmodeled plasma dynamics (i.e., model uncertainties) and changing
plasma conditions. A closed-loop (feedback) control component must
be added to the optimal open-loop (feedforward) control component
obtained as solution of the actuator-trajectory optimization problem
in order to increase the robustness of the overall controller against
initial-condition perturbations, model uncertainties, and disturbances.
Therefore, the feedforward-control schemes like the one proposed in
this work are paired with feedback controllers [6–8] to successfully
regulate multiple plasma properties around values dictated by the
desired plasma scenario.

The structure of this paper is as follows. Section 2 overviews the
SQP based feedforward optimization method and discusses where the
gradient calculation is required. Section 3 covers the simulation model
for the current profile dynamics. Section 4 formulates the optimization
problem. Section 5 covers how the gradients of the cost function with
respect to the optimization parameters (inputs) are derived analytically
from the plasma dynamics. Section 6 shows the simulation results in
comparison to a feedforward solver with numerically derived gradients.

2. Feedforward optimization for scenario planning

Consider a nonlinear dynamic system governed by

̇ = 𝑓 (𝑥, 𝑢), (1)

𝑦 = 𝑔(𝑥, 𝑢), (2)

where 𝑥 ∈ R𝑀×1 is the state of the system, 𝑥̇ denotes its time derivative,
𝑢 ∈ R𝑁×1 is the input of the system, and 𝑦 ∈ R𝑃×1 is the output
of the system. The state function is represented by 𝑓 (𝑥, 𝑢), and the
output function is represented by 𝑔(𝑥, 𝑢). The goal of feedforward
optimization is to determine the combination of input trajectories 𝑢
that produce a desired target output 𝑦. Since the governing equations
are defined in continuous time, the associated optimization problem
of determining the input trajectories to achieve the desired target
is infinite-dimensional. Approximations are required to make compu-
tation feasible. In this work, input parameterization is used to re-
duce the dimensionality of the optimization problem. Parameterization
transforms the infinite dimensional problem into a finite dimensional
problem by selecting discrete points in time where the inputs will be
varied. Any interpolation method can now be used to calculate the
input values at all other time points. Linear interpolation was used in
this work, however a more sophisticated interpolation method such as
fitting a spline function is feasible. These chosen discrete control times
are denoted as 𝑡𝑖, 𝑖 = 1, 2,… 𝑇̄ and stored in the vector 𝒕̄. Each input
value, 𝑢𝑛(𝑡), 𝑛 = 1, 2,… , 𝑁 , is now transformed,

𝑢𝑛(𝑡) ⟶ 𝒖𝑛 =
[

𝑢𝑛(𝑡1), … 𝑢𝑛(𝑡𝑇̄ ),
]′ ∈ 𝑅𝑇̄×1 (3)

and the input vector to the optimization problem is now

𝒖 =
[

𝒖1, … 𝒖𝑛, … 𝒖𝑁
]′ ∈ R(𝑁∗𝑇̄ )×1. (4)

By parameterizing the inputs, the optimization problem becomes
viable to be solved. A user defined cost function 𝐽 (𝒖) is created to
mathematically represent the distance to the target output 𝑦∗ and
encapsulate other potential control objectives. This cost function is
minimized by varying the parameterized inputs 𝒖, while being subject
to various state and actuator constraints. The feedforward optimization
2
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process can be mathematically expressed as a constrained minimization
problem,

min
𝒖

𝐽 (𝑦, 𝒖,𝑦∗), (5)

such that: 𝑥̇ =𝑓 (𝑥, 𝒖), (6)

𝑦 =𝑔(𝑥, 𝒖), (7)

𝑥̂ ≤𝑥 ≤ 𝑥̄, (8)

𝒖̂ ≤𝒖 ≤ 𝒖̄. (9)

In the above formulation, (5) is the to-be-minimized cost function, (6)
and (7) represent the state dynamics, and (8) and (9) are the state
and input constraints. The minimum allowable value of the inputs is
denoted by 𝒖̂ and the maximum value is denoted by 𝒖̄. Similarly, the
state is constrained by the minimum value 𝑥̂ and the maximum value
̄ .

This minimization problem can be solved using an iterative method
known as Sequential Quadratic Programming (SQP). Each iteration
observes the following general sequence. First, an estimate of the
optimal input parameters, 𝒖 is produced. Second, a simulation of the
system dynamics is run using these parameters. Third, the cost function
is calculated. Fourth, a new estimate of the optimal input parameters
with the ultimate goal of minimizing the cost function is determined
from the previous sequence. The full mathematical formulation of
SQP can be found in [9,10]. What is important to note about this
method is that in the fourth step, the new estimate of the optimal
input parameters are found using the gradient of the cost function.
As mentioned, these gradients are conventionally solved numerically
using successive evaluations of the cost function. Depending on the
complexity of the state dynamics (6), this can be a major computational
burden. In this work, we propose computing the gradients analytically
using a control-oriented model, which is presented in the following
section.

3. Plasma evolution model

3.1. Magnetic diffusion equation

In a tokamak, a magnetic flux surface is defined by points having
identical poloidal magnetic flux 𝛹 . Under ideal magneto-hydrodynamic
conditions, these magnetic flux surfaces are nested and certain plasma
properties like the safety factor, plasma pressure, and current density
are constant along these surfaces. Additionally, the plasma is assumed
to be toroidally axisymmetric. Therefore, a plasma parameter that is
constant on each magnetic flux surface can be used to index the flux
surface, and can be considered the spatial coordinate for the now
one-dimensional problem. In this work, the normalized mean effective
minor radius of the flux surface is considered the indexing variable. The
mean effective minor radius is defined as 𝜌 ≜

√

𝛷∕(𝐵𝜙,0𝜋), where 𝛷 is
the toroidal magnetic flux and 𝐵𝜙,0 is the vacuum toroidal magnetic
field at the major radius of the tokamak, 𝑅0. This value is normalized
by the effective minor radius of the last closed magnetic flux surface 𝜌𝑏,
which is considered to be the plasma boundary, i.e

̂ ≜ 𝜌
𝜌𝑏
. (10)

The output state 𝑦 in this paper is the safety factor (𝑞)-profile. The
safety factor is closely related to the magneto-hydrodynamic stabil-
ity of the plasma, and is defined as 𝑞(𝑡, 𝜌̂) ≜ 𝑑𝛷∕𝑑𝛹 . Using the
elation, 𝛷 = 𝜋𝐵𝜙,0𝜌2, the safety factor can be expressed as

(𝑡, 𝜌̂) = −𝑑𝛷
𝑑𝛹

= − 𝑑𝛷
2𝜋𝑑𝜓

= −
𝜕𝛷
𝜕𝜌

𝜕𝜌
𝜕𝜌̂

2𝜋 𝜕𝜓𝜕𝜌̂
= −

𝐵𝜙,0𝜌2𝑏 𝜌̂
𝜕𝜓∕𝜕𝜌̂

, (11)

where 𝜓(𝑡, 𝜌̂) is the poloidal stream function, closely related to the
poloidal magnetic flux (𝛹 = 2𝜋𝜓). The state variable 𝑥 is chosen as
≜ 𝜕𝜓∕𝜕𝜌̂.
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The poloidal flux evolution in a tokamak is governed by the Mag-
netic Diffusion Equation (MDE) [11,12],

𝜕𝜓
𝜕𝑡

=
𝜂(𝑇𝑒)
𝜇0𝜌2𝑏𝐹

2
1
𝜌̂
𝜕
𝜕𝜌̂

(

𝜌̂𝐹 𝐺̂𝐻̂
𝜕𝜓
𝜕𝜌̂

)

+ 𝑅0𝐻̂𝜂(𝑇𝑒)

⟨

𝑗𝑛𝑖 ⋅ 𝐵̄
⟩

𝐵𝜙,0
, (12)

where 𝜂 is the plasma resistivity, 𝑇𝑒 is the electron temperature, 𝜇0 is
the vacuum permeability, 𝑗𝑛𝑖 is total current density from noninductive
sources, 𝐵̄ is the magnetic field, ⟨⟩ denotes a flux surface average,
and 𝐹 , 𝐺̂, and 𝐻̂ are equilibrium parameters. This equation is closed by
control-oriented models for the electron density, electron temperature,
plasma resistivity, and non-inductive current drives, first developed
in [12] and tailored to NSTX-U in [13]. The goal of these control
oriented models is to capture the dominant physics that affect the
overall evolution of the system in response to the different actuators.

By rearranging the MDE (12) and combining terms, it is possible to
derive a partial differential equation that governs the 𝜃 evolution,

𝜃̇ =
[

ℎ𝜂,1𝜃
′′ + ℎ𝜂,2𝜃′ℎ𝜂,3

]

𝑢̃𝜂 +
𝐾
∑

𝑘=1
ℎ𝑛𝑏𝑖,𝑘𝑢̃𝑛𝑏𝑖,𝑘

+
[ℎ𝑏𝑠,1

𝜃
+
ℎ𝑏𝑠,2
𝜃2

𝜃′
]

𝑢̃𝑏𝑠, (13)

here ℎ𝜂,1, ℎ𝜂,2, ℎ𝜂,3, ℎ𝑛𝑏𝑖,𝑘, ℎ𝑏𝑠,1, and ℎ𝑏𝑠,2 are all spatial profiles
omposed of plasma parameters. The derivation of (13) from the MDE
nd the definition for the spatial profiles can be found in [14]. Note that
he index (′) denotes derivatives with respect to 𝜌̂. The vectors 𝑢̃𝜂 , 𝑢̃𝑛𝑏𝑖,𝑘,
nd 𝑢̃𝑏𝑠 are functions of the inputs,

𝑢̃𝜂(𝑡) ≜ 𝐼−3∕2𝑝 𝑃−3∕4
𝑡𝑜𝑡 𝑛̄3∕2𝑒 , (14)

𝑢̃𝑛𝑏𝑖,𝑘(𝑡) ≜ 𝐼−1𝑝 𝑃−1∕2
𝑡𝑜𝑡 𝑃𝑛𝑏𝑖,𝑘 , (15)

𝑢̃𝑏𝑠(𝑡) ≜ 𝐼−1∕2𝑝 𝑃−1∕4
𝑡𝑜𝑡 𝑛̄3∕2𝑒 , (16)

here 𝐼𝑝 is the plasma current, 𝑛𝑒 is the line averaged electron density,
nd 𝑃𝑛𝑏𝑖,𝑘 is the power of the 𝑘th neutral beam injector. The variable
𝑡𝑜𝑡 is the total power, 𝑃𝑡𝑜𝑡 = 𝑃𝑜ℎ𝑚 − 𝑃𝑟𝑎𝑑 + 𝜂𝑓𝑢𝑠𝑃𝑓𝑢𝑠 +

∑𝐾
𝑘=1 𝑃𝑛𝑏𝑖,𝑘,

here 𝑃𝑜ℎ𝑚 is the ohmic power, 𝑃𝑟𝑎𝑑 is the radiative power, 𝑃𝑓𝑢𝑠 is
he fusion power, and 𝜂𝑓𝑢𝑠 is an efficiency constant that captures the
ffectiveness of the fusion power in heating the plasma. The models
sed to calculate each of these power contributions are found in [15].

This parabolic partial differential equation has the boundary condi-
ions

(𝑡, 0) = 0, 𝜃(𝑡, 1) = −𝑘𝐼𝑝𝐼𝑝(𝑡). (17)

he variable 𝑘𝐼𝑝 is a constant related to the plasma shape, 𝑘𝐼𝑝 =
𝜇0𝑅0∕[2𝜋𝐺̂(1)𝐻̂(1)].

Notice how (13) is organized as the sum of spatial profiles multi-
plied by scalar values that vary in time. This equation can be reorga-
nized in matrix form. Before this is done, (13) is discretized in space
using the finite difference method over 𝑀 + 2 nodes between 𝜌̂ = 0
and 𝜌̂ = 1, This transforms the spatial coordinate from a continuous
value to a series of discrete points, 𝜌̂ → 𝜌̂𝑚, 𝑚 = 0, 1,… ,𝑀 + 1. Since
the plasma state at the boundaries is rewritten in terms of the plasma
state at the interior points by using the boundary conditions, the new
state variable is defined as 𝜽 =

[

𝜃1(𝑡), … 𝜃𝑚(𝑡), … 𝜃𝑀 (𝑡)
]′ ∈ R𝑀×1.

The vector containing all discrete interior spatial nodes is defined as
𝝆̂ =

[

𝜌̂1, … 𝜌̂𝑚, … 𝜌̂𝑀
]′ ∈ R𝑀×1. Each spatial first and second derivative

in (13) is approximated using the neighboring values of said quantity.
The following definitions are introduced,

𝜒𝑚 ≜
ℎ𝜂,1(𝜌̂𝑚)

𝛥𝜌̂2
−
ℎ𝜂,2(𝜌̂𝑚)
2𝛥𝜌̂

, (18)

𝑚 ≜
ℎ𝜂,1(𝜌̂𝑚)

𝛥𝜌̂2
+
ℎ𝜂,2(𝜌̂𝑚)
2𝛥𝜌̂

, (19)

𝑚 ≜ ℎ𝜂,3(𝜌̂𝑚) −
2ℎ𝜂,1(𝜌̂𝑚)

𝛥𝜌̂2
. (20)
3

he discrete form of (13) for each 𝑚th inner node, 𝑚 = 1, 2,… ,𝑀 , can
ow be written as

̇𝑚 =
[

𝜒𝑚𝜃𝑚−1 + 𝛾𝑚𝜃𝑚 + 𝛽𝑚𝜃𝑚+1
]

𝑢̃𝜂(𝑡) +
𝐾
∑

𝑘=1
ℎ𝑚𝑛𝑏𝑖,𝑘𝑢̃𝑛𝑏𝑖,𝑘(𝑡)

+

[

ℎ𝑚𝑏𝑠,1
𝜃𝑚

−
ℎ𝑚𝑏𝑠,2
𝜃2𝑚

(

𝜃𝑚+1 − 𝜃𝑚−1
2𝛥𝜌̂

)

]

𝑢̃𝑏𝑠(𝑡). (21)

he evolution of the discretized 𝜽 can now be represented as a matrix
quation,

̇ = 𝑮(𝜽, 𝐼𝑝)𝑢̃, (22)

here 𝑮 is a matrix composed of the spatial profiles, 𝑮 = [𝑮𝑒𝑡𝑎,
𝑮𝑛𝑏𝑖,1,… ,𝑮𝑛𝑏𝑖,𝐾 ,𝑮𝑏𝑠]. Each element in the 𝑮 matrix is defined as

𝐺𝑚𝜂 ≜ 𝜒𝑚𝜃𝑚−1 + 𝛽𝑚𝜃𝑚+1 + 𝛾𝑚𝜃𝑚, (23)

𝐺𝑚𝑛𝑏𝑖,𝑘 ≜ ℎ𝑚𝑛𝑏𝑖,𝑘, (24)

𝐺𝑚𝑏𝑠 ≜
ℎ𝑚𝑏𝑠,1
𝜃𝑚

−
ℎ𝑚𝑏𝑠,2
𝜃2𝑚

(

𝜃𝑚+1 − 𝜃𝑚−1
2𝛥𝜌̂

)

. (25)

It is important to note that since the state 𝜽(𝑡) is now a discretized
ector, the output must be discretized as well, 𝑞(𝑡, ∶) → 𝒒 =

[

𝑞1(𝑡),…
𝑞𝑚(𝑡),… 𝑞𝑀

]′ ∈ R𝑀×1. The output equation for the system is the
iscretized version of (11),

(𝑡) = −
𝐵𝜙,0 𝜌2𝑏 𝝆̂

𝜽
≜ 𝑔(𝜽), (26)

. Optimization problem formulation

The cost function is designed to minimize the difference between the
utput variable 𝒒 and the target output variable, 𝒒∗, at various discrete
imes throughout the tokamak shot. It is given by

(𝒖) =
𝑁𝑡
∑

𝑗=1
𝑤𝑡(𝑡𝑗 )

𝑀
∑

𝑚=1
𝑤𝜌̂(𝜌̂𝑚)(𝑞𝑚(𝑡𝑗 ) − 𝑞∗𝑚(𝑡𝑗 ))

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑒𝑞 (𝑡𝑗 )

. (27)

he variable 𝑡𝑗 , for 𝑗 = 1, 2,… , 𝑇̂ is the time at which the 𝑞-profile is
ompared to the target. There are two user-defined weights introduced
n this cost function, a time weight 𝑤𝑡 and a spatial weight 𝑤𝜌̂.

The inputs to the optimization problem are the powers of the neutral
eam injectors 𝑃𝑛𝑏𝑖,𝑘, as well as the plasma current 𝐼𝑝, at specific times
hroughout the simulation,

𝒖 =
[

𝑷 𝑛𝑏𝑖,1, … 𝑷 𝑛𝑏𝑖,𝐾 , 𝑰𝑝
]′ , (28)

𝑛𝑏𝑖,𝑘 =
[

𝑃𝑛𝑏𝑖,𝑘(𝑡1) … 𝑃𝑛𝑏𝑖,𝑘(𝑡𝑇̄ )
]′ , (29)

𝑰𝑝 =
[

𝐼𝑝(𝑡1) … 𝐼𝑝(𝑡𝑇̄ )
]′ . (30)

here 𝑡𝑖 are the discrete control times defined in (3)–(4). As stated in
ection 2, the values of the actuator values at any time (𝑃𝑛𝑏𝑖,𝑘(𝑡), 𝐼𝑝(𝑡))
re recovered from the input parameters using linear interpolation
etween the two bounding times in the input time vector 𝒕̄. For any
uch time 𝑡𝑠, such that 𝑡𝑖 < 𝑡𝑠 < 𝑡𝑖+1, the value of input 𝑢𝑛 at 𝑡𝑠 is
etermined using the equation

𝑛(𝑡𝑠) =
𝑢𝑛(𝑡𝑖+1) − 𝑢𝑛(𝑡𝑖)

𝑡𝑖+1 − 𝑡𝑖
(𝑡𝑠 − 𝑡𝑖) + 𝑢𝑛(𝑡𝑖). (31)

his method can be used to recover the NBI powers and plasma current
t any time from the input vector. In particular, the plasma current can
e expressed as

𝑝 = 𝑝1(𝒖). (32)

y combining the interpolation Eq. (31), with (14)–(16), it is possible
o calculate 𝑢̃ from the inputs 𝒖,
𝑢̃ = 𝑝2(𝒖). (33)
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By substituting the cost function (27), the state equation (22), the input
transformation Eqs. (32) and (33), and the output equation (26) into
(5)–(7), it is possible to define the optimization problem as

min
𝒖

𝐽 (𝒖) (34)

uch that ∶ 𝜽̇ =𝑮(𝜽, 𝐼𝑝)𝑢̃(𝑡), (35)

𝐼𝑝 =𝑝1(𝒖), (36)

𝑢̃ =𝑝2(𝒖), (37)

𝒒 =𝑔(𝜽), (38)

𝒖̂ ≤𝒖 ≤ 𝒖̄. (39)

ote that (39) determines the range constraints on the input, with 𝒖̂ be-
ng the minimum allowable input and 𝒖̄ being the maximum allowable
nput. There are no state constraints in this particular problem.

. Taking analytical gradients of the cost function

The gradients of the cost function are decomposed into a series of
artial derivatives,

𝜕𝐽
𝜕𝒖

⏟⏟⏟
R1×𝑁∗𝑇̄

=
(

𝜕𝐽
𝜕𝒆𝑞

)

⏟⏟⏟
∈R1×𝑇̂

( 𝜕𝒆𝑞
𝜕𝒒(𝑡)

)

⏟⏞⏞⏟⏞⏞⏟
∈R𝑇̂×𝑀

(

𝜕𝒒(𝑡)
𝜕𝜽(𝑡)

)

⏟⏞⏞⏟⏞⏞⏟
∈R𝑀×𝑀

(

𝜕𝜽(𝑡)
𝜕𝒖

)

⏟⏞⏞⏟⏞⏞⏟
∈R𝑀×𝑁∗𝑇̄

. (40)

ote that 𝑁 ∗ 𝑇̄ is the size of the input vector 𝒖. Using the equation for
he cost function (27) and the plasma dynamics (22), (26), it is possible
o solve for each of these partial derivatives. Each partial derivative
ith the exception of (𝜕𝜽∕𝜕𝒖) reduces to an algebraic equation, which

an be easily calculated. This final partial derivative, however, involves
aking the derivative of (22) with respect to the input variables and
ntegrating it over time,
(

𝜕𝜽(𝑡)
𝜕𝒖

)

=
𝜕𝜽(𝑡0)
𝜕𝒖

+ ∫

𝑡

𝑡0

𝜕𝜽̇
𝜕𝒖
𝑑𝑡. (41)

olving (41) requires repeated calculations of an ordinary differential
quation 𝜕𝜽̇∕𝜕𝒖, and therefore necessitates the bulk of the computation.

.1. Calculating the derivative of the state equation

Starting with the matrix form of the state equation, (22), the gradi-
nt of 𝜽̇ with respect to the input 𝒖 can be expressed as

𝜕𝜽̇
𝜕𝒖

⏟⏟⏟
R𝑀×𝑁∗𝑇̄

=
(

𝜕(𝑮𝑢̃)
𝜕𝑢(𝑡)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∈R𝑀×𝑁

(

𝜕𝑢(𝑡)
𝜕𝒖

)

⏟⏞⏟⏞⏟
∈R𝑁×𝑁∗𝑇̄

+
(

𝜕(𝑮𝑢̃)
𝜕𝜽(𝑡)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
∈R𝑀×𝑀

(

𝜕𝜽(𝑡)
𝜕𝒖

)

⏟⏞⏞⏟⏞⏞⏟
∈R(𝑀)×𝑁∗𝑇̄

. (42)

ince 𝜕𝜽̇∕𝜕𝒖̄ = 𝜕(𝜕𝜽∕𝜕𝒖)∕𝜕𝑡, (42) can be considered an ordinary dif-
erential equation of (𝜕𝜽∕𝜕𝒖). The derivatives in (42) are decomposed
urther using the chain rule,
(

𝜕(𝑮𝑢̃)
𝜕𝑢(𝑡)

)

= 𝐁1 +𝑮
(

𝜕𝑢̃
𝜕𝑢(𝑡)

)

, (43)
(

𝜕(𝑮𝑢̃)
𝜕𝜃(𝑡)

)

= 𝐁2 +𝑮
(

𝜕𝑢̃
𝜕𝜃(𝑡)

)

. (44)

he matrices 𝐁1 ∈ R𝑀×𝑁 and 𝐁2 ∈ R𝑀×𝑀 are both time dependent
erivative matrices. The 𝑛th column of 𝐁1 is 𝜕𝑮

𝜕𝑢𝑛(𝑡)
𝑢̃, and the 𝑚th column

of 𝐁2 is 𝜕𝑮
𝜕𝜃𝑚

𝑢̃. The remaining gradient matrices are computed using the
system dynamics defined in Section 3. Since the vector 𝑢̃ contains 𝑃𝑡𝑜𝑡
erms, seen in (14)–(16), it is partially dependent on the plasma dynam-
cs. However, using the power calculation models in [15], none of the
ower contributions to 𝑃𝑡𝑜𝑡 depend on the magnetic flux, and therefore
𝑢̃∕𝜕𝜃 = 0. The partial derivative (𝜕𝑢(𝑡)∕𝜕𝒖) relates the actuator values
t a specific time to the input parameters at specific chosen time points,
4

nd is calculated from the linear interpolation Eq. (31). U
. Simulation testing

Simulation testing was conducted for this scenario optimizer using
he Control Oriented Transport SIMulator (COTSIM) code. The simula-

tion was modeled after the TRANSP run 142301K91, which adopted the
NSTX experimental shot 142301 for NSTX-U parameters. The optimizer
with analytical gradient calculation was compared with an optimizer
with traditional numerical gradient calculation. The target safety fac-
tor profiles were created by choosing semi-random, realistic actuator
values and running a simulation. The target actuator waveforms were
created with the same time parameterization via linear interpolation
as the optimizer. Therefore, if the number of time parameters for the
optimizer was equal to the number of time parameters used for the
creation of the target, the optimizer could match the target exactly.
There were two optimization tests conducted. For the first, Test 1, the
optimizer time parameters matched those of the target, and therefore
the minimized cost function was expected to approach 0. The second
test, Test 2, was conducted when the optimizer has a different time
parameterization and therefore could not perfectly recreate the tar-
get actuator trajectories. In this case the optimizer was expected to
converge to some value greater than 0.

6.1. Simulation setup

There are two neutral beam injectors on NSTX-U, each with three
tangency radii for the beamline to create a total of 6 neutral beam
current sources. Four of these sources along with the plasma current
were chosen as potential actuators for the simulation testing. Therefore
the input vector was composed of

𝒖 =
[

𝑷̄ 𝑛𝑏𝑖,1, 𝑷 𝑛𝑏𝑖,2, 𝑷 𝑛𝑏𝑖,3, 𝑷 𝑛𝑏𝑖,4, 𝑰𝑝
]′ . (45)

The simulation was run between 0.5 and 4 seconds. The state 𝜽 and
output 𝒒 were discretized using 41 spatial nodes, and the number of
interior nodes 𝑀 = 39. The initial values of the inputs, 𝑢(0), were
onsidered fixed.

For Test 1, the inputs were parameterized at six equidistant control
imes, and for Test 2, five equidistant control times. Therefore, the time
arameterization vectors for Test 1 and Test 2 were

̄1 =
[

0.6, 1.28, 1.96, 2.64, 3.32, 4
]

, (46)
̄2 =

[

0.6, 1.45, 2.3, 3.15, 4
]

. (47)

ive target times were chosen where the safety factor profile would be
easured against a target profile. For both tests these target times were

̂ =
[

2, 2.5, 3, 3.5, 4
]′ . (48)

he weighting vectors for each simulation test were

𝒘𝑡 =
[

1, 1, 1, 2, 4
]

, (49)

𝜌̂ =
[

𝟏𝟓, 𝟏𝟎, 𝟓, 𝟏
]

. (50)

ote that the time weight vector 𝒘𝑡 corresponds to each target time
̂. The effect of this weighting vector is that later times contributed

ore to the cost function 𝐽 . The spatial weight vector was composed
f four constant value vectors. The vector 𝟏𝟓 ≜ [15, … 15] ∈ R1×12,
nd similarly, 𝟏𝟎 ≜ [10, … 10] ∈ R1×9, 𝟓 ≜ [5, … 5] ∈ R1×15,
nd 𝟏 ≜ [1, … 1] ∈ R1×3. Note that the combined lengths of these
ectors equals 39, the number of interior spatial nodes. Shown by (50),
he 𝑞 values closer to the magnetic axis are weighted significantly
igher.

The magnitude constraints on the inputs were as follows

0 ≤ 𝑃𝑛𝑏𝑖,𝑘(𝑡) ≤ 2.1, (51)

.6 ≤ 𝐼𝑝(𝑡) ≤ 2.0, (52)

hese constraints were derived from the actuator limitations of NSTX-

[16].
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Fig. 1. From left to right - (i) Plasma Current Trajectory, (ii) NBI 1 Power Trajectory, (iii) NBI 2 Power Trajectory.
Fig. 2. Cost Function of each Iteration for Test 1 and Test 2.

6.2. Simulation testing results

Table 1 shows the simulation results for Tests 1 and 2. For Test 1,
the optimizer with analytic gradient calculation reached a lower cost
function value in a shorter time frame, being approximately 3 times
faster than the numerical optimizer. For Test 2, the two optimizers
tested reached comparable optimal 𝐽 values, and once again the an-
alytic optimizer was significantly faster. Fig. 1 compares a selection of
the optimized input parameters for Test 1 and Test 2. Fig. 2 shows the
cost function evaluation with each iteration of the SQP method. Fig. 3
compares the output profiles at specific times, and Fig. 4 compares the
output trajectories at specific 𝜌̂ values. For Test 1, the input waveforms
generated by each optimizer were similar to the ones used to create the
target profile. This demonstrates that each optimizer was converging
5

Table 1
Simulation results.

Test Grad Initial 𝐽 Final 𝐽 Run time

Test 1 Num 2.31e1 7.79e−5 18:09
Anlyt 2.31e1 5.84e−5 05:42

Test 2 Num 2.08e1 3.17e−2 9:38
Anlyt 2.08e1 3.61e−2 03:26

on the optimal solution and thus working as intended. For Test 2, the
optimizer waveforms had slightly more deviation. However, Figs. 3
and 4 show that both optimizers in each case were able to get almost
perfect matches to the target safety factor profiles. This demonstrates
that each optimizer was able to satisfy the control objective. However,
the analytic solver did so in a much shorter time frame, and therefore
demonstrates an improvement over the numerical optimizer.

7. Conclusion

A model-based optimizer for the safety factor profile with analytical
gradient calculation based on a control-oriented model has been cre-
ated for NSTX-U. The optimizer uses sequential quadratic programming
to minimize a user-defined cost function subject to various constraints.
The optimizer has been improved upon previous attempts at scenario
optimization by introducing analytical gradient calculation of the cost
function with respect to the input parameters, thus significantly re-
ducing the computation time. This optimizer was tested in an NSTX-U
simulation and compared to an optimizer that used numerical gradi-
ents. The results showed that the incorporation of analytical gradients
into the optimization algorithm significantly reduces the computational
time. Future extensions could involve expanding the plasma response
model to predict other plasma parameters such as the rotation profile,
internal inductance, or normalized beta in order to achieve a broader
scenario optimization by using the fast optimization technique pro-
posed in this work. Additionally, the control-oriented models based
Fig. 3. From left to right - (i) 𝑞(𝑡 = 2, ⋅), (ii) 𝑞(𝑡 = 3, ⋅), (iii) 𝑞(𝑡 = 4, ⋅).
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Fig. 4. From left to right - (i) 𝑞(⋅, 𝜌̂ = 0.1), (ii) 𝑞(⋅, 𝜌̂ = 0.5), (iii) 𝑞(⋅, 𝜌̂ = 0.9).
n empirical scalings could be replaced by transport equations and
achine-learning-based surrogate models for sources and transport.
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