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A B S T R A C T

The neutral beam injection (NBI) system in EAST produces energetic neutral particles, which collide with
electrons and ions in tokamak plasmas and heat the plasmas through Coulomb collisions. Moreover, it drives
a non-inductive source of current, due to the charge-exchange collision between neutral particles and ions,
and injects toroidal torque, which generates a toroidal rotation of the plasma. The effect caused by the NBI
system, such as plasma heating, current drive, total neutron rate, momentum transfer, and shine-through, are
modeled by a comprehensive module called NUBEAM. However, NUBEAM is computationally intensive since it
relies on Monte Carlo methods. In this work, a neural network model has been developed as a surrogate model
for NUBEAM in EAST. The database for neural-network model training, validation and testing is generated by
running TRANSP for experimental discharges from recent EAST campaigns (after the latest NBI upgrade) while
using the NUBEAM module. Simulation results illustrate that the trained neural network has the capability of
replicating the predictions made by NUBEAM while demanding a significantly shorter execution time. These
results indicate that surrogate models like the one proposed in this work could enable fast transport simulations
for EAST after integrating them into a control-oriented predictive code such as COTSIM.
1. Introduction

Making nuclear-fusion energy commercially viable on a tokamak
device requires stable and high-performance operation under advanced
tokamak (AT) scenarios [1], which are characterized by improved
confinement, magneto-hydro-dynamics (MHD) stability, high fusion
gain, and possible steady-state operation. The realization of those AT
scenarios relies on handling several plasma control problems simulta-
neously with the limited set of available plasma actuators. Developing
such control capability is feasible only with a good understanding of
both the complex physics governing the transport in tokamak plasmas
and the plasma response to the different available actuators. Thus,
tremendous effort has been put on building predictive codes, such
as TRANSP, ONE-TWO, CRONOS, and ASTRA, with the capability of
carrying out transport simulations. Those high-fidelity physics-oriented
simulation codes have been proven to be reliable for analyzing shots
after experiments and predicting plasma performance before experi-
ments. However, because they are computationally intensive, embed-
ding them in real-time closed-loop control algorithms or using them
to run feedforward optimizations between shots become unaccomplish-
able tasks. Therefore, having fast transport simulation codes that can
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deliver prediction results with a level of accuracy similar to those
offered by more computationally expensive codes is crucial for many
control applications.

Machine learning (ML) techniques have been recently employed
for many fusion applications such as disruption prediction and fault
detection [2–4], plasma control [5,6], and fast plasma equilibrium
solvers [7,8]. ML has also been used for the development of surrogate
models for physics-oriented codes such as GENRAY [9], NUBEAM [10,
11], TGLF/EPED [12], and MMM [13]. These surrogate models have
the potential of producing high levels of prediction accuracy with a
much lower computational burden, enabling in this way fast transport
simulations once they are integrated into control-oriented predictive
codes. A data-driven modeling approach based on a deep neural net-
work is used in this work for the development of a surrogate model of
NUBEAM with the ultimate goal of enabling fast transport simulations
for EAST. Inspired by a similar concept originally presented in [10,11],
this work uses the same machine learning technique (i.e., Multi-Layer
Perceptron (MLP)) but proposes a different data-processing approach.
Instead of using a first-order low-pass filter to handle the beam slowing-
down time effects [14,15], the history information of the beam power
vailable online 13 February 2023
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Fig. 1. Relative explained variance of modes generated by PCA. The number of modes kept for each profile to achieve greater-than-99.9% relative explained variance is highlighted
with white boxes.
Fig. 2. Range of normalized inputs in the training dataset, where the notation (⋅)𝑒𝑑𝑔
stands for values at the plasma edge, (⋅)𝑐𝑡𝑟 stands for values at the plasma core, and
𝐵𝑧𝑅 is the vacuum toroidal field.

is directly used as input for training. Moreover, data is normalized
instead of being standardized since in this work the assumption that
data follows a Gaussian distribution is not adopted. Finally, the neural
network configuration (i.e., number of layers and active function at
each layer) is different when building a neural-network-based NUBEAM
model for EAST.

This paper is organized as follows. In Section 2, the collection,
generation, and division of the dataset used for neural-network train-
ing and testing are discussed. Next, the neural network model selec-
tion as well as the training and validation workflow are introduced
in Section 3. Model-testing results are discussed in Section 4, while
conclusions and future work are presented in Section 5.

2. Dataset generation and data processing

EAST is a long pulse superconducting tokamak with an ITER-like
tungsten divertor. One of its scientific goals is to develop AT scenarios
for ITER operations. Heating and current drives (H&CD) are crucial
to realize fully non-inductive operation with a high bootstrap current
fraction. The NBI system, which is one of the most effective H&CD
sources at EAST, has two beamlines named NBI1 and NBI2. For each
beamline, two hot-cathode ion sources coded with ‘L’ and ‘R’ are
operated individually. This results in an NBI system with a total of
four independent beams (i.e., NBI1L, NBI1R, NBI2L, and NBI2R). After
recent upgrades, all beams are oriented in a counterclockwise injection
direction, which is consistent with the direction of the plasma current
[16].
2

The computationally intensive NUBEAM module [17] is frequently
used to predict neutral-beam effects, such as plasma heating, current
drive, total neutron rate, momentum transfer, and shine-through. A
surrogate model of NUBEAM is proposed in this work by following a
data-driven modeling approach based on neural networks. Experimen-
tal data collected from around 100 experimental discharges after the
EAST recent upgrade have been used to build a database 𝐷𝑒. Because
the neural network architecture used in this work cannot extrapolate,
the accuracy of prediction with inputs outside the range of the training
data is not guaranteed. Therefore, the training dataset should be large
enough to generate a practical and reliable model. With this goal
in mind, the database 𝐷𝑒 has been further augmented by modifying
parameters in reasonable ranges, such as the effective atomic number
(𝑍𝑒𝑓𝑓 ⊂ [1.5, 2.5]) and the edge neutral density (𝑛0,𝑒𝑑𝑔 ⊂ [1011, 1012]) to
create a larger database 𝐷𝑥. Then, the database 𝐷𝑥 has been fed into
TRANSP to generate another dataset 𝐷𝑡 for training a neural network
model. When running TRANSP, the NUBEAM module is activated, the
time step is set to 1 ms, the number of points of the spatial grid is
chosen as 20, and the number of particles used in the Monte Carlo
simulation is selected as 16,000 in order to smoothen the predictions
and increase their fidelity. As a result, roughly 100,000 time slices have
been collected and used as the dataset for neural network modeling.
The 14 inputs (𝑑𝑖𝑛) and 11 outputs (𝑑𝑜𝑢𝑡) for the model are listed in
Table 1.

It is worth noting that the anomalous fast ion diffusivity is computed
as

𝐷𝑓 (�̂�) = 𝐷𝑓,1 + (𝐷𝑓,0 −𝐷𝑓,1)(1 − �̂�𝛼𝑓 )𝛽𝑓 , (1)

where 𝐷𝑓,0, 𝐷𝑓,1, 𝛼𝑓 , and 𝛽𝑓 are scaling parameters. For each simu-
lation, either the classical (𝐷𝑓,0 = 𝐷𝑓,1 = 0, 𝛼𝑓 = 1, 𝛽𝑓 = 1), flat
(𝐷𝑓,0 = 𝐷𝑓,1 = 𝐷𝑓,𝑚𝑎𝑔 , 𝛼𝑓 = 1, 𝛽𝑓 = 1), or peak (𝐷𝑓,0 = 0, 𝐷𝑓,1 =
𝐷𝑓,𝑚𝑎𝑔 , 𝛼𝑓 = 2, 𝛽𝑓 = 4) spatial profile is selected at the beginning, where
𝐷𝑓,𝑚𝑎𝑔 ∈ [10−4, 5] m2 s−1 is a randomly picked number. Before using the
results from the TRANSP simulations to train a neural network model,
the NUBEAM input–output data 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 is processed by including
the history of beam powers to account for the possible beam slowing-
down time effects, reducing the dimension of the profile data by using
principal component analysis, and normalizing the data to make each
feature standardized.

2.1. Beam slowing down time effects

Since the effect of neutral beam injection acting on the plasma is
not an instant process, the history of beam power injection has to
be considered. Many approaches can realize the goal of incorporating
history information into the training process, such as low-pass filtering
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Fig. 3. Comparison of prediction accuracy and execution time with different hidden layers in the neural network structure.
𝑥

Table 1
List of inputs and outputs of neutral beam model.

Symbol Explanation

Input: 𝑑𝑖𝑛

𝑍𝑒𝑓𝑓 Mean charge of impurities
𝑛0,𝑒𝑑𝑔 Edge neutral density (m−3)
𝑅0 Major radius (m)
𝜅 Elongation
𝐼𝑝 Plasma current (A)
𝑎 Minor radius (m)
𝐵𝜙,𝜈𝑅 Vacuum toroidal field (T m)
𝛿𝑢 Upper triangularity
𝛿𝑙 Lower triangularity
𝑃𝑁𝐵𝐼,1−4 Injected power for each beam (W)
𝑇𝑒 Electron temperature profile (eV)
𝑛𝑒 Electron density profile (m−3)
𝑞 Safety factor profile
𝐷𝑓 Anomalous fast ion diffusivity (m2∕s)

Output: 𝑑𝑜𝑢𝑡

𝑆𝑛𝑒𝑢𝑡𝑟𝑜𝑛 Total neutron rate (s−1)
𝑃𝑠ℎ𝑖𝑛𝑒 Shine-through power (W)
𝑃𝑐𝑥 Charge-exchange power loss (W)
𝑃𝑜𝑟𝑏 Orbit power loss (W)
𝑃𝑏,𝑒 Beam heating to electrons (W m−3)
𝑃𝑏,𝑖 Beam heating to ions (W m−3)
𝑇𝑏,𝑒 Beam torque to electrons (N m/m3)
𝑇𝑏,𝑖 Beam torque to ions (N m/m3)
𝑛𝑏 Beam ion density (m−3)

𝑗𝑑𝑒𝑝𝑁𝐵𝐼1−4 Beam current drive for each beam (A/m2)

𝑃𝑓𝑎𝑠𝑡 Fast ion pressure (Pa)

the individual beam power as shown in [10,11] or using recurrent
neural networks (RNNs). In this work, one-second history information
of individual beam power injections is added to the input dataset. In
another words, at time 𝑡 = 𝑡𝑗 the input 𝑃 𝑡𝑗

𝑁𝐵𝐼,𝑖 is expanded as

𝑃
𝑡𝑗
𝑁𝐵𝐼,𝑖 = [𝑃

𝑡=𝑡𝑗
𝑁𝐵𝐼,𝑖, 𝑃

𝑡=𝑡𝑗−1
𝑁𝐵𝐼,𝑖 ,… , 𝑃

𝑡=𝑡𝑗−100
𝑁𝐵𝐼,𝑖 ], (2)

where 𝑖 ∈ {1, 2, 3, 4} and 𝛥𝑡 = 𝑡𝑗 − 𝑡𝑗−1 = 10 ms.

2.2. Profile data reduction via PCA

As the size of the input dataset becomes larger, the amount of time
spent in training a neural network increases. And more importantly,
it takes more time to make predictions when executing the trained
neural network. Because the ultimate goal of using surrogate models is
to enable fast transport simulations, the speed of prediction cannot be
3

sacrificed. In TRANSP, spatially dependent plasma properties (usually
referred to as profiles) such as the electron temperature and electron
density are represented as discrete points uniformly distributed on the
toroidal normalized mean effective minor radius �̂� ∈ (0, 1). In this
work 𝛥�̂� = 0.025, which demands the handling of 40-point profiles.
While a convolutional neural network (CNN) architecture is widely
used for two-dimensional training data (i.e., spatially + temporally
varying dataset), CNN also requires a larger dataset compared to MLP
and more time to make a prediction. In this work, an alternative
method known as the Principal Component Analysis (PCA) is employed
to handle two-dimensional data, which is commonly used in MLP
architectures. In general, techniques such as PCA are applied to reduce
the dimensionality of profile data and accelerate prediction speed.
Essentially, the PCA is an orthogonal linear transformation. It orderly
projects each spatially dependent quantity onto a set of basis functions
with a rank of variances from the maximum to the minimum. As a
result, the profile data is written as a linear combination of the basis
functions. The profile data is reduced by only keeping a minimum
number of modes (e.g., keeping two modes means only retaining two
basis functions with the greatest and second greatest variances) while
capturing the majority of the variance. The number of kept modes is
determined by the minimum number of modes making the relative
explained variance 𝜎2𝑟 greater than 99.9%, where 𝜎2𝑟 is defined as

𝜎2𝑟 ≜ 𝜎2𝑚𝑜𝑑𝑒∕𝜎
2
𝑝𝑟𝑜𝑓𝑖𝑙𝑒. (3)

In Eq. (3), 𝜎2𝑚𝑜𝑑𝑒 is the explained variance corresponding to the kept
modes and 𝜎2𝑝𝑟𝑜𝑓𝑖𝑙𝑒 is the explained variance of the profile. The heat
map of log(𝜎2𝑟 ) is plotted in Fig. 1, where the number of modes guar-
anteeing 𝜎2𝑟 > 99.9% are boxed in white rectangles. Applying the PCA
technique not only makes training and prediction fast but also filters
out measurement noise in the input data and variance caused by the
Monte Carlo scheme.

2.3. Data normalization

Neural network training is sensitive to the magnitude of input and
output data. Therefore, directly passing unnormalized variables to the
training procedure could lead to a slow or unstable learning process. In
the worst-case scenario, the neurons in the hidden layers could saturate
and the learning process could fail due to exploding gradients. In this
work, input and output data are normalized by

̂ = 𝑓𝑛(𝑥) =
𝑥 − 𝑚𝑖𝑛(𝑥)

∗ 0.99 + 0.01, (4)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)



Fusion Engineering and Design 191 (2023) 113514Z. Wang et al.
Fig. 4. Workflow diagram for building a real-time capable neural-network-based surrogate model. Raw data used for transport simulation is prepared and fed into transport codes.
Then, the data are processed as described in Section 2 and the hyperparameters are tuned as discussed in Section 3 to train the neural network. After inverse normalization and
PCA projection, the accuracy of the neural-network model is determined by comparing the prediction results with data in the testing dataset, as shown in Section 4.
Fig. 5. Histograms of regression results for shots in the testing dataset: (a) charge-exchange power loss (W); (b) shine-through power (W); (c) total neutron rate (s−1); (d) orbit
power loss (W).
where 𝑚𝑖𝑛(⋅) and 𝑚𝑎𝑥(⋅) are the minimum and maximum of a vector,
𝑥 is the original data, and �̂� ∈ [0.01, 1] is the normalized data. A bias
is introduced in (4) to make the neural network model trainable at the
minimum value. Predictions can be converted back into the original
scale since the transformation can be easily inverted. As a result, the
range of normalized inputs in the training dataset is shown in a violin
plot (Fig. 2). For example, the figure shows that 𝑅0 in the dataset has
a high density around its maximum value but a sparse density between
maximum and minimum. And since the maximum and minimum values
for each parameter are archived (i.e., 𝑚𝑎𝑥(𝑅0) = 1.96 m and 𝑚𝑖𝑛(𝑅0) =
0.95 m), by applying the inverse function of 𝑓𝑛 in (4), the median of
𝑅0 indicated by the thick horizontal line can be expressed in term of
its original value (1.87 m).
4

3. Method and workflow

Training a surrogate model for NUBEAM with a faster execution
time and still high prediction accuracy is the overall objective of this
work. This goal is achieved by using a fully connected neural network
topology. A neural network named ‘NUBEAMnet’ is coded in a Python
environment which takes advantage of the TensorFlow Distributions
library [18]. The processed dataset from Section 2 is randomly divided
into three groups, where 80% is labeled as training (i.e., to train the
neural-network model), 10% is labeled as validation (i.e., to determine
optimal values of hyperparameters), and the rest is labeled as testing
(i.e., to assess network prediction accuracy).
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Fig. 6. Comparisons of time evolutions predicted by NUBEAM and NUBEAMnet: (a) charge-exchange power loss (W); (b) shine-through power (W); (c) total neutron rate (s−1);
(d) orbit power loss (W).
The initial values for the hyperparameters are set as shown in
Table 2 and are considered as the minimum values for the hyperparam-
eters. Then, by gradually increasing the value for each hyperparameter
and comparing the 𝑅2 coefficient of linear regressions, a balance of
prediction accuracy and training time can be found. An example of
tuning the number of hidden layers is shown in Fig. 3. As the number
of hidden layers increases, the prediction quality improves rapidly at
the beginning as shown in the blue line. However, the red line shows
that the training time increases significantly as the number of hidden
layers increases, but accuracy improvement slows down when the
number of hidden layers reaches four and the execution time increases
dramatically. Moreover, a large number of hidden layers could lead to
overfitting as the model gets more complex. Thus, a neural network
with four hidden layers is preferred in this case. Nevertheless, other
parameters, such as nodes in each layer, also affect prediction accuracy
and execution time. Therefore, after scanning the accuracy of model
predictions with different sets of hyperparameters, the final selection
is presented in Table 2. Other hyperparameters, such as activation
functions for each layer, loss function used in back-propagation, and
accuracy metrics used to evaluate the goodness of predictions, are
determined based on a similar methodical scanning in order to optimize
prediction accuracy.

A general workflow for developing data-driven surrogate models in
a Python environment for any high-fidelity physics-oriented module via
MLP is shown in Fig. 4. As shown in the figure, the data archived from
experiments is submitted to high-fidelity physics-oriented transport
codes. The results from the transport code are processed as discussed
in Section 2 and fed to a neural network. Then the hyperparameters
of MLP are tuned by evaluating the correctness of predictions using
the validation dataset. Finally, the accuracy of the surrogate model is
assessed by using the testing dataset. The outputs from the surrogate
5

Table 2
Selection of hyperparameters via methodical scanning.

Initial values Final values

Number of hidden layers 2 3
Nodes per hidden layers 10 72
Number of batch size 5 50
Number of epochs 5 100
Rate of learning 0.1 0.01

model are firstly transformed from the normalized form to the original
scale using the inverse function of 𝑓𝑛 in (4); next, the profile outputs
are reconstructed from the reduced PCA modes; finally, the processed
outputs are compared with the predictions by the transport code.

4. Model evaluation and discussion

After assembling and training the MLP network, the testing dataset
is used to evaluate the quality of the trained network. NUBEAMnet
and NUBEAM (from the TRANSP runs) predictions are compared to
demonstrate the capability of the neural-network model.

Log-scale histograms of regression results for scalar predictions are
presented in Fig. 5, where (a) charge-exchange power loss, (b) shine-
through power, (c) total neutron rate, and (d) orbit power loss are
illustrated. They all show good concentrations of data points along
the diagonal line, especially for the charge-exchange power loss, shine-
through power, and total neutron rate. This means that the predictions
of scalars made by the trained neural network are highly consistent
with NUBEAM calculations, which can also be concluded from the
correlation values (𝑅2) close to 1 in the upper-left corners. However,
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Fig. 7. Comparisons of profiles predicted by NUBEAM and NUBEAMnet, which are plotted as functions of the toroidal normalized mean effective minor radius �̂�: (a) beam heating
to ions (W m−3); (b) beam heating to electrons (W m−3); (c) beam torque to ions (N m/m3); (d) beam torque to electrons (N m/m3) for shot #100129 at 𝑡 = 6 s.
the prediction of the orbit power loss shows room for improvement.
One of the possible reasons for the exhibited lower accuracy is that sce-
narios with low orbit power loss may not be well learned, which could
be improved by expanding the training dataset with more low-orbit
power-loss cases. Fig. 6 further compares NUBEAM and NUBEAMnet
predictions for shot #100129 by using time traces. The NUBEAMnet
prediction results have good agreement with NUBEAM and are much
smoother. In a Python environment, the average execution time for
NUBEAMnet to make predictions for a scalar output is about 0.1 ms per
time step, and for all four scalars is about 0.2 ms per time step, which
are orders of magnitude faster than the NUBEAM module (running with
16 parallel processes, the wall time for the NUBEAM calculation of
each time step (10 000 particles) is roughly 5 s). These execution times
enable the use of NUBEAMnet in both off-line (e.g., closed-loop simu-
lations for control-performance assessment and scenario planning via
model-based optimization) and real-time (feedback controllers, state
observers and optimizers) control applications.

Fig. 7 draws comparisons between NUBEAM-predicted (red lines)
and NUBEAMnet-predicted (blue lines) profile results as functions of
the normalized toroidal flux coordinate �̂� at 6 s. The figure shows
that NUBEAM and NUBEAMnet predictions match well. However,
NUBEAMnet predictions for beam heating to ions and electrons show
deviations at around �̂� = 0.05. Adding more modes for beam heating to
ions and electrons when applying the PCA could alleviate this problem.
Alternatively, the result could be improved by increasing the number
of points in the spatial grid (e.g., 80) when running TRANSP with
the NUBEAM module and using CNN architectures to avoid the PCA
technique. Comparison between NUBEAM and NUBEAMnet predictions
for the beam current deposition profile for 𝑁𝐵𝐼1𝐿 at 3.5 s and 6 s
are shown in Fig. 8(a) and (b); while comparison for 𝑁𝐵𝐼1𝑅 at 5.5 s
and 6.5 s are shown in Fig. 8(c) and (d), respectively. Again, the
6

NUBEAMnet predictions strongly agree with the NUBEAM predictions
since the blue lines almost cover the red lines. Fig. 9 provides statistics
of the matching errors calculated in terms of the root-mean-square
(RMS) deviation, which is defined as

𝑅𝑀𝑆 =

√

√

√

√

√

𝑁
∑

𝑗=1
(𝑦𝑡𝑗 − 𝑦𝑟𝑗 )2∕

𝑁
∑

𝑗=1
(𝑦𝑡𝑗 )2 (5)

and where 𝑦𝑡 represents the predictions by NUBEAM, 𝑦𝑟 represents
the predictions by NUBEAMnet, and 𝑁 is the number of data points.
The results in Fig. 9 show that NUBEAMnet and NUBEAM predictions
highly agree in the core and in the middle region of the plasma, while
having relatively higher mismatches at the plasma edge. This issue
may be related to the PCA method since the magnitude of the beam
power deposition is much lower at the edge when compared with the
core. The average execution time for NUBEAMnet to make predictions
for a profile output is about 1 ms in a Python environment, which is
both consistent and comparable with predictions for scalar outputs as
discussed before.

The summary of average correlations between NUBEAM and
NUBEAMnet predictions is listed in Table 3, which shows that the
proposed surrogate model is capable of replacing NUBEAM since the
correlation factor 𝑅2 is close to 1 for the testing dataset.

5. Conclusions and future work

In this work, a surrogate model based on neural network techniques
has been developed for the NUBEAM module in EAST. The model is
aimed at predicting the effects caused by the NBI system in EAST after
the recent upgrade in 2020. The surrogate model is able to produce
almost the same predictions as the NUBEAM module while taking
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Fig. 8. Comparisons of current-deposition profiles predicted by NUBEAM and NUBEAMnet, which are plotted as functions of the toroidal normalized mean effective minor radius
�̂�: (a) 𝑁𝐵𝐼1𝐿 for shot #100129 at 𝑡 = 3.5 s; (b) 𝑁𝐵𝐼1𝐿 for shot #100129 at 𝑡 = 6 s; (c) 𝑁𝐵𝐼1𝑅 for shot #100127 at 𝑡 = 5.5 s; (d) 𝑁𝐵𝐼1𝑅 for shot #100127 at 𝑡 = 6.5 s.
Fig. 9. RMS deviations between NUBEAM and NUBEAMnet predictions for the current deposition profile at three different points.
Table 3
Summary of correlations for NUBEAM and NUBEAMnet predictions for training and
testing dataset.

𝑅2: training data 𝑅2: testing data

𝑃𝑠ℎ𝑖𝑛𝑒 0.991 0.997
𝑃𝑐𝑥 0.985 0.991
𝑃𝑜𝑟𝑏 0.855 0.839
𝑃𝑏,𝑒 0.982 0.975
𝑃𝑏,𝑖 0.981 0.961
𝑇𝑏,𝑒 0.955 0.945
𝑇𝑏,𝑖 0.832 0.811
𝑛𝑏 0.985 0.982

𝑃𝑓𝑎𝑠𝑡 0.991 0.953

𝑗𝑑𝑒𝑝𝑁𝐵𝐼1−4 0.985 0.962
7

orders of magnitude shorter execution times. In order to make the
neural network model cover greater operating regimes, more discharges
with different plasma scenarios could be used to train the network.
Thus, future work includes expanding the database needed for neural
network training. Once the database size is large enough, work will be
conducted toward replacing the PCA technique in the current version of
the surrogate model by a CNN in order to increase the profile prediction
accuracy.

Another contribution of this work is the development of a work-
flow that can be applied to data-driven modeling with deep neural
networks for any other modules in high-fidelity physics-oriented sim-
ulation codes. Thus, future work will start by replacing other modules
(i.e., ray-tracing/absorption code (TORAY) [19] and Multi-Mode-Model
(MMM) anomalous transport [20] modules) with neural network mod-
els. These models will be integrated into COTSIM to enable scenario
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planning via feedforward optimization between shots and model-based
advanced scenario control in real time.
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