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An optimization approach that incorporates the predictive transport code TRANSP is proposed for tokamak
scenario development. Optimization methods are often employed to develop open-loop control strategies to aid
access to high performance tokamak scenarios. In general, the optimization approaches use control-oriented
models, i.e. models that are reduced in complexity and prediction accuracy as compared to physics-oriented
transport codes such as TRANSP. In the presented approach, an optimization procedure using the TRANSP code
to simulate the tokamak plasma is considered for improved predictive capabilities. As a test case, the neutral
beam injection (NBI) power is optimized to develop a control strategy that maximizes the noninductive current
fraction during the ramp-up phase for NSTX-U. Simulation studies towards the achievement of noninductive
ramp-up in NSTX-U have already been carried out with the TRANSP code. The optimization-based approach
proposed in this work is used to maximize the noninductive current fraction during ramp-up in NSTX-U, de-
monstrating that the scenario development task can be automated. An additional test case considers optimiza-
tion of the current ramp rate in DIII-D for obtaining a stationary plasma characterized by a flat loop voltage
profile in the flattop phase.

1. Introduction

Many tokamak plasma-control problems are well suited to be posed
as optimization problems and can be solved with numerical optimiza-
tion methods. Numerous pieces of work have in fact considered nu-
merical optimization as a means to develop open-loop control solutions
for safety factor profile regulation and access to stationary plasmas
[1-6]. In general, the optimization approaches use simplified control-
oriented models [7-11], i.e. models that are often reduced in com-
plexity and prediction accuracy as compared to physics-oriented
transport codes such as TRANSP [12]. The next step towards improving
the quality of the optimization results is naturally to replace the con-
trol-oriented model with a more sophisticated physics-based transport
code like TRANSP at the expense of slower convergence times.

This work presents progress towards embedding the TRANSP code
into an optimization procedure for synthesizing control solutions to-
wards the attainment of high performance plasma scenarios in toka-
maks. The TRANSP code is combined with an optimization algorithm
embedded in OMFIT [13,14], where OMFIT acts primarily as an ac-
cessory code to automate the issuing of TRANSP runs necessary to carry
out the optimization procedure.’ Two sample plasma control problems
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are considered as test cases. First, the problem of achieving non-
inductive current ramp-up in NSTX-U via optimization of the NBI power
is considered. An optimal ramp-up strategy, i.e. one that maximizes the
noninductive current fraction, has already been studied through
TRANSP simulations [15]. The TRANSP-based optimization approach is
used to reproduce the ramp-up strategy proposed in [15], demon-
strating the design task can be automated. Second, the problem of
achieving a stationary plasma characterized by a flat loop voltage
profile during the flattop phase in DIII-D is considered.

It is not uncommon for plasma physics researchers to use transport
codes to solve engineering design problems. For example, a study
considering the optimal launch location of high frequency fast waves
for maximum current drive efficiency at DIII-D was carried out using
GENRAY simulations [16]. These types of studies, often involving
“optimization” by-hand, could be aided by the tool described in this
work. Not only does the tool provide a truly optimized result, but also
automates the process, saving many hours of work.

This paper is organized as follows. An overview of the TRANSP-
based optimization approach is described in Section 2, the two example
test cases are presented in Section 3, and conclusions are given in
Section 4.

! OMFIT, developed and maintained by General Atomics, San Diego, is a python-based tool designed to standardize and manage the data of many plasma transport

codes such as TRANSP.
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2. Overview of TRANSP-based optimization approach

The optimization problem given by

minimize J(x)
24

subjectto  @min < & < Amax,

gi,(@) <0,

geq(“) =0,

(P1)

is considered in this work. The problem involves the minimization of
the scalar objective function, J(a), with respect to a set of optimization
variables represented by a, subject to a set of constraints. The optimi-
zation variables could be parameterized in a variety of ways depending
on the optimization goal. For example, @ may define a control trajectory
over time as shown in Fig. 1. The objective function, J, quantifies dis-
tance in some sense to the desired design goal; it incorporates the
plasma evolution as simulated by predictive TRANSP and assigns a
penalty to deviations from the desired goal as a function of the opti-
mization variables. The constraints include simple bounds on the op-
timization variables, @i, < @ < @y, and other, possibly nonlinear,
constraints described by gin(a@) < 0 and geq(@) = 0, which may define
tokamak operational or stability limits. Numerous tokamak design
problems can be formulated into an optimization problem of the form
of (P1), as will be shown in the following section.

Sequential quadratic programming (SQP), which is the most widely
used approach to solving constrained optimal control problems like
(P1) [17], is used in this work. Essentially, the algorithm searches for a
solution by first starting with an approximate solution, a,, and works to
improve on the solution by taking steps, Aa. Sequential iterates,
a1 = & + Aay, are found with the use of gradient information of the
objective function and constraints [17,18] (see [19] for implementation
details).

The optimization approach treats TRANSP as a black box, which
makes it impossible to obtain gradients analytically. Instead, the gra-
dients are calculated by forward finite differences. This is accomplished
by perturbing each element of a by a small amount and then computing
each element of the gradient according to
VI, = J(x + cej) — J(cx)’

€ (@)
where e; is the ith coordinate vector, i.e. e; = [1, 0, ..., 01, e; = [0, 1,
0, ..., 017, etc. Gradients can be computed similarly for each of the
constraint functions. Each iteration of the optimization task, therefore,
requires n + 1 TRANSP runs in order to obtain gradient information,
where n is the dimension of a.

The implementation of the SQP method and necessary code for
parameterizing and issuing TRANSP runs automatically is embedded
into OMFIT, and the automated TRANSP + OMFIT optimization pro-
cedure is outlined in Fig. 2. In summary, the optimization procedure
works as follows:

® Choose initial approximate solution ay.
® Repeat k = 0, 1, ..., kpay:
- Configure the input files and initiate a TRANSP run parameterized
by current iterate ay.
- Configure and initiate n TRANSP runs parameterized by a; + ce;
fori=1, 2, ..., n to obtain gradients.
- Evaluate function values and compute gradients.
- Determine search direction Aay (descent direction) and size of step
via SQP [18].
- Check convergence.
- Obtain new iterate ay 1 = ax + Aay.

The optimization time is largely a function of TRANSP simulation
run-time, which varies substantially depending on the particular setup.
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Fig. 1. Control parameterization with arbitrary function approximator in be-
tween control updates. In this case, the optimization variables include the entire
control sequence, i.e. a’ = [u}, u!, ..,uk]. An arbitrary function approximator
could be employed to define the control value between updates, for example a
linear function (as shown).
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Fig. 2. TRANSP-based optimization loop.

The TRANSP code includes a wide variety of models for neoclassical
transport, anomalous transport, heat and current sources, sinks, equi-
librium, and plasma boundary shape. A complete list of models is
available in the NTCC Model Library (w3.pppl.gov/NTCC). The choice
of models and the resolution of the spatial grid will greatly change the
length of the TRANSP run-time. For modest runs like the examples
presented in this work, we can assume an average run-time of 10-15h
when run on 32 cores on the PPPL cluster. Each iteration of the opti-
mization algorithm requires, on average, 3 TRANSP simulation run
times, an initial function evaluation, a set of function evaluations for
computing gradients (run in parallel), and an additional run for SQP
line-search (backtracking necessary to globalize the algorithm). The
number of iterations necessary for convergence to a “good” solution
depends greatly on the quality of the initial guess solution, potentially
ranging from 1 to 10 iterations. This means a single iteration could take
about 30-45h and a complete solution about a week.

3. Sample problems
3.1. Sample problem 1: noninductive ramp-up in NSTX-U

One of the primary research goals of NSTX-U is to advance the
spherical torus concept for a fusion nuclear science facility (FNSF),
which requires developing noninductive start-up, ramp-up, and sus-
tainment techniques since a large-scale spherical torus will have little to
no room for a central solenoid.? Under certain plasma conditions, NSTX
has been shown to sustain about 70% of the current noninductively
[20]. With recent upgrades, including an additional high tangency
neutral beam set and high frequency fast wave (HHFW) antenna, ex-
haustive simulations anticipate that NSTX-U [21] will be able to sustain
fully noninductive current in the flattop phase of the discharge. How-
ever, much research is still required to develop a successful approach
for noninductive start-up and ramp-up in NSTX-U.

A provisional strategy for fully noninductive ramp-up, which uses a
particular timing of the NBI to meet the target plasma current, has been
explored by carrying out predictive TRANSP simulations [15]. How-
ever, this study involves the arduous task of fine tuning by hand the
optimal NBI timing. As a test case, the TRANSP-based optimization

2The central solenoid coil serves as the inductive current drive.
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(a) By-hand optimization.

(b) TRANSP-based optimization.

(c) Comparison of total NBI powers (by-hand tun-
ing vs TRANSP-based tuning) (top). NBI powers
tuned by TRANSP-based optimization (bottom).

Fig. 3. TRANSP-based optimization test case. In (a) the NBI powers are selected by hand to best achieve the noninductive ramp-up in NSTX-U. In (b) the TRANSP-
based optimization routine is used to obtain the NBI powers. In (a) significant improvements made over the hand optimization are annotated: (1) large deficit in the
plasma current at around 0.18s, (2) mismatch with respect to target current after 0.2s. Optimized NBI powers are shown in (c).
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Fig. 4. TRANSP-based optimization of the current ramp-up to obtain a flat loop
voltage profile in the flattop. At top, the initial (blue) and optimized (red) loop
voltage profile in the flattop phase is plotted, and at bottom, the initial (blue)
and optimized (red) current ramp-up is plotted. The circles represent free
parameters and squares are fixed. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

approach is employed to automate and improve on the selection of
optimal NBI timing.

The goal is to obtain an open-loop control strategy, i.e. sequence of
control requests parameterized by time, that could sustain the target
plasma current noninductively through the ramp-up phase. This pro-
blem is well suited to be tackled by following an optimization approach.
To formulate the optimization problem, the objective function

@) = [ e - a@ydr = f7 Gom(0)de @

is introduced, which penalizes the difference between the total non-
inductive current drive and the current target. The control para-
meterization, a, consists of the turn-ON time and injected power of each
NBL?

3

— [+On on on T
o = [iNg—1, Pxp-1> INB—2> PnB—2 -+ INB—4> Prnp-sl >

and the constraints include power limits associated with the NBI
sources. Additional constraints (not considered in this sample problem)
such as bounds on the allowable q profile shape, which could be re-
presented as nonlinear inequality constraints on the optimization
variables, could be introduced to ensure stability against deleterious

3NSTX-U has 4 NBI sources.
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MHD effects.

In Fig. 3(a), where Figure 9 of [15] has been reproduced, NBI
powers are optimized (by hand) to maximize the noninductive current
fraction. Fig. 3(b) shows instead the results when the NBI powers are
optimized by the TRANSP + OMFIT optimization routine proposed in
this work. The individual four NBI powers tuned by the TRANSP-based
optimization are shown at the bottom in Fig. 3(c), while the total NBI
powers from both the TRANSP-based optimization and the by-hand
optimization are compared at the top. Notable improvements in
meeting the current target by TRANSP-based optimization over by-
hand optimization are highlighted in Fig. 3(a). A large deficit in the
plasma current at around 0.18s and a mismatch with respect to the
target current after 0.2s are both diminished. Additionally, the opti-
mization approach saves time by automating the entire procedure.

3.2. Sample problem 2: scenario development in DIII-D

A primary goal for the DIII-D research program over the next five
years is to develop the physics basis for a high ¢ (qmin > 2), high By
steady-state scenario” that can serve as the basis for a steady-state ITER
scenario at (fusion gain) Q = 5. Various approaches are being con-
sidered to maximize the bootstrap current contribution, so that fully
noninductive (fy; = 1) discharges can be obtained for several resistive
current diffusion times. It is anticipated that the upgrades to DIII-D
including an additional off-axis neutral beam injection (NBI) system in
2019 will provide sufficient auxiliary current drive to maintain fully
noninductive plasmas at high 5. However, much work is necessary to
investigate MHD stability, adequate confinement, and early achieve-
ment and sustainment of the steady-state condition.

Recent work, in which the time trajectory of the plasma current has
been optimized to guide the plasma to a stationary state characterized
by a flat loop voltage profile, has been accomplished with control-or-
iented (reduced complexity’) model-based optimization methods
[7,10,8,9,11]. However, the promising results obtained in simulations
may not hold up to experimental testing due to the approximate nature
of the control-oriented models. For improved predictive quality, the
TRANSP-based optimization approach can be employed to optimize the
time trajectory of the plasma current to reach a flat loop voltage profile.

An objective function of the form

“ Steady state scenario is characterized by a plasma state that is fully relaxed
and the plasma current is composed entirely of intrinsic (bootstrap) and non-
inductive auxiliary current drives.

5 Models reduced in complexity and prediction accuracy but much faster to
evolve as compared to physics-oriented prediction codes such as TRANSP.
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Ja(Vloop) = Zt ,/(;1 (Vloop(t9 f) — Vloop(t’ 1))2df3 4)

is considered for t = 3.1, 3.2, and 3.3 s. The objective function penalizes
deviations of the loop voltage profile with respect to its edge value at
several times in the flattop phase of the discharge. Assigning penalties
at multiple times aids in obtaining a profile that remains flat, or as flat
as possible, through the flattop phase instead of obtaining a solution
that simply passes through a stationary state momentarily.

The optimization variable considered in this sample case is re-
presented by a piece-wise linear function of the reference plasma cur-
rent. Five values over time of the plasma current are considered as the
optimization variables, a (see red dots in the bottom plot of Fig. 4). The
plasma current is treated as an actuator and it is assumed that the in-
ductive-coil current is regulated via a dedicated controller to meet the
desired reference current. The constraints include bounds on the re-
ference current and a rate limit on the reference current ramp, i.e.

03MA < I, < L5SMA, IdI,/dtl < 2MA/s.

%)

The results of the optimization are shown in Fig. 4. As can be seen,
the optimized control policy is parameterized as a piece-wise linear
function with updates every 250 ms. The initial (blue) and optimized
(red) loop voltage profiles are plotted at the end of the flattop phase.
Significant improvements are made in flattening the loop voltage pro-
file by introducing a wiggled current ramp-up.

4. Conclusions

The TRANSP + OMFIT optimization routine presented in this work
represents a valuable tool for developing control strategies of varying
objectives at the scenario-development stage. The optimization algo-
rithm written in OMFIT can accept arbitrary objective and constraint
functions, and the optimization variables can be parameterized in
various ways. It is a straightforward process to introduce other opti-
mization variables such as the NBI tangency radius, line averaged
density, electron cyclotron current drive, or the plasma current ramp
rate, to name a few.

The toolset described in this work represents the first steps in a
natural progression from the well-established control-oriented model-
based optimization to a physics-oriented model-based optimization
characterized by a higher accuracy. The primary shortcoming of the
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TRANSP-based optimization is much slower convergence times due to
the lengthy simulation times associated with running predictive
TRANSP simulations. On the other hand, the control-oriented optimi-
zation approaches of prior work have the advantage of fast simulation
times at the expense of prediction accuracy. However, the two ap-
proaches could be combined in an iterative fashion, in which the fast
control-oriented optimization accelerates the TRANSP-based optimiza-
tion by providing an initial guess solution, and the TRANSP-based op-
timization improves the accuracy of the control-oriented optimization
by providing updated model parameters on each iteration.
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