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A B S T R A C T   

An integrated-control architecture for simultaneous regulation of the plasma internal inductance and normalized 
beta has been designed and tested in simulations using COTSIM (Control-Oriented Transport SIMulator). As 
present-day tokamaks evolve into nuclear-fusion reactors capable of producing net energy, a significant control- 
engineering challenge must be solved: regulating a wide variety of plasma variables, often simultaneously, by 
employing only a reduced number of actuators. As a contribution towards this objective, the present work tackles 
the problem of controlling the plasma internal inductance, which is a proxy for the broadness of the current- 
density profile, simultaneously with the plasma normalized beta. Based on zero-dimensional, control-oriented 
models of the plasma dynamics, individual Lyapunov-theory-based controllers for the internal inductance and 
normalized beta have been developed. These controllers are integrated by means of an actuator manager that 
decides, in real time, how the available actuators are utilized in order to fulfill as many control objectives as 
possible. In addition, the actuator manager is designed to achieve a particular performance metric defined by the 
control engineer. This metric could be, for example, prioritizing a particular control task over the others and/or 
minimizing the use of a particular actuator during certain phases of the plasma discharge. Using COTSIM, which 
includes one-dimensional models of the plasma current-density and electron-temperature dynamics, the per
formance of the integrated-control framework has been tested in a steady-state scenario for the DIII-D tokamak. 
These simulation results yield illustrative insights into the plasma current-density and electron-temperature 
controllability with the current actuation capabilities in DIII-D. Moreover, these simulations show that the 
way in which the different actuators are employed during the discharge (based on the choice of the afore
mentioned actuator-manager performance metric) highly determines the value of internal inductance and 
normalized beta achieved in steady-state conditions, and therefore, the final current-profile shape.   

1. Introduction 

In tokamaks, there is a multitude of plasma variables for which 
different degrees of regulation are needed. For example, accurate 
regulation of the current and pressure profiles can play a critical role, 
particularly in Advanced Tokamak (AT) scenarios [1], in achieving a 
particular steady-state evolution with high pressure and high 
non-inductive fraction. However, controlling several profiles at 
numerous spatial locations can be challenging and often not even 
feasible. Fortunately, regulating global variables related to those profiles 
may sometime suffice to meet the required control goals. For instance, 
the line-average electron density, ne, the internal inductance, Li, and the 
normalized beta, βN, can be used as proxies for the electron density, 
current, and pressure profiles, respectively. Despite the multitude of 

control tasks that must be carried out in a reactor-grade tokamak [2], 
only a finite number of shared actuators will be available to carry out the 
aforementioned control of multiple global variables. As an example, the 
electron-cyclotron (EC) system can heat the plasma and drive current, so 
it can be employed both synchronously and asynchronously during 
control tasks such as current-profile control, neoclassical tearing mode 
(NTM) suppression, or burn control. Moreover, actuator availability 
may change during operation, e.g., as a result of trips triggered by 
potentially unsafe actuator conditions. Integrated architectures with 
actuator management capabilities will be required in future tokamaks to 
ensure safe and efficient operation. 

In the present work, simultaneous control of Li and βN is considered, 
together with actuator management. Previous work on Li control using 
ohmic coil, PF coils, and non-inductive current sources can be found in 
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[3–5], whereas work on Li regulation using only ohmic and/or PF coils 
can be found in [6–8]. Some of this previous work employs non-model 
based, linear techniques (e.g., [3]), but model-based, non
linear-control techniques have also been utilized (e.g., [4]). In recent 
years, the actuator management problem has received increasing 
attention. Previous work includes [9,10], which propose algorithms that 
minimize a cost function over a finite set of actuator-allocation options, 
or [11], where a mixed-integer algorithm is proposed. 

The model-based, nonlinear-control scheme proposed in this work is 
composed of three elements: (1) Li controller, (2) βN controller, and (3) 
actuator manager. The actuators considered are neutral beam injection 
(NBI) and EC heating and current drive (H&CD), i.e., only non-inductive 
current sources. The ohmic and PF coils are not considered in this work 
because of their coupling with plasma shape and Ip control. The con
trollers for Li and βN are synthesized by means of Lyapunov techniques 
[12]. These controllers compute requests related to the non-inductive 
current and auxiliary heating power that ensure Li and βN regulation, 
respectively. Based on the controller requests, as well as real-time in
formation on actuator availability, the actuator manager solves an 
optimization problem in real time (previous efforts along this line can be 
found in [13]) to compute the requests that are sent to the actuators. 

This paper is organized as follows. In Section 2, the model employed 
for control synthesis is introduced. In Section 3, the elements composing 
the control scheme are synthesized: the nonlinear, Lyapunov-based 
controllers (Sections 3.1 and 3.2), and the actuator manager (Section 
3.3). In Section 4, simulation results using the Control-Oriented Trans
port SIMulator (COTSIM) are presented. Finally, a conclusion and 
possible future work are presented in Section 5. 

2. Modeling for Control Synthesis 

2.1. Modeling of the Internal Inductance Dynamics 

The Li model is based on the magnetic diffusion equation (MDE) 
[14]. The MDE determines the dynamics of the poloidal stream function, 

ψ . At a point P, ψ is given by ψ≜ 1
2π
∫

S B→θ⋅ dS
̅→

, where Bθ is the poloidal 
magnetic field, and S is the surface that is perpendicular to the z axis and 

enclosed by the toroidal circumference passing through the point P, as 
depicted in Fig. 1. By exploiting this relationship between B→θ and ψ , the 
magnetic field, B→, can be expressed as 

B→= Bϕ ϕ
→

+ B→θ = Bϕ ϕ
→

−
1
R
(∇ψ × ϕ

→
), (1)  

where Bϕ is the toroidal magnetic field, R is the radial coordinate, and ϕ→

is the toroidal-direction unit vector (see Fig. 1). 
A magnetic-flux surface is defined by points with constant ψ , and 

they form nested surfaces around the magnetic axis under ideal mag
netohydrodynamic (MHD) conditions. The mean-effective minor radius, 
ρ, is the spatial coordinate employed to describe the dynamics of Li. It is 
defined as ρ≜

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Φ/(πBϕ,0)

√
, where Φ≜

∫

Sϕ
BϕdSϕ is the toroidal flux, Sϕ is 

the toroidal surface perpendicular to the ϕ axis and enclosed by a 
magnetic-flux surface as depicted in Fig. 1, and Bϕ,0 is the vacuum 
toroidal field at the magnetic axis. The mean-effective minor radius can 
be normalized by ρb, which is the value of ρ at the last closed magnetic- 
flux surface, so that ρ̂≜ρ/ρb. The MDE model is closed by means of 
physics-based, control-oriented models [15] for the plasma resistivity, η,
electron density, ne, electron temperature, Te, auxiliary-source-driven 
current, jaux (from NBI and EC in this work), and bootstrap current, 
jBS. Using the control-oriented models, the MDE can be written as 

ψ̇ =(f1ψ ′

+ f2ψ ′′)uη+
∑NNBI

i
fNBI,iuNBI,i + fECuEC +

fBS

ψ ′ uBS, (2)  

where ()
′

≜∂()/∂ρ̂, (̇)≜∂()/∂t, f1(ρ̂) and f2(ρ̂) characterize the spatial 
distribution of the poloidal-flux diffusion, fNBI,i(ρ̂) are spatial profiles 
related to the NBI current (for i = 1,…,NNBI , where NNBI is the total 
number of NBIs), fEC(ρ̂) is a spatial profile related to the EC current, 
fBS(ρ̂) characterizes the spatial distribution of the bootstrap current, and 
u(⋅)(t) are virtual inputs given by 

uη =

(

Iγ
p Pϵ

tot nζ
e

)− 3/2

, uBS =

(

Iγ
p Pϵ

tot nζ
e

)− 1/2

ne, (3)  

uNBI,i =

(

Iγ
p Pϵ

tot nζ
e

)− 3/2+δNBI,i

n− 1
e PNBI,i (4)  

uEC =

(

Iγ
p Pϵ

tot nζ
e

)− 3/2+δEC

n− 1
e PEC, (5)  

where Ip is the total plasma current, Ptot≜
∑

iPNBI,i + PEC is the total 
injected power (where PNBI,i is the power injected by the i-th NBI and PEC 

is the EC power), ne is the line-average electron density, and γ, ϵ, ζ, δNBI,i,

and δEC are model constants. The controllable inputs (actuators) 
considered in this work are PNBI,i and PEC. Both Ip and ne are considered 
as non-controllable inputs to the model. The boundary conditions for the 
MDE (2) are given by 

ψ ′

(ρ̂ = 0) = 0, ψ ′

(ρ̂ = 1) = − kIp Ip, (6)  

where kIp is a model parameter depending on the equilibrium. 
By defining the poloidal-flux gradient, θ, as 

θ≜
∂ψ
∂ρ̂ , (7)  

and taking derivative with respect to ρ̂, the MDE (2) can be rewritten as 

θ̇ = (h0θ + h1θ
′

+ h2θ′′)uη +
∑

hNBI,iuNBI,i

+hECuEC +

(
1
θ
hBS,1 −

θ
′

θ2hBS,2

)

uBS,

(8)  

where h(⋅) are obtained from f(⋅) by applying the chain rule. 

Fig. 1. Magnetic geometry and spatial-coordinate transformation employed in 
this work. The model dimensionality is reduced from 3D to 1D due to the as
sumptions of toroidal symmetry and nested flux surfaces. 
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The plasma internal inductance, Li, is defined as 

Li≜
2Wθ

I2
p
, (9)  

where Wθ is the energy enclosed by B→θ, and is given by 

Wθ =
1

2μ0

∫

V
B2

θdV, (10)  

where μ0 is the vacuum permeability, and V is the plasma volume. Using 
(1), (7), and ∇ψ = (∂ψ /∂ρ̂)∇ρ̂, it is found that 

B2
θ =

θ2(∇ρ̂)2

R2 , (11)  

so (10) becomes 

Wθ =
1

2μ0

∫

V

θ2(∇ρ̂)2

R2 dV ≈
1

2μ0

∫ 1

0
θ2 G
(ρbR0)

2V ′ dρ̂, (12)  

where (∇ρ̂)2
/R2 has been approximated by its flux-surface average, 

denoted by 〈(∇ρ̂)2
/R2〉, and the definitions G≜〈R2

0(∇ρ)2
/R2〉 and V′ ≜∂V 

/∂ρ̂ have been employed, where R0 is the major radius. Using the 
expression for Wθ in (12), the definition for Li given in (9) becomes 

Li =
1

μ0R2
0ρ2

bI2
p

∫ 1

0
θ2GV ′ dρ̂. (13)  

2.2. Modeling of the Normalized Beta Dynamics 

The normalized beta, βN, is defined as 

βN≜βt[%]aBϕ,0
/

Ip, (14)  

where a is the plasma minor radius, and βt is the toroidal beta, which is 
given by 

βt≜2μ0

(
1
V

∫

V
pdV

)/

B2
ϕ,0 ≈

4
3
μ0W

/(
VB2

ϕ,0

)
, (15)  

where p is the plasma pressure, and W = 3
2 p is the thermal stored energy. 

Because Ip is considered as a non-controllable input, it can be seen from 
(14)-(15) that βN can be controlled by regulating W in this case. A 0D 
energy balance is employed to model the dynamics of W,

dW
dt

= −
W

τE(Ptot)
+ Ptot, (16)  

where τE is the energy confinement time, which is modeled using the 
ITERH-98P(y,2) scaling, 

τE = 0.0562HHI0.93
p B0.15

ϕ,0 a0.58R1.39
0 κ0.78A0.19

eff n0.41
e,19P− 0.69

tot , (17)  

where HH is the so-called H-factor, κ is the plasma elongation, Aeff is the 
effective plasma mass, and ne,19 is the line-average electron density in 
1019m− 3. Because Ip and ne are non-controllable inputs, τE can be 
modified for control purposes only by means of Ptot . 

3. Control Synthesis 

3.1. Control of Li via Lyapunov Techniques 

The MDE in (8) is a partial differential equation that can be reduced 
to a set of ordinary differential equations by using the finite differences 
method over the spatial domain. By using N + 1 nodes equally distrib
uted over ρ̂ = [0, 1], a discretization step Δρ̂ = 1/N is employed. Thus, 
(6)-(8) become 

˙̂θ = H
(

θ̂, Ip
)
u, (18)  

where θ̂ = [θ(Δρ̂), θ(2Δρ̂), ..., θ(1 − Δρ̂)]T is a vector with the values of θ 
at the interior discretization nodes, u = [uη, uNBI,1, ..., uNBI,NNBI , uEC, uBS]

T 

is a vector with the virtual inputs (3)-(5), and H(θ̂, Ip) ∈ R(N− 1)×(NNBI+3) is 
a matrix which is a function of h(⋅). In addition, Li in (13) can be 
approximated, using the trapezoid rule over the same N + 1 nodes, as 

Li ≈

[
∑i=N− 1

i=1 (θ2GV ′

)iΔρ̂ + 1
2k

2
Ip

I2
p G(1)V ′

(1)
]

μ0R2
0ρ2

bI2
p

, (19)  

where (6) has been employed. It can be noted that, because Ip is a non- 
controllable input, and the ohmic and PF coils are not considered as 
actuators (so ρb, G, V, and kIp cannot be directly controlled), control of Li 

can only be achieved by controlling θ̂. 
For convenience, a normalized version of Li can be defined, 

L∗
i ≜Liμ0R2

0ρ2
bI2

p −
1
2
k2

Ip
I2

p G(1)V ′

(1) =
∑i=N− 1

i=1

(
θ2GV ′)

iΔρ̂ , (20)  

and taking time derivative in (20), a dynamics equation is obtained, 

dL∗
i

dt
=
∑i=N− 1

i=1
2
(

θGV ′dθ
dt

)

iΔ ρ̂
= 2(θ̂

∗

)
T H

(
θ̂, Ip

)
u, (21)  

where θ̂
∗
≜[(θGV′

)Δρ̂ , ..., (θGV ′

)1− Δρ̂ ]
T
, and (18) has been employed. By 

setting the right-hand side of (21) as 

2(θ̂
∗

)
T H

(
θ̂, Ip

)
u = − Kli

P L̃
∗

i − KLi
I

∫ t

0
L̃
∗

i dt +
dL∗

i

dt
, (22)  

where KLi
P ,K

Li
I > 0 are design parameters, ̃L

∗

i ≜L∗
i − L∗

i is the error variable 
for L∗

i , and L∗

i is the target for L∗
i , it can be ensured that the L∗

i evolution is 
asymptotically stable (see Appendix A). For example, taking x1≜L̃

∗

i , x2≜ 
∫ t

0 L̃
∗

i dt, and a Lyapunov function VLi =
1
2x

2
1 + 1

2K
Li
I x2

2, then V̇Li = − KLi
P x2

1. 
Thus, VLi ≥ 0 and V̇Li ≤ 0. Also, it can be appreciated that V̇Li < 0 for all 
(x1, x2) different from the origin except for points within the subset S =

{(x1, x2) ∈ R2 | x1 ≡ 0}. However, no point can stay identically in S 
(x1 ≡ 0) other than the origin (x1 ≡ x2 ≡ 0), as it can be demonstrated 
from equations (21)-(22). Using La Salle’s invariance principle, it can be 
concluded that the L∗

i dynamics is asymptotically stable. It must be noted 
that (22) is a constraint for the controllable inputs (namely, PNBI,i (i = 1,
..., NNBI) and PEC) because u is a function of them (see equations (3)-(5)). 

3.2. Control of βN via Lyapunov Techniques 

If the right-hand side of (16) is set as 

−
W

τE(Ptot)
+ Ptot = − KW

P W̃ − KW
I

∫ t

0
W̃dt +

dW
dt

, (23)  

where KW
P ,KW

I > 0 are design parameters, W̃≜W − W is the error vari
able for W, and W is the target for W, then it can be ensured that the W 
evolution is asymptotically stable. To demonstrate this, VW = 1

2x
2
1 +

1
2K

W
I x2

2 with x1≜W̃ and x2≜
∫ t

0 W̃dt is used as Lyapunov function, which 
yields V̇W = − KW

P x1. Using the same arguments as in Section 3.1, 
asymptotical stability of the W dynamics is proved by La Salle’s 
invariance principle (see Appendix A). It must be noted that (23) is a 
constraint for the controllable inputs because Ptot≜

∑
iPNBI,i + PEC. 
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3.3. Actuator Management via Real-Time Optimization 

The feedback laws (22) and (23) represent two constraints for NNBI +

1 controllable inputs, i.e., PNBI,i (i = 1,…,NNBI) and PEC. Therefore, in 
general, (22) and (23) do not univocally determine the controllable in
puts. In addition, while it is desired to fulfill the control constraints (22) 
and (23) as closely as possible, actuator limits exist that may prevent it. 
In some occasions, it might not be possible to fulfill both control requests 
at the same time (due to unreachable targets and/or limited actuation 
availability), or it may be desirable to control one of the plasma vari
ables more tightly than the other. The control constraints (22) and (23) 
can be rewritten as 

2(θ̂
∗

)
T H

(
θ̂, Ip

)
u + s1 = − KLi

P L̃
∗

i − KLi
I

∫ t

0
L̃
∗

i dt +
dL∗

i

dt
, (24)  

−
W

τE(Ptot)
+ Ptot + s2 = − KW

P W̃ − KW
I

∫ t

0
W̃dt +

dW
dt

, (25)  

where s(⋅) are slack variables that characterize whether the control 
constraints are satisfied. When s(⋅) are zero, asymptotical stability is 
ensured as demonstrated in Sections (3.1) and (3.2). For the case when 
s(⋅) are different from zero, consider the regions |L̃

∗

i | ≥ |s1|/k1 and 
|W̃| ≥ |s2|/k2, with k1 < KLi

P and k2 < KW
P . In such regions, 

V̇Li ≤ − (KLi
P − k1)x2

1≜ − k∗
1x2

1 and V̇W ≤ − (KW
P − k2)W̃

2
= − k∗2W̃

2
,

respectively, with k∗
1≜KLi

P − k1 > 0 and k2≜KW
P − k2 > 0. Therefore, the 

L∗
i and W dynamics are input-to-state stable with respect to s1 and s2,

respectively (see Appendix B), and bounded as |L̃
∗

i | ≤sup0≤τ≤t(s1(τ))/k1 

and |W̃| ≤sup0≤τ≤t(s2(τ))/k2. It can be noted that the higher KLi
P and KW

P 

are, the higher k1 and k2 can be taken, making the bounds over |L̃
∗

i | and 
|W̃| tighter. Also, the smaller s1 and s2 are, the tighter the bounds for |L̃

∗

i |

and |W̃| become. 
The controllable inputs are obtained by means of an actuator man

ager that solves an optimization problem in real time, i.e. 

min
PNBI,i ,PEC

sT Qs + PT
auxRPaux, (26)  

subject to
LiandβNcontrol constraints (24) and (25) (27)  

[
PNBI,1, ...,PNBI,NNBI ,PEC

]
⊂Plimits, (28)  

where s = [s1, s2]
T
, Q and R are design matrices, and Plim is the set of 

feasible controllable inputs. By changing the weights in Q, the control 
tasks can be prioritized in real-time, whereas changes to the weights in R 

allow for prioritizing or penalizing the use of particular actuators. 

4. One-Dimensional Simulations using COTSIM 

The control scheme is tested using COTSIM, a control-oriented code 
that evolves 1D models for the dynamics of Li and βN based on the MDE 
and heat-transport equations. A DIII-D steady-state, high-qmin scenario is 
used where on-axis NBI, off-axis NBI, and EC are employed. First, a 
feedforward (FF) simulation is carried out using the experimental inputs 
from shot 172538. Reachable targets different from the evolutions 
during the FF simulation are set for βN and Li (denoted by βtar

N and Ltar
i ,

respectively). Finally, a FF + feedback (FB) simulation is executed in 
which the controller tries to drive βN and Li toward βtar

N and Ltar
i ,

respectively. Also, changes to the actuator-manager matrices Q and R 
are introduced during the FF + FB simulation, so βN control is prioritized 
in t = [1.25,1.5] s, Li control is prioritized in t = [3,3.5] s, and EC use is 
penalized in t = [4.5,5] s. 

Fig. 2 shows the βN and Li evolutions during the FF and FF + FB 
simulations, the targets, and the FF and FF + FB actuator trajectories for 
PNBI≜

∑
iPNBI,i and PEC. It can be observed that successful regulation of 

both βN and Li is achieved in FF + FB. The periods of time during which 
βN or Li are prioritized correspond to specially challenging changes in 
βtar

N and Ltar
i , respectively. The Li control performance is worsened when 

βN control is prioritized, and vice versa, although the actuator manager 
ensures that both evolutions remain close to their targets. When EC use 
is penalized, the actuator manager increases PNBI to compensate for the 
reduction in PEC, with the final goal of regulating both βN and Li despite 
this change in actuator usage. Although Li converges towards its target 
more slowly than βN, convergence is achieved before the end of the 
simulation. 

5. Conclusion and Possible Future Work 

The nonlinear, Lyapunov-based controllers proposed in this work for 
βN + Li regulation show good performance and robustness in 1D simu
lations, despite being synthesized from 0D models. The capabilities of 
the real-time, optimization-based actuator manager to prioritize control 
tasks and actuator usage have also been demonstrated. Future work may 
include both simulation testing by coupling the transport equations with 
a 2D equilibrium solver and experimental testing in DIII-D. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 2. Time evolution for βN, Li, PNBI≜
∑

PNBI,i, and PEC in FF (magenta), FF + FB (blue), and target (red) simulations. The grey shaded areas denote periods of time 
when either βN or Li control are prioritized, whereas the green shaded areas denote periods of time when EC use is penalized. 
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Appendix A. Asymptotical Stability using Lyapunov Theory and La Salle’s Invariance Principle 

Consider a nonlinear system ẋ = f(x) in a domain D⊂Rn. Assume x = 0 is an equilibrium point contained in D. Then, if a continuously differentiable 
function V : D→R can be found such that 

V(x) ≥ 0, V̇(x) ≤ 0, (A.1)  

for all x ∈ D, then x = 0 is a stable equilibrium. In addition, if V̇(x) < 0, then x = 0 is asymptotically stable. 
When V̇(x) < 0 is not fulfilled, La Salle’s invariance principle can be employed to demonstrate asymptotical stability. It states that, under the 

conditions given in (A.1), if no solution to ẋ = f(x) can stay identically in S other than the trivial solution, where S = {x ∈ D
⃒
⃒
⃒ V̇(x) = 0}, then the 

equilibrium x = 0 is asymptotically stable. More details can be found in [12]. 

Appendix B. Input-to-state Stability via Lyapunov Theory 

Consider a nonlinear system ẋ = f(x, u), where f is defined in the domain [D1,D2] (D1⊂Rn, D2⊂Rm), x is the state vector, and u is the input vector. 
This system is said to be input-to-state stable if, for any initial state x0 and bounded input u, the state x fulfills 

‖ x ‖≤ γ
(

sup
0≤τ≤t

(u)
)

+ β( ‖x0‖, t), (B.1)  

where γ is a class K function (i.e., (i) γ is strictly increasing, and (ii) γ(0) = 0), sup denotes the supreme, and β is a class KL function (i.e., (i) it is class K 
with respect to its first argument, (ii) it is decreasing with respect to its second argument, and (iii) limy→∞β(x,y) = 0). 

Assume that a continuously differentiable function V : D1→R can be found such that 

α2( ‖ x ‖ ) ≥ V(x) ≥ α1( ‖ x ‖ ), (B.2)  

V̇(x, u) ≤ − W3(x), (B.3)  

where αi are class K∞ functions of x (i.e., (i) αi is strictly increasing, (ii) αi(0) = 0, and (iii) limx→∞αi(x) = ∞). Condition (B.2) is fulfilled for all x ∈ D1 
and u ∈ D2, whereas condition (B.3) is fulfilled for all ‖ x ‖≥ ρ(‖ u ‖) > 0 within D1, where ρ is a class K function. When all previous conditions are 
satisfied, the system is input-to-state stable with γ = α1 o α2 o ρ, where o denotes a function product. More details can be found in [12]. 
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