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A B S T R A C T

Active control of plasma properties may be necessary to achieve stable operation of next-generation tokamaks
over large time scales. Such control algorithms can regulate the plasma properties to avoid the onset of
magnetohydrodynamic (MHD) instabilities. For instance, the global and local properties of the safety factor
profile are linked to the onset of neoclassical tearing modes (NTMs). This work proposes a model-based control
approach for deterring/delaying NTMs through active modulation of one of the safety factor properties - the
gradient of the safety factor profile at a particular rational safety factor surface. In particular, a novel control-
oriented model for the local safety factor gradient is developed. The nonlinear control model is governed by a
nonautonomous ordinary differential equation that accounts for a given rational safety factor surface’s spatial
variation over time. To improve the controllability of the spatially evolving parameter, the control model treats
ECH&CD positions, along with noninductive powers, as controllable variables. A nonlinear control algorithm
based on feedback linearization with optimization is synthesized to achieve the objective of regulating the
safety factor gradient around a given target. The proposed algorithm allocates optimal ECH&CD positions,
in addition to auxiliary powers, at each time instant as the rational safety factor surface drifts to locations
with a low control authority. Stability guarantees of the proposed control law are also discussed in this
work. The proposed algorithm is tested for a DIII-D tokamak scenario in nonlinear simulations carried out
using the Control Oriented Transport SIMulator (COTSIM). Both fixed and moving ECH&CD cases are studied,
and their outcomes are compared. Simulation results demonstrate that enthusiastic regulation of the safety
factor gradient can be achieved during the ramp-up and flat-top phases of tokamak operation in both fixed
and moving ECH&CD cases. However, real-time updates of ECH&CD positions can prevent the saturation of
auxiliary powers.
1. Introduction

Avoiding magnetohydrodynamic (MHD) instabilities like neoclassi-
cal tearing modes (NTMs), which can appear at locations with rational
safety factor values and can disrupt plasma confinement, is critical
for the success of next-generation tokamaks like ITER. One potential
solution to prevent the onset of NTMs is to actively avoid certain
low-order rational surfaces like 𝑞 = 1.5 and 𝑞 = 2. Control solu-
tions exist in the literature that can be implemented on tokamaks
to actively regulate the safety factor profile to avoid rational values.
They can be broadly classified into global and local control algorithms.
Global control algorithms actively regulate the whole safety factor
profile. Some examples of such algorithms in the literature include
robust control [1], linear quadratic optimal control [2,3], and model
predictive control [4–6] control, infinite-dimensional Lyapunov-based
control [7–9], passivity-based control [10], backstepping control [11],
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𝐻∞ control [12], feedback linearization [13,14]. By carefully selecting
the target safety factor profiles which do not take low-order rational
values, global control algorithms can be used to prevent the onset of
NTMs. Local control algorithms are designed to regulate the safety
factor values on a limited scale instead of the entire profile. In scenarios
characterized by a monotonously increasing safety factor profile, the
central safety factor control algorithm [15] can be used to maintain the
safety factor value above a threshold rational value. In scenarios with
reversed shear safety factor profile, the minimum safety factor control
algorithm [16] can be used to achieve a similar effect.

In certain tokamak scenarios, rational safety factor values like 𝑞 =
1.5 and 𝑞 = 2 are impossible to avoid. Implementing the above-cited
algorithms to shift the safety factor profile above the threshold rational
values will only saturate the auxiliary drives. In such cases, simultane-
ously regulating the global and local shape of the safety factor profile
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may prevent/delay the onset of NTMs. A bulk of the above-cited global
control algorithms can be implemented for varying the global shape of
the safety factor profile. However, solutions for varying the local shape
of the safety factor profile at the rational surfaces do not exist. The local
shape of the safety factor profile can be varied by modifying the local
gradient. However, such shaping is not straightforward since gradient
regulation can pose three challenges: (i) conventional safety factor
models do not capture gradient dynamics, (ii) conventional models do
not account for rational surfaces’ spatial drift, (iii) rational surfaces can
move to locations where the auxiliary drive deposition is low. The first
two challenges can be addressed by developing advanced models that
govern the evolution of the slope at moving rational surfaces. On the
other hand, since the target location is continuously drifting (possibly
to locations with low auxiliary depositions), the controller could benefit
from moving actuators.

This work develops a nonlinear safety factor gradient control al-
gorithm that can regulate the local slope of the safety factor profile
at any given rational surface. The contributions of this work are as
follows. A control-oriented model for the safety factor gradient at a
predefined rational surface is derived. The model is a one-dimensional
ordinary differential equation. Conventionally, safety factor regulation
is achieved using a model based on the poloidal flux gradient [14,16].
This is possible due to the direct relationship between the safety factor
and the poloidal flux gradient. However, as discussed in Section 2
of this work, a model based on the poloidal flux gradient increases
the complexity of the control problem. Hence, the model developed
and used in this work is defined in terms of the safety factor’s time
derivative. The novel model treats neutral beam injector (NBI) and
electron cyclotron heating & current drive (ECH&CD) powers as the
actuators. In addition to the auxiliary drive powers, the position of
the ECH&CDs is also considered a controllable variable. The effect of
ECH&CD positions on the plasma dynamics is modeled using a shifting
current deposition profile, initially introduced in [17] for regulating the
minimum safety factor using moving ECH&CD. This work also develops
a nonlinear control algorithm based on the ‘‘feedback-linearization with
optimization’’ approach. Discussion on the stability of the controller is
also presented in this work. The controller is tested for a DIII-D tokamak
scenario using nonlinear simulations in the Control Oriented Transport
SIMulator (COTSIM). Numerical analysis is carried out for both fixed
and moving ECH&CD cases. Results demonstrate that the controller can
track the target slope within the desired time frame. In addition, the
simulation results also illustrate that controlling the ECH&CD positions
can have added benefits in some scenarios.

This paper is organized as follows. Section 2 derives the model for
safety factor gradient evolution around a rational surface. In Section 3,
the model derived in Section 2 is used to synthesize a controller to track
a target safety factor gradient. Section 4 examines the numerical simu-
lation results carried out to test the controller performance in a DIII-D
tokamak scenario. The conclusions and potential future extensions of
this work are presented in Section 5.

2. Control-oriented safety factor gradient model

The objective of the section is to derive the control-oriented model
for the safety factor gradient evolution. First, the general relation
between the safety factor gradient and the poloidal flux gradient is
analyzed. Then, a model for poloidal flux gradient, derived from the
magnetic diffusion equation, is introduced. Next, a partial differential
equation (PDE) for the evolution of the safety factor is derived using
the relation between the safety factor and the poloidal flux gradient.
Finally, approximations based on a finite difference scheme are intro-
duced to simplify the PDE into an ordinary differential equation (ODE)
for the safety factor gradient dynamics.
2

Fig. 1. An illustration of the magnetic field lines and nested flux surfaces in a tokamak.

2.1. Safety factor profile

The poloidal magnetic flux 𝛹 at a point 𝑃 (shown in Fig. 1) in the
tokamak is defined as 𝛹 ∶= ∫𝑆 �̄�𝜃 ⋅𝑑�̄�, where �̄�𝜃 is the poloidal magnetic
field and 𝑆 denotes the surface enclosed by the toroidal loop passing
through the point 𝑃 and is perpendicular to the axis 𝑧 that is shown
in Fig. 1. As it will become evident in the following subsections and
the analysis given in Appendix A, the plasma dynamics model used
in this work is derived from the magnetic diffusion equation, which
governs the evolution of the poloidal stream function 𝜓 , a parameter
related to the poloidal magnetic flux by the relation 𝜓 = 𝛹∕2𝜋. The
points in the tokamak with a given value of poloidal magnetic flux
or equivalently the poloidal stream function form what are commonly
referred to as magnetic flux surfaces. Under ideal MHD conditions,
important plasma properties like the safety factor and plasma pressure
have a constant value on any given flux surface. Furthermore, the flux
surfaces corresponding to different poloidal flux values form a nested
collection of surfaces as shown in Fig. 1. Under the assumption of
axisymmetry of the toroidal plasma, the dependence of the plasma
properties like the safety factor can be reduced from three to two. Using
the fact that the plasma properties of interest are constant on the nested
flux surfaces, their spatial dependence can further be reduced to one.
Such a simplification requires the definition of a spatial variable that
indexes the nested flux surfaces. In this work, the normalized mean
effective minor radius �̂� is used as the spatial variable. It is defined
as �̂� ∶= 𝜌

𝜌𝑏
. In this equation, 𝜌 is the mean effective minor radius and

s given by 𝜌 ∶=
√

𝐵𝜙,0𝜋
𝛷 , where the term 𝐵𝜙,0 refers to the magnitude

of the toroidal magnetic field at the major radius 𝑅0 of the tokamak
and the term 𝛷 refers to the toroidal magnetic flux. The term 𝜌𝑏 is the
value of mean effective minor radius 𝜌 at the last closed magnetic flux
surface.

The safety factor profile 𝑞 is a plasma property that characterizes
the pitch of the helical magnetic field in the tokamak. The value of the
safety factor 𝑞 at location �̂� and time 𝑡 is given by the mathematical
expression

𝑞(�̂�, 𝑡) ∶= −
𝐵𝜙,0𝜌2𝑏 �̂�
𝜃(�̂�, 𝑡)

. (1)

In the above equation, the term 𝜃 ∶= 𝜕𝜓
𝜕�̂� is the poloidal flux gradient.

Due to the direct relation between 𝑞 and 𝜃, 𝑞-profile regulation can
e achieved directly through controlling 𝜃. For instance, control algo-
ithms in [14,16,17] achieve the desired safety factor targets through
egulation of 𝜃. Such an indirect regulation is certainly possible for
he problem of safety factor gradient control. However, it increases the
omplexity of the control problem. This becomes evident by taking the
erivative of the safety factor given in (1) with respect to the spatial
ariable �̂�. The resulting equation takes the form

′(�̂�, 𝑡) ∶= −
𝐵𝜙,0𝜌2𝑏 +

𝐵𝜙,0𝜌2𝑏 �̂� 𝜃′(�̂�, 𝑡). (2)

𝜃(�̂�, 𝑡) (𝜃(�̂�, 𝑡))2
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In the above equation and in the subsequent sections, the notation (⋅)′
denotes the first derivative with respect to the spatial variable �̂�. It is
evident from the above equation that tracking a desired 𝑞′ requires
simultaneous control of two variables, 𝜃 and 𝜃′. In certain scenarios,
the poloidal flux gradient 𝜃 may achieve a steady-state value during
the flat-top phase of the discharge. In such cases, the desired value
of 𝑞′ can be achieved by controlling only 𝜃′. However, this limits the
applicability of the controller in a broad class of scenarios. On the other
hand, a model that defines the evolution of the safety factor will lead
to a simpler control design. Such a model can be derived by taking
the time derivative of the safety factor defined in (1). The resulting
equations looks like

̇ (�̂�, 𝑡) =
𝐵𝜙,0𝜌2𝑏 �̂�

𝜃(�̂�, 𝑡)2
�̇�(�̂�, 𝑡) = −

𝑞(�̂�, 𝑡)�̇�(�̂�, 𝑡)
𝜃(�̂�, 𝑡)

. (3)

The notation ̇(⋅) denotes the derivative with respect to time. The above
equation defines the evolution of 𝑞 and not 𝑞′. However, the analy-
sis presented in Section 2.3 will demonstrate that a gradient model
can be derived from the above equation after introducing certain
approximations.

2.2. Safety factor profile evolution model

The term �̇� in (3) is governed by the PDE

�̇� =
(

ℎ𝜂,1𝜃
′′ + ℎ𝜂,2𝜃′ + ℎ𝜂,3𝜃

)

𝑢𝜂 +
𝑛𝑛𝑏
∑

𝑖=1
ℎ𝑛𝑏,𝑖𝑢𝑛𝑏,𝑖

+
𝑛𝑒𝑐
∑

𝑗=1
ℎ𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )𝑢𝑒𝑐,𝑗 +

(

ℎ𝑏𝑠,1
1
𝜃
− ℎ𝑏𝑠,2

𝜃′

𝜃2

)

𝑢𝑏𝑠, (4)

subject to the boundary conditions

𝜃(0, 𝑡) = 0, 𝜃(1, 𝑡) = −𝑘𝐼𝑝𝐼𝑝. (5)

The derivation of the above partial differential equation and the explicit
definition of the individual terms appearing in it are presented in
Appendices A and B. The terms ℎ(⋅) in (4) are functions of the spatial
variable �̂�. On the other hand, 𝑢(⋅) are the virtual inputs and functions of
time 𝑡. The above model assumes there are 𝑛𝑛𝑏 NBIs and 𝑛𝑒𝑐 ECH&CD
available for gradient control. Note that the above model also treats
the ECH&CD position 𝜌𝑒𝑐,𝑗 corresponding to the 𝑗th ECH&CD as a
controllable variable. Substituting (4) for �̇� in (3) results in the PDE
of the form

̇ = −
𝑞
𝜃

[

(

ℎ𝜂,1𝜃
′′ + ℎ𝜂,2𝜃′ + ℎ𝜂,3𝜃

)

𝑢𝜂

+
𝑛𝑛𝑏
∑

𝑖=1
ℎ𝑛𝑏,𝑖𝑢𝑛𝑏,𝑖 +

𝑛𝑒𝑐
∑

𝑗=1
ℎ𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )𝑢𝑒𝑐,𝑗

+
(

ℎ𝑏𝑠,1
1
𝜃
− ℎ𝑏𝑠,2

𝜃′

𝜃2

)

𝑢𝑏𝑠

]

(6)

subject to the boundary conditions

𝑞(0, 𝑡) = 0, 𝑞(1, 𝑡) =
𝐵𝜙,0𝜌2𝑏 �̂�
𝑘𝐼𝑝𝐼𝑝

. (7)

Suppose ℎ∗𝑛𝑏,𝑖 and ℎ∗𝑒𝑐,𝑗 are defined such that

ℎ∗,𝑚𝑖𝑛𝑛𝑏,𝑖 ∶= ℎ𝑚𝑖𝑛𝑛𝑏,𝑖 × (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜁𝑛𝑏)�̄�−1𝑒 , (8)

ℎ∗,𝑚𝑖𝑛𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 ) ∶= ℎ𝑚𝑖𝑛𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 ) × (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜁𝑒𝑐 )�̄�−1𝑒 . (9)

From (8) and (9), it is evident that the equations ℎ𝑛𝑏,𝑖𝑢𝑛𝑏,𝑖 = ℎ∗𝑛𝑏,𝑖𝑃𝑛𝑏,𝑖
and ℎ𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )𝑢𝑒𝑐,𝑗 = ℎ∗𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )𝑃𝑒𝑐,𝑗 hold. Substituting these equations
into (6) results in a PDE in which the virtual inputs terms are replaced
by the physical inputs, which are the NBI and EC powers in this case.
The new PDE takes the form

�̇� = −
(

ℎ𝜂,1
𝜃′′

𝜃
+ ℎ𝜂,2

𝜃′

𝜃
+ ℎ𝜂,3

)

𝑞𝑢𝜂 −
𝑛𝑛𝑏
∑

𝑖=1

ℎ∗𝑛𝑏,𝑖
𝜃
𝑞

⏟⏟⏟
∗

𝑃𝑛𝑏,𝑖
3

𝑔𝑛𝑏,𝑖
Fig. 2. Safety factor profile: central difference approximation of safety factor gradient
at a rational surface �̄�.

−
𝑛𝑒𝑐
∑

𝑗=1

ℎ∗𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )

𝜃
𝑞

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑔∗𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )

𝑃𝑒𝑐,𝑗 −
ℎ𝑏𝑠,1
𝜃2

𝑞𝑢𝑏𝑠 −
ℎ𝑏𝑠,2𝜃′

𝜃3
𝑞𝑢𝑏𝑠. (10)

2.3. Gradient approximation

The controller’s goal is to track a target safety factor gradient 𝑞′ at a
rational safety factor surface 𝑞, whose position is given by the function
̄ ∶ 𝑡 ↦ �̄�(𝑡). Since real-time reconstruction techniques [18] can be
used to obtain the safety factor profile during tokamak operation, the
location of the rational surface �̄� and the corresponding safety factor
value is assumed to be known in this work. To simplify the control
design, the gradient 𝑞′ is approximated using the central difference
scheme as

𝑞′(�̄�) ≈
𝑞(�̄� + ℎ) − 𝑞(�̄� − ℎ)

2ℎ
, (11)

where ℎ is a constant. Fig. 2 gives an intuitive illustration of this
approximation. Thus control of the gradient 𝑞′ can be achieved by
controlling the difference 𝑞(�̄�+ℎ)−𝑞(�̄�−ℎ). Note that this approximation
is valid only in regions where the safety factor profile can be locally
approximated as a straight line. Define the left control point 𝜌𝐿 and
corresponding safety factor 𝑞𝐿 as

𝜌𝐿 ∶= �̄�(⋅) − ℎ, (12)

𝑞𝐿 ∶= 𝑞(𝜌𝐿(⋅), ⋅). (13)

The values of poloidal flux gradient and its first and second derivatives
at the left control point are given by

𝜃𝐿 ∶= 𝜃(𝜌𝐿(⋅), ⋅), (14)

𝜃′𝐿 ∶= 𝜃′(𝜌𝐿(⋅), ⋅), (15)

𝜃′′𝐿 ∶= 𝜃′′(𝜌𝐿(⋅), ⋅). (16)

The values of the spatial functions in (10) at the location of the left
control point are given by

ℎ𝐿(_) ∶= ℎ(_)◦𝜌𝐿, (17)

𝑔∗,𝐿𝑛𝑏,𝑖 ∶= 𝑔∗𝑛𝑏,𝑖(𝜌𝐿(⋅), ⋅), (18)

𝑔∗,𝐿𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 ) ∶= 𝑔∗𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , 𝜌𝐿(⋅), ⋅). (19)

Evaluating the expression for �̇� at �̂� = 𝜌𝐿 and using the above defini-
tions results in the evolution equation

̇𝐿 = −

(

ℎ𝐿𝜂,1
𝜃′′𝐿
𝜃𝐿

+ ℎ𝐿𝜂,2
𝜃′𝐿
𝜃𝐿

+ ℎ𝐿𝜂,3

)

𝑞𝐿𝑢𝜂 −
𝑛𝑛𝑏
∑

𝑖=1
𝑔∗,𝐿𝑛𝑏,𝑖𝑃𝑛𝑏,𝑖

−
𝑛𝑒𝑐
∑

𝑗=1
𝑔∗,𝐿𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 )𝑃𝑒𝑐,𝑗 −

ℎ𝐿𝑏𝑠,1
𝜃2𝐿

𝑞𝐿𝑢𝑏𝑠 −
ℎ𝐿𝑏𝑠,2𝜃

′
𝐿

𝜃3𝐿
𝑞𝐿𝑢𝑏𝑠. (20)

The above equation can be written as

�̇� = 𝒈 (𝝆 )𝑇 �̂� + 𝑐 , (21)
𝐿 𝐿 𝑒𝑐 𝐿
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where

𝒈𝐿(𝝆𝑒𝑐 ) =
[

−𝑔∗,𝐿𝑛𝑏,1,… ,−𝑔∗,𝐿𝑛𝑏,𝑛𝑛𝑏 ,−𝑔
∗,𝐿
𝑒𝑐,1(𝜌𝑒𝑐,1),… ,−𝑔∗,𝐿𝑒𝑐,𝑛𝑒𝑐 (𝜌𝑒𝑐,𝑛𝑒𝑐 )

]𝑇
,

�̂� =
[

𝑃𝑛𝑏,1,… , 𝑃𝑛𝑏,𝑛𝑛𝑏 , 𝑃𝑒𝑐,1,… , 𝑃𝑒𝑐,𝑛𝑒𝑐
]𝑇
,

𝑐𝐿 = −

(

ℎ𝐿𝜂,1
𝜃′′𝐿
𝜃𝐿

+ ℎ𝐿𝜂,2
𝜃′𝐿
𝜃𝐿

+ ℎ𝐿𝜂,3

)

𝑞𝐿𝑢𝜂

−
ℎ𝐿𝑏𝑠,1
𝜃2𝐿

𝑞𝐿𝑢𝑏𝑠 −
ℎ𝐿𝑏𝑠,2𝜃

′
𝐿

𝜃3𝐿
𝑞𝐿𝑢𝑏𝑠.

Similarly, set 𝜌𝑅 = �̄�(⋅) + ℎ and define 𝑞𝑅, 𝜃𝑅, 𝜃′𝑅, 𝜃′′𝑅, ℎ𝑅(_), 𝑔
∗,𝑅
𝑛𝑏,𝑖 and

∗,𝑅
𝑒𝑐,𝑗 . Now, the evolution of 𝑞𝑅 can be defined similar to the approach
sed above. Now, the control-oriented model for safety factor gradient
s represented by the ordinary differential equation

̇𝐷 = �̇�𝑅 − �̇�𝐿 =
(

𝒈𝑅(𝝆𝑒𝑐 )𝑇 − 𝒈𝐿(𝝆𝑒𝑐 )𝑇
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒈𝐷(𝝆𝑒𝑐 )𝑇

�̂� + 𝑐𝑅 − 𝑐𝐿
⏟⏟⏟

𝑐𝐷

, (22)

here 𝑞𝐷 ∶= 𝑞𝑅 − 𝑞𝐿.

.4. Error equations

Suppose the input �̂� has both feedforward 𝒖𝑓𝑓 and feedback 𝒖𝑓𝑏
components such that �̂� = 𝒖𝑓𝑓 + 𝒖𝑓𝑏. Furthermore, suppose that the
oal of the controller is to track 𝑞𝐷. Define 𝑐𝐷 as 𝑐𝐷(𝝆𝑒𝑐 ) ∶= 𝑐𝐷 +

𝒈𝐷(𝝆𝑒𝑐 )𝑇 𝒖𝑓𝑓 − ̇̃𝑞𝐷. Then, the governing equation of the error system is
given by

̇̃𝑞𝐷 = �̇�𝐷 − ̇̄𝑞𝐷 = 𝒈𝐷(𝝆𝑒𝑐 )𝑇 𝒖𝑓𝑏 + 𝑐𝐷(𝝆𝑒𝑐 ). (23)

hus, the goal of the controller is to stabilize the system governed by
he above equation.

. Nonlinear gradient control synthesis

The control model developed in the previous section is used to
ynthesize a nonlinear controller. First, the feedback linearization con-
roller approach for the problem of interest is discussed. Then, real-time
ptimization problem necessary to implement the feedback lineariza-
ion controller is formulated and solved.

.1. Feedback linearization

The feedback linearization approach works on the principle of
anceling the nonlinearities in the error equation [19,20]. Such cancel-
ation allows the implementation of a linear controller on the resulting
inear model. This control algorithm is advantageous in cases where the
ynamics are not governed by a ‘‘structured’’ equation.

The goal of feedback linearization is to choose the feedback inputs
𝑓𝑏 such that the closed-loop equation takes the form

̇̃𝑞𝐷 = −𝑘𝑝𝑞𝐷 − 𝑘𝐼 ∫

𝑡

0
𝑞𝐷, (24)

here 𝑘𝑝 and 𝑘𝐼 are the proportional and integral gains. The stability
f this closed-loop system is studied in Appendix C. This is achieved
hen the inputs 𝒖𝑓𝑏 satisfy the constraint

𝐷(𝝆𝑒𝑐 )𝑇 𝒖𝑓𝑏 + 𝑐𝐷(𝝆𝑒𝑐 ) + 𝑘𝑝𝑞𝐷 + 𝑘𝐼 ∫

𝑡

0
𝑞𝐷

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝐷(𝝆𝑒𝑐 )

= 0. (25)

ubstituting the above equation into (23) results in the linear equation
iven in (24). Thus, at each time 𝑡, choosing the input vector 𝒖𝑓𝑏 such
hat the algebraic constraint given in (25) is satisfied results in the
inear closed-loop system. Since the closed-loop system is asymptoti-
ally stable (refer to Appendix C), the error will eventually converge
o zero. Note that there are 𝑛 + 𝑛 powers available for control.
4

𝑛𝑏 𝑒𝑐
On the other hand, the dynamics and the control algorithm impose
only two algebraic constraints (25) and (A.5). Note that (A.5) must
be satisfied since 𝑃𝑡𝑜𝑡 is assumed to be prescribed and the total sum
of the noninductive powers must equal the prescribed value. Thus, in
scenarios where 𝑛𝑛𝑏 + 𝑛𝑒𝑐 > 2 multiple combinations of the auxiliary
actuator powers can satisfy the two algebraic constraints. Optimization
is used to select a unique set inputs. Another major advantage of im-
plementing optimization is that, as presented in the next section, it can
be adapted to incorporate ECH&CD positions 𝝆𝑒𝑐 ∶= [𝜌𝑒𝑐,1,… , 𝜌𝑒𝑐,𝑛𝑒𝑐 ]

𝑇

as controllable variables in addition to the auxiliary powers.

3.2. Optimization problem

The optimization problem is formulated as follows: At each time 𝑡,

arg min
𝒖𝑓𝑏 ,𝝆𝑒𝑐

𝑓 (𝒖𝑓𝑏) = arg min
𝒖𝑓𝑏 ,𝝆𝑒𝑐

𝒖𝑇𝑓𝑏𝑄𝒖𝑓𝑏, (26)

subject to the algebraic constraints

𝑔1(𝒖𝑓𝑏,𝝆𝑒𝑐 ) = 𝒈𝐷(𝝆𝑒𝑐 )𝑇 𝒖𝑓𝑏 + 𝑐𝐷(𝝆𝑒𝑐 ) = 0, (27)

𝑔2(𝒖𝑓𝑏) = 𝟏𝑇 𝒖𝑓𝑏 + 𝑐𝑝 = 0, (28)

where 𝑐𝑝 = −𝑃𝑡𝑜𝑡,𝑓𝑏, and 𝟏 = [1,… , 1]𝑇 ∈ R𝑛𝑛𝑏+𝑛𝑒𝑐 . The term 𝑄 ∈
R(𝑛𝑛𝑏+𝑛𝑒𝑐 )×(𝑛𝑛𝑏+𝑛𝑒𝑐 ) is a diagonal matrix that weighs the different nonin-
ductive powers. The control algorithm presented in this work differs
from the conventional optimal and predictive control algorithms in that
the above finite-dimensional optimization problem is solved as each
time 𝑡 in real-time. On the other hand, optimal and predictive control
algorithm solve an infinite-dimensional problem over a time window of
finite or infinite width. In the above formulation, note that the ECH&CD
positions do not explicitly appear in the cost function and affect only
one of the algebraic constraints. However, treating them as controllable
variables makes the algebraic constraint nonlinear. Such a problem can
be solved using nonlinear programming methods [21]. However, such
a computation can be computationally expensive for real-time imple-
mentation. For practical implementation of the controller presented in
this work, the optimization problem is first solved by treating the EC
positions as constants rather than controllable variables. Then, an iter-
ative procedure is implemented to determine the optimal combination
of auxiliary powers and EC positions.

3.2.1. Fixed EC position
Suppose that the EC positions are fixed at �̄�𝑒𝑐 ∶= [�̄�𝑒𝑐,1,… , �̄�𝑒𝑐,𝑛𝑒𝑐 ]

𝑇 .
Define 𝒈∗𝐷(𝑡) ∶= 𝒈𝐷(�̄�𝑒𝑐 , 𝑡). The algebraic constraint given in (27)
simplifies to a linear equation of the form

𝑔∗1 (𝒖𝑓𝑏) = 𝒈∗𝐷
𝑇 𝒖𝑓𝑏 + 𝑐∗𝐷 = 0, (29)

where 𝑐∗𝐷(𝑡) ∶= 𝑐𝐷(�̄�𝑒𝑐 , 𝑡). At time 𝑡, the optimal feedback inputs 𝒖∗𝑓𝑏 that
minimize the cost function defined in (26) such that (27) and (28) are
satisfied is given by

𝒖∗𝑓𝑏 =
1
2
𝑄−1 [𝒈∗𝐷 𝟏

]

𝐴−1𝒄, (30)

where

𝐴 =
[

𝒈∗𝐷
𝑇𝑄−1𝒈∗𝐷 𝒈∗𝐷

𝑇𝑄−1𝟏
𝟏𝑄−1𝒈∗𝐷 𝟏𝑄−1𝟏

]

, 𝒄 =
[

−2𝑐∗𝐷
−2𝑐𝑝

]

. (31)

The detailed steps involved the derivation of the closed-form expression
of the optimal input are given in Appendix D.

3.2.2. Incorporation of EC positions into control algorithm
To treat the EC positions as controllable variables, a finite, discrete

set 𝛺 ⊂ R𝑛𝑒𝑐 of possible EC positions is considered. Each element of
the set is a vector in R𝑛𝑒𝑐 of the form [𝜌𝑒𝑐,1,… , 𝜌𝑒𝑐,𝑛𝑒𝑐 ]

𝑇 . The optimal set
of EC positions and the corresponding auxiliary powers are computed
using the following iterative approach.
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Fig. 3. Case 1 - fixed ECH&CD: 𝑞𝐷 (left), ECCD position (right).
1. The first step involves defining the set 𝛺 as follows. Suppose
the EC position at time step 𝑡𝑘 is 𝝆𝑒𝑐 ∶= [𝜌𝑒𝑐,1,… , 𝜌𝑒𝑐,𝑛𝑒𝑐 ]

𝑇 .
Furthermore, suppose that 𝛿𝑗 represents the maximum distance
the 𝑗th EC position can change in a single time-step. Let 𝛥𝑗 ∶=
{𝛿𝑗,1 = −𝛿𝑗 , 𝛿𝑗,2,… , 𝛿𝑗,𝑛𝑗,𝛿𝑗 = 𝛿𝑗} represent the discrete set of
possible changes in the 𝑗th EC position, where 𝑛𝑗,𝛿𝑗 the total
number of possible numbers by which the value of 𝜌𝑒𝑐,𝑗 can
be changed. Thus, the set 𝛺𝑗 ∶= {𝜌𝑒𝑐,𝑗 + 𝛿𝑗,1,… , 𝜌𝑒𝑐,𝑗 + 𝛿𝑗,𝑛𝑗,𝛿𝑗 }
represents the set of positions 𝑗th ECH&CD can take in the next
time step. Then, the set 𝛺 of possible ECH&CD positions is given
by different combinations of the positions in the sets 𝛺1,… , 𝛺𝑛𝑒𝑐 ,
i.e., 𝛺 ∶= 𝛺1 ×⋯ ×𝛺𝑛𝑒𝑐 .

2. The second step involves iterating through the vector of possible
EC positions in the set 𝛺. For each vector of EC positions, the
corresponding auxiliary powers are computed using (30). The
cost corresponding to each EC position is computed and recorded
using the cost function formula given in (26).

3. The optimal EC positions and auxiliary powers at time step 𝑡𝑘
correspond to the one with the least cost function value.

A detailed algorithm for implementing the above iterative approach
on a plasma control system (PCS) is given in Appendix E. The Appendix
also discusses method to reduce the computational expense of the above
approach.

4. Numerical simulations

The controller was tested using nonlinear simulations in the Con-
trol Oriented Transport SIMulator (COTSIM) for a DIII-D tokamak
scenario. The simulator uses the 1D magnetic diffusion equation, the
electron-heat-transport equation, and the semi-empirical Bohm/Gyro-
Bohm model to simulate tokamak plasma dynamics [22]. Two different
cases, fixed and moving ECH&CD, were considered in the simulations.
This section presents and analyzes the simulation results. The DIII-D
configuration information and input data were taken from the 147634
DIII-D shot in the simulations. In the simulations, 2 NBIs and 2 ECCDs
were used for feedback control. The feedforward (FF) components of
these inputs are presented in Figs. 4, 5, 7 and 8. The rational safety
factor surface corresponding to 𝑞 = 1.5 was considered for gradient
control in both the simulation cases. Note that the safety factor value
of 𝑞 = 1.5 may sometimes be achieved at two different locations. For
instance, consider the case where the minimum safety factor of the
𝑞-profile is equal to 1.5 − 𝜖 for a given time instant, where 𝜖 is a
small constant. Since the 𝑞-profile is continuous, the rational surface
corresponding to 𝑞 = 1.5 will be achieved at both sides of the safety
factor minimum. If such cases appear in the simulations, the rational
5

surface on the right of the safety factor minimum is considered for
gradient control. The gradient was approximated using (11) with ℎ =
0.1. The target is both the simulations was set as 𝑞𝐷 = 0.4. In all the
simulations, the controller was activated at 𝑡 = 4.5 seconds. This choice
of the controller activation time was selected based on two aspects.
First, the 𝑞-profile must achieve the target safety factor value of 𝑞 =
1.5 before the controller is activated. Second, recall that the gradient
is approximated using the central difference given in (11). Such an
approximation is valid when the safety factor is locally a straight
line. Thus, the controller must be activated when this assumption is
valid. The gray background in all the figures referred to in this section
corresponds to the period when the controller is active.

4.1. Case 1: Fixed ECH&CD case

Fig. 3 shows the closed-loop system’s evolution when both the
ECH&CD are spatially fixed. For the fixed ECH&CD case, the auxiliary
powers can be computed using (30) with 𝒈∗𝐷 = 𝒈𝐷(�̄�𝑒𝑐 ) and 𝑐∗𝐷 = 𝑐𝐷(�̄�𝑒𝑐 )
in (27) defined with respect to the fixed EC positions shown in Fig. 3.
As evident from Fig. 3, the feedforward and the closed-loop trajectory
of 𝑞𝐷 follow a similar path during the first 0.5 s of the simulation.
However, beyond 𝑡 = 5 seconds, the closed-loop trajectory follows the
target slope of 𝑞𝐷 = 0.4 closely until the end of the simulation. The
right subfigure in Fig. 3 shows the location of the rational surface �̄�,
the location of the minimum safety factor 𝜌𝑚𝑖𝑛, the left and right control
points 𝜌𝐿 and 𝜌𝑅, respectively. The NBI and ECH&CD powers are given
in Figs. 4 and 5, respectively. The figures show the saturation of the
actuator powers during the initial phase of the simulation. In addition,
the second ECH&CD’s power 𝑃𝑒𝑐,2 is also saturated for the bulk of the
simulation.

4.2. Case 2: Moving ECH&CD case

The results from moving ECH&CD simulations are shown in Figs. 6,
7, and 8. At each time-step, both the ECH&CDs were assumed to move a
maximum distance of �̂� = 0.01, i.e., 𝛿1 = 𝛿2 = 0.01. In addition, the sets
𝛥1, 𝛥2 comprised of nine equidistant points in between −0.01 and 0.01.
The controller in the simulations implemented Algorithm 1 (given in
Appendix E) to compute the optimal EC positions and auxiliary powers.
The left subfigure of Fig. 6 illustrates that the controller achieves the de-
sired target slope of 𝑞𝐷 = 0.4 within 0.25 s of controller activation. The
right subfigure displays the values of �̄�, 𝜌𝑚𝑖𝑛, 𝜌𝐿, and 𝜌𝑅. The subfigure
also shows the EC positions 𝜌𝑒𝑐,1, 𝜌𝑒𝑐,2 at each time 𝑡. Even though the
initial EC positions differ, both 𝜌𝑒𝑐,1 and 𝜌𝑒𝑐,2 eventually converge to an
optimal global location as determined by the controller. It is important
to note that the existence of a single global optimal EC position is not
guaranteed in all scenarios. Figs. 7 and 8 show the NBI and ECH&CD

powers, respectively. The powers saturate for an initial period and then
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Fig. 4. Case 1 - fixed ECH&CD: Auxiliary powers - 𝑃𝑛𝑏,1 (left), 𝑃𝑛𝑏,2 (right).
Fig. 5. Case 1 - fixed ECCD: Auxiliary powers - 𝑃𝑒𝑐,1 (left), 𝑃𝑒𝑐,2 (right).
Fig. 6. Case 2 - moving ECH&CD: 𝑞𝐷 (left), ECCD position (right).
o into high-frequency chatter-like behavior before achieving stable
no chatter) values. Note that the high-frequency behavior in the input
owers corresponds to the transience in the EC positions 𝜌𝑒𝑐,1 and 𝜌𝑒𝑐,2
shown in the right subfigure of Fig. 6). Thus, slight changes in the EC
ositions can significantly alter the optimal ECH&CD and NBI powers.
fter going through the chatter, the ECH&CD powers gradually increase
hile NBI powers decrease over time. Since the feedforward trajectory
oves away from the target during this phase (evident from Fig. 6), the
owers of ECH&CDs, which are positioned closer to the two gradient
ontrol points, gradually increase to track the target in the closed-loop
feedforward + feedback) case. Consequently, the NBI powers gradually
ecrease with time to satisfy the total power constraint (28).
6

4.3. Comparison of fixed and moving ECH&CD cases

A comparison of the two cases discussed above shows differences
in the controller effectiveness and performance. First, even though the
control objective is achieved in both cases, the target slope is achieved
sooner in the moving ECH&CD case. Notably, the target is achieved
in less than 0.25 s of controller activation in the moving ECH&CD
case compared to 0.5 s in the fixed ECH&CD case. This difference in
convergence time is significant because the controller is active only
in a short time window (1.5 s) of the discharge. Furthermore, the
closed-loop trajectory tracks the target more closely in the moving
ECH&CD case. Another significant difference between the two cases can
be observed in the auxiliary powers. The input powers in the moving
ECH&CDcase exhibit a high-frequency behavior, which is absent in the
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Fig. 7. Case 2 - moving ECH&CD: Auxiliary powers - 𝑃𝑛𝑏,1 (left), 𝑃𝑛𝑏,2 (right).
Fig. 8. Case 2 - moving ECH&CD: Auxiliary powers - 𝑃𝑒𝑐,1 (left), 𝑃𝑒𝑐,2 (right).
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ixed case. On the other hand, the saturation observed in the second
CH&CD’s power of the fixed case is not present in the moving case.
imilar saturation was observed while controlling the minimum safety
actor with fixed and moving ECH&CD [17].

. Conclusion

A model-based local safety factor gradient control is presented. A
onlinear model that governs the evolution of the slope of the safety
actor gradient at a spatially moving rational surface is first developed.
he model incorporates the effect of ECH&CD position of the gradient
ynamics, thus allowing it to be treated as a controllable variable.
hen, a control algorithm based on optimal feedback linearization
f the nonlinear model is developed to regulate the safety factor
radient around a given target. The control algorithm is designed to
llocate noninductive powers and ECH&CD positions simultaneously.
he control algorithm is tested for a DIII-D tokamak scenario using
onlinear simulations in the Control Oriented Transport SIMulator
COTSIM). Both fixed and moving ECH&CD cases are studied. The
esults demonstrate the effectiveness of the proposed and the advantage
f implementing a moving ECH&CD for control. Future studies may
nclude methods to eliminate chatter in the input power when the
CH&CD positions are updating and experimental validation of the
roposed controller.

RediT authorship contribution statement

Sai Tej Paruchuri: Conceptualization, Methodology, Investigation,
riting – original draft, Visualization, Validation. Eugenio Schuster:

onceptualization, Validation, Writing – review & editing, Supervision,
7

roject administration, Funding acquisition. U
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This material is based upon work supported by the U.S. Department
f Energy, Office of Science, Office of Fusion Energy Sciences, under
ward Numbers DE-SC0010661 and DE-SC0021385.

isclaimer

This report was prepared as an account of work sponsored by an
gency of the United States Government. Neither the United States
overnment nor any agency thereof, nor any of their employees, makes
ny warranty, express or implied, or assumes any legal liability or
esponsibility for the accuracy, completeness, or usefulness of any
nformation, apparatus, product, or process disclosed, or represents that
ts use would not infringe privately owned rights. Reference herein to
ny specific commercial product, process, or service by trade name,
rademark, manufacturer, or otherwise does not necessarily constitute
r imply its endorsement, recommendation, or favoring by the United
tates Government or any agency thereof. The views and opinions of
uthors expressed herein do not necessarily state or reflect those of the
nited States Government or any agency thereof.



Fusion Engineering and Design 194 (2023) 113914S.T. Paruchuri and E. Schuster

o

t
c
c

𝜂

T
a
g
(
a
a
T
𝑗
c
c
r
v
o
o
p
f
o

𝑃

S
m
p

r

𝜃

t
r
t
l
m
p
a

A
s

d
I
a
𝜌
t
p
f
m

J

T
i
p

Appendix A. Magnetic diffusion equation

The magnetic diffusion equation (MDE) [23] is one dimensional
partial differential equation that governs the evolution of the poloidal
stream function 𝜓 and takes the form
𝜕𝜓
𝜕𝑡

=
𝜂

𝜇0𝜌2𝑏𝐹
2
1
�̂�
𝜕
𝜕�̂�

(

�̂�𝐷𝜓
𝜕𝜓
𝜕�̂�

)

+ 𝑅0�̂�𝜂𝑗𝑛𝑖 (A.1)

subject to the boundary conditions
𝜕𝜓
𝜕�̂�

|

|

|

|�̂�=0
= 0,

𝜕𝜓
𝜕�̂�

|

|

|

|�̂�=1
= −

𝜇0
2𝜋

𝑅0

�̂��̂�=1�̂��̂�=1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑘𝐼𝑝

𝐼𝑝. (A.2)

The terms 𝜂, 𝜇0, 𝑗𝑛𝑖 and 𝐼𝑝 in the above equation are the plasma
resistivity, vacuum permeability, noninductive current and plasma cur-
rent, respectively. On the other hand, the terms 𝐹 , �̂� and �̂� are
functions of the spatial variable �̂� and define the magnetic configuration
f the plasma equilibrium. The function 𝐷𝜓 is computed using the

formula 𝐷𝜓 = 𝐹�̂��̂� . The plasma resistivity 𝜂 is computed using the
control-oriented model developed in [24], which is given by

𝜂 ≈ 𝑔𝜂 × (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

−3∕2, (A.3)

where the terms 𝑃𝑡𝑜𝑡, �̄�𝑒 and 𝑔𝜂 are the total power, line-average
electron density and fixed function of the spatial variable �̂� respec-
ively. The terms 𝛾, 𝜖 and 𝜁 in the above equation are the scaling
onstants. The noninductive current in (A.1) is approximated using the
ontrol-oriented model

𝑗𝑛𝑖 ≈
𝑛𝑛𝑏
∑

𝑖=1
𝑔𝑛𝑏,𝑖 × (𝐼𝛾𝑝𝑃

𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜖𝑛𝑏)�̄�−1𝑒 𝑃𝑛𝑏,𝑖

+
𝑛𝑒𝑐
∑

𝑗=1
�̄�𝑒𝑐,𝑗 × (𝐼𝛾𝑝𝑃

𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜖𝑒𝑐 )�̄�−1𝑒 𝑃𝑒𝑐,𝑗

+ (𝜕𝜓∕𝜕�̂�)−1𝑔𝑏𝑠 × (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

−1∕2�̄�𝑒.

(A.4)

he above model was first introduced in [24]. By formulation, it
ssumes that there are 𝑛𝑛𝑏 NBIs and 𝑛𝑒𝑐 ECH&CDs available for local
radient control. In the above model, the terms 𝑔𝑛𝑏,𝑖 (𝑖 = 1,… , 𝑛𝑛𝑏), �̄�𝑒𝑐,𝑗
𝑗 = 1,… , 𝑛𝑒𝑐), 𝑔𝑏𝑠 are functions of �̂� that account for the NBI, ECH&CD
nd bootstrap current depositions, respectively. The scalars 𝜖𝑛𝑏 and 𝜖𝑒𝑐
re constants that account for NBI and ECH&CD efficiency, respectively.
he terms 𝑃𝑛𝑏,𝑖, 𝑃𝑒𝑐,𝑗 are the powers corresponding to the 𝑖th NBI and
th ECH&CD, respectively. In this work, these powers are the primary
ontrollable inputs. On the other hand, the terms 𝐼𝑝, �̄�𝑒 and 𝑃𝑡𝑜𝑡 are
onsidered the prescribed inputs. Typically, there are other controllers
unning in parallel to the local gradient controller which prescribe these
alues. For example, the total energy controller prescribes the values
f 𝑃𝑡𝑜𝑡 to track a target total energy [14]. However, detailed discussion
f these controllers is beyond the scope of the current work, and the
arameters are treated as known inputs in the simulations conducted
or this study. Note that the total power 𝑃𝑡𝑜𝑡 can be expressed in terms
f NBI and ECH&CD powers as

𝑡𝑜𝑡 =
𝑛𝑛𝑏
∑

𝑖=1
𝑃𝑛𝑏,𝑖 +

𝑛𝑒𝑐
∑

𝑗=1
𝑃𝑒𝑐,𝑗 . (A.5)

ince the value of 𝑃𝑡𝑜𝑡 is prescribed, the local gradient controller
ust satisfy the above equation while allocating the NBI and ECH&CD
owers.

Substituting (A.3), (A.4) into (A.1) and taking the derivative with
espect to the spatial derivative results in a PDE of the form

̇ =
(

ℎ𝜂,1𝜃
′′ + ℎ𝜂,2𝜃′ + ℎ𝜂,3𝜃

)

𝑢𝜂 +
𝑛𝑛𝑏
∑

𝑖=1
ℎ𝑛𝑏,𝑖𝑢𝑛𝑏,𝑖

+
𝑛𝑒𝑐,𝑗
∑

𝑗=1
ℎ̄𝑒𝑐,𝑗𝑢𝑒𝑐,𝑗 +

(

ℎ𝑏𝑠,1
1
𝜃
− ℎ𝑏𝑠,2

𝜃′

𝜃2

)

𝑢𝑏𝑠, (A.6)
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subject to the boundary conditions

𝜃(0) = 0, 𝜃(1) = −𝑘𝐼𝑝𝐼𝑝, (A.7)

where

ℎ𝜂,1 ∶=
1

𝜇0𝜌2𝑏

𝑔𝜂
𝐹 2

𝐷𝜓 ,

ℎ𝜂,2 ∶=
1

𝜇0𝜌2𝑏

[( 𝑔𝜂
𝐹 2

)′
𝐷𝜓 +

𝑔𝜂
𝐹 2

(𝐷𝜓

�̂�
+ 2𝐷′

𝜓

)]

,

ℎ𝜂,3 ∶=
1

𝜇0𝜌2𝑏

[

( 𝑔𝜂
𝐹 2

)′ (𝐷𝜓

�̂�
+𝐷′

𝜓

)

+
𝑔𝜂
𝐹 2

(

𝐷′
𝜓 �̂� −𝐷𝜓

𝜌2

)]

,

ℎ𝑛𝑏,𝑖 ∶= 𝑅0 × (�̂� × 𝑔𝑛𝑏,𝑖)′,

ℎ̄𝑒𝑐,𝑗 ∶= 𝑅0 × (�̂� × �̄�𝑒𝑐,𝑗 )′, (A.8)
ℎ𝑏𝑠,1 ∶= 𝑅0 × (�̂� × 𝑔𝑏𝑠)′,

ℎ𝑏𝑠,2 ∶= 𝑅0 × �̂� × 𝑔𝑏𝑠,

𝑢𝜂 ∶= (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

−3∕2,

𝑢𝑛𝑏,𝑖 ∶= (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜁𝑛𝑏)�̄�−1𝑒 𝑃𝑛𝑏,𝑖,

𝑢𝑒𝑐,𝑗 ∶= (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

(−3∕2+𝜁𝑒𝑐 )�̄�−1𝑒 𝑃𝑒𝑐,𝑗 ,

𝑢𝑏𝑠 ∶= (𝐼𝛾𝑝𝑃
𝜖
𝑡𝑜𝑡�̄�

𝜁
𝑒 )

−1∕2�̄�𝑒.

Recall that the term 𝜃 in the above PDE is the poloidal flux gradient,
which is defined as 𝜃 ∶= 𝜕𝜓

𝜕�̂� . The terms 𝑢𝜂 , 𝑢𝑛𝑏,𝑖, 𝑢𝑒𝑐,𝑗 and 𝑢𝑏𝑠 in
(A.6) are the virtual inputs terms. The notations ̇(⋅) and (⋅)′ represent
he derivatives with respect to the temporal 𝑡 and spatial �̂� variables,
espectively. Since the time derivative of 𝑞 depends on �̇� (refer to (3)),
he above PDE is crucial in deriving the final model necessary for
ocal gradient control design. However, prior to proceeding to final
odel development, it is important to incorporate the effect of ECH&CD
ositions on the 𝜃 dynamics. The next section focuses on addressing this
spect of modeling.

ppendix B. Modeling the relation between ECH&CD position and
afety factor dynamics

The poloidal flux gradient model derived in the previous section
oes not incorporate the effect of EC positions on the plasma dynamics.
n particular, the model assumes that the EC positions are fixed, say
t �̄� ∶= [�̄�𝑒𝑐,1,… , �̄�𝑒𝑐,𝑛𝑒𝑐 ]

𝑇 . Shifting the 𝑗th ECH&CD’s position from
̄𝑒𝑐,𝑗 to 𝜌𝑒𝑐,𝑗 shifts the corresponding current deposition profile. Suppose
hat the current deposition profile corresponding to the 𝑗th ECH&CD
ositioned at �̄�𝑒𝑐,𝑗 is J̄

𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 ∶ �̂� ↦ J̄

𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 (�̂�). If the EC position shifts

rom �̄�𝑒𝑐,𝑗 to 𝜌𝑒𝑐,𝑗 , then the new current deposition profile can be
athematically expressed as
𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , �̂�) ∶= J̄

𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 (�̂� + �̄�𝑒𝑐,𝑗 − 𝜌𝑒𝑐,𝑗 ). (B.1)

he current deposition profile appears in (A.6) through ℎ̄𝑒𝑐,𝑗 (defined
n (A.8)). The term �̄�𝑒𝑐,𝑗 in (A.8) is related to the current deposition
rofile [14,24] as

�̄�𝑒𝑐,𝑗 (�̂�) = J̄
𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 (�̂�)

(𝑇 𝑝𝑟𝑜𝑓𝑒 (�̂�)(𝑛𝑝𝑟𝑜𝑓𝑒 (�̂�))𝜁 )𝜆𝑒𝑐

𝑛𝑝𝑟𝑜𝑓𝑒 (�̂�)
, (B.2)

where 𝑇 𝑝𝑟𝑜𝑓𝑒 and 𝑛𝑝𝑟𝑜𝑓𝑒 are fixed functions of the spatial variable �̂�, 𝜁 and
𝜆𝑒𝑐 are constants. The effect of 𝑗th EC position on the plasma dynamics
is modeled by using J

𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 instead of J̄𝑝𝑟𝑜𝑓𝑒𝑐,𝑗 in (B.1) and replacing ℎ̄𝑒𝑐 in

(A.6) by ℎ𝑒𝑐 , which is defined as

ℎ𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , �̂�) ∶= 𝑅0(�̂�(�̂�)𝑔𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , �̂�))′ (B.3)

with

𝑔𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , �̂�) ∶= J
𝑝𝑟𝑜𝑓
𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , �̂�)

(𝑇 𝑝𝑟𝑜𝑓𝑒 (�̂�)(𝑛𝑝𝑟𝑜𝑓𝑒 (�̂�))𝜁 )𝜆𝑒𝑐
𝑝𝑟𝑜𝑓 . (B.4)

𝑛𝑒 (�̂�)
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Thus, the new governing equation for the evolution of the poloidal flux
gradient is

�̇� =
(

ℎ𝜂,1𝜃
′′ + ℎ𝜂,2𝜃′ + ℎ𝜂,3𝜃

)

𝑢𝜂 +
𝑛𝑛𝑏
∑

𝑖=1
ℎ𝑛𝑏,𝑖𝑢𝑛𝑏,𝑖

+
𝑛𝑒𝑐
∑

𝑗=1
ℎ𝑒𝑐,𝑗 (𝜌𝑒𝑐,𝑗 , ⋅)𝑢𝑒𝑐 +

(

ℎ𝑏𝑠,1
1
𝜃
− ℎ𝑏𝑠,2

𝜃′

𝜃2

)

𝑢𝑏𝑠. (B.5)

The above PDE is subject to the same boundary conditions as the PDE
in (A.6).

Appendix C. Stability analysis of controller

The goal of this section is to determine if the controller drives the
error gradient 𝑞𝐷 ∶= 𝑞𝐷 − 𝑞𝐷 to 0 eventually. The stability analysis is
arried out using the standard Lyapunov stability theorem [20] and the
losed-loop system’s equation (derived in Section 3.1).

̇̃𝑞𝐷 = −𝑘𝑝𝑞𝐷 − 𝑘𝐼 ∫

𝑡

0
𝑞𝐷. (C.1)

he theorem states that if there exists a positive definite function of
he form 𝑉 ∶ 𝑥 → 𝑉 (𝑥), where 𝑥 is the state of a nonlinear system

governed by an ODE of the form �̇� = 𝑓 (𝑥), such that its time-derivative
�̇� is negative definite, then the equilibrium of the closed-loop system
is asymptotically stable, i.e., 𝑞𝐷 → 0 as 𝑡→ ∞ [20].

To perform the stability analysis on the system of interest, consider
the positive definite Lyapunov function

𝑉 = 1
2
𝑥𝑇

[

1 𝑏
𝑏 𝑘𝐼

]

⏟⏞⏞⏟⏞⏞⏟
𝑃

𝑥 (C.2)

ith 𝑥 = [𝑥1, 𝑥2]𝑇 ∶= [𝑞𝐷, ∫
𝑡
𝑡0
𝑞𝐷𝑑𝑡]𝑇 , and the constant 𝑏 satisfying 0 <

𝑏 < min(
√

𝑘𝐼 , 𝑘𝑃 𝑘𝐼∕(𝑘𝐼 +
1
4𝑘

2
𝑃 )). Note that since the constant 𝑏 satisfies

the condition 0 < 𝑏 <
√

𝑘𝐼 , the matrix 𝑃 has positive eigenvalues,
which in turn implies that the Lyapunov function is positive definite,
i.e., 𝑉 (𝑥) ≥ 0 for all 𝑥 and 𝑉 = 0 if and only if 𝑥 = 0. Taking the time
derivative of the Lyapunov function results in the equation

�̇� = −(𝐾𝑃 − 𝑏)𝑥21 −𝐾𝐼𝑏𝑥
2
2 −𝐾𝑝𝑏𝑥1𝑥2. (C.3)

The time derivative satisfies the condition �̇� (𝑥) ≤ 0 for all 𝑥 and �̇� = 0
if and only if 𝑥 = 0. Thus, the time derivative �̇� is negative definite.
The stability theorem stated above gives us the required conclusion
that 𝑞𝐷 → 0 as 𝑡 → ∞. In fact the theorem implies that the integral
of the gradient error ∫ 𝑡𝑡0 𝑞𝐷𝑑𝑡 also converges to 0, which is a stronger
conclusion.

Appendix D. Optimization analysis

Lagrange multiplier analysis is one of the most commonly used
methods for solving an optimization problem. Suppose that the opti-
mization problem considers the minimization of a cost function (say 𝑓 )
with respect to parameters (say 𝒖𝑓𝑏) subject to the linear constraints
𝑔∗1 (𝒖𝑓𝑏) = 0 and 𝑔2(𝒖𝑓𝑏) = 0. The Lagrange multiplier analysis starts
with considering the Lagrangian function L, which is defined as

L(𝒖𝑓𝑏, 𝜆1, 𝜆2) = 𝑓 (𝒖𝑓𝑏) − 𝜆1𝑔∗1 (𝒖𝑓𝑏) − 𝜆2𝑔2(𝒖𝑓𝑏). (D.1)

According to the Lagrange multiplier theorem [25], if an extremum
exists 𝒖𝑓𝑏, then there are Lagrange multipliers𝜆∗1 , 𝜆

∗
2 such that

∇L(𝒖∗𝑓𝑏, 𝜆
∗
1 , 𝜆

∗
2) = 0, (D.2)

which is equivalent to

∇𝑓 − 𝜆∗1∇𝑔
∗
1 − 𝜆

∗
2∇𝑔2 = 0, (D.3)

𝑔∗1 = 0, (D.4)

𝑔 = 0. (D.5)
9

2

For the problem at hand, the cost function 𝑓 and the constraints 𝑔∗1
and 𝑔2 are defined as in (26), (29) and (28), respectively. Using these
definitions, and applying the first condition given above results in

2𝑄𝒖𝑓𝑏 − 𝜆∗1𝒈
∗
𝐷 − 𝜆∗2𝟏 = 0, (D.6)

which implies

𝒖∗𝑓𝑏 =
1
2
𝑄−1 (𝜆∗1𝒈

∗
𝐷 + 𝜆∗2𝟏

)

. (D.7)

Substituting the expression for 𝒖𝑓𝑏 into the constraint equations gives
us
[

𝒈∗𝐷
𝑇𝑄−1𝒈∗𝐷 𝒈∗𝐷

𝑇𝑄−1𝟏
𝟏𝑄−1𝒈∗𝐷 𝟏𝑄−1𝟏

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴

{

𝜆∗1
𝜆∗2

}

=
[

−2𝑐∗𝐷
−2𝑐𝑝

]

⏟⏟⏟
𝒄

. (D.8)

Thus, the optimal feedback inputs 𝒖∗𝑓𝑏 can be computed from (D.7) as

𝒖∗𝑓𝑏 =
1
2
𝑄−1 [𝒈∗𝐷 𝟏

]

𝐴−1𝒄. (D.9)

The above extremum is indeed a minimum for the problem at hand.
Since 𝑓 defined in (26) is quadratic, the cost function value of 𝑓 (𝒖∗𝑓𝑏)
s the least possible achievable value such that 𝑔∗1 (𝒖

∗
𝑓𝑏) = 0 and 𝑔2(𝒖∗𝑓𝑏) =

.

ppendix E. Algorithm

This section presents the algorithm for computing the optimal com-
ination of auxiliary drive powers and EC positions at any given
ime-step. These values are optimal in the sense that they are the
olutions of the discrete-time version of the optimization problem
ormulated in Section 3.2. In the algorithm, the subscript/superscript
refers to the 𝑘th time-step.

Algorithm 1: Algorithm for optimization problem
with moving ECCD.

Inputs: 𝝆𝑘−1𝑒𝑐 = [𝜌𝑘−1𝑒𝑐,1 ,… , 𝜌𝑘−1𝑒𝑐,𝑛𝑒𝑐
]𝑇 , 𝛿1,… , 𝛿𝑛𝑒𝑐 .

Outputs: 𝒖∗,𝑘𝑓𝑏 , 𝝆∗,𝑘
𝑒𝑐 .

1. Define the sets 𝛺1,… , 𝛺𝑛𝑒𝑐 as given in
Section 3.2.2, Step 1.

2. Define the set of possible EC positions as
𝛺 ∶= 𝛺1 ×… ×𝛺𝑛𝑒𝑐 .

3. For 𝑖 = 1,… , 𝑛1,𝛿1 ×… × 𝑛𝑛𝑒𝑐 ,𝛿𝑛𝑒𝑐 (number of
elements in 𝛺),

(a) Choose 𝑖𝑡ℎ element of 𝛺 and set it as
𝝆𝑘𝑒𝑐,𝑖.

(b) Compute optimal auxiliary powers
𝒖∗,𝑘𝑓𝑏,𝑖 with 𝒈∗𝐷 ∶= 𝒈𝐷(𝝆𝑘𝑒𝑐,𝑖) and
𝑐∗𝐷(𝑡) ∶= 𝑐𝐷(𝝆𝑘𝑒𝑐,𝑖) using (30). Set 𝐽𝑘𝑖 =

𝒖∗,𝑘𝑓𝑏,𝑖
𝑇
𝑄𝒖∗,𝑘𝑓𝑏,𝑖.

4. Set 𝑗 such that 𝐽𝑘𝑗 = 𝑚𝑖𝑛𝑖𝐽𝑘𝑖 . Set 𝑢∗,𝑘 = 𝑢∗,𝑘𝑗
and 𝝆∗,𝑘

𝑒𝑐 = 𝝆𝑘𝑒𝑐,𝑗 .

The above algorithm requires the implementation of mathematical
operations such as numerical differentiation (to compute RHS of (B.3))
and matrix inversion/solving linear systems (to solve the RHS of (30)).
However, implementing algorithms to carry out these mathematical
operations in the PCS is straightforward.

Note that elements in sets are unordered by definition. However,
in the above algorithm, it is assumed that each element in the set 𝛺
is indexed, which allows us to iterate through the set sequentially.
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Elements of𝛺 can be arbitrarily indexed since the final optimal solution
is independent of indexing.

The computational expense of the above presented approach de-
pends on the number of times (30) is used to compute the number of
auxiliary powers. This is equal to the number of elements in the set 𝛺,
which has 𝑛1,𝛿1 ×⋯ × 𝑛𝑛𝑒𝑐 ,𝛿𝑛𝑒𝑐 elements. The computational expense of
he above algorithm can be reduced by using the following methods.

1. The computation of each iteration is independent of other itera-
tions. Thus, parallel computing or loop vectorization can be used
to decrease the total computational time.

2. Multiple ECH&CDs can be combined into different clusters to
decrease the number of elements in the set 𝛺.

3. Considering a coarser set of positions in the set 𝛺𝑗 for the 𝑗th EC
position reduces the number of iterations in the above presented
algorithm.
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