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Abstract

A key goal in control of an advanced tokamak (AT) discharge is to maintain safety factor (q) and pressure profiles that are
compatible with both MHD stability at high toroidal beta and a high fraction of the self-generated bootstrap current. This will
enable high fusion gain and non-inductive sustainment of the plasma current for steady-state operation. In this work we report
progress towards enabling model-based active control of the current profile at DIII-D. Initial results on modeling-for-control
and simulation of the dynamic evolution of the poloidal flux profile during and just following the ramp-up of the plasma current
are presented. The magnetic diffusion equation is combined with empirical correlations obtained at DIII-D for the density,
temperature and non-inductive current to introduce a simplified dynamic model describing the evolution of the poloidal flux,
and therefore the q profile, during the inductive phase of the discharge. The physical model is rewritten in a control-oriented
formulation and the control challenges asocciated with the problem are discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Advanced tokamak (AT) operation scenarios [1]
are characterized by a high confinement state with
improved MHD stability, which yields a strong
improvement of the plasma performance quantified by
the increase of the energy confinement time and plasma
pressure. In such conditions a dominant fraction of the
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plasma current is self-generated by the neoclassical
bootstrap mechanism, which reduces the requirement
on externally driven non-inductive current for steady-
state operation. Setting up a suitable current profile,
characterized by a weakly reversed magnetic shear, has
been demonstrated to be a key condition for one possi-
ble advanced scenario with improved confinement and
possible steady-state operation [2].

Although this research area is in its infancy, recent
experiments at different devices around the world (JET
[3,4], DIII-D, JT-60U [5], Tore Supra [6]) have demon-
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strated significant progress in achieving profile control.
At JET, different current and temperature equilibrium
target profiles have been reached and sustained for
several seconds during the flat-top current phase. The
control scheme relies on the experimental identifica-
tion of a linearized static response model, using lower
hybrid current drive (LHCD), ion cyclotron resonance
heating (ICRH) and neutral beam injection (NBI) as
actuators. The controller, which finally reduces to a
PID incorporating information of the static response
of the system, has been shown effective when rapid
plasmas events are absent.

In contrast to the JET approach, experiments at DIII-
D focus on creating the desired q profile during the
plasma current ramp-up and early flat-top phases with
the aim of maintaining this target profile during the
subsequent phases of the discharge. Active feedback
control of the evolution of q(0) and qmin during the
initial phase of the discharge has been already demon-
strated at DIII-D [7] changing the plasma conductivity
through electron heating, and therefore modifying the
rate of relaxation of the current profile. The q profile
is obtained in real time from a complete equilibrium
reconstruction using data from the MSE diagnostic.
The controller requests a power level to the actua-
tor (electron cyclotron heating (ECH) or neutral beam
heating (NBH)) which is equal to preprogrammed feed-
forward value plus the error in q times a proportional
gain (P controller). Present limitations of this con-
troller (oscillations and instability) motivate the design
of a model-based controller that takes into account the
dynamics of the q response to the actuators. This paper
reports progress at DIII-D in this direction.

A substantial experimental physics effort has been
going on for several years to develop predictive models
for evolution of poloidal flux, or equivalently, current
profiles in toroidal plasmas. Our work draws on the
result of those efforts but does not supersede it, since
our purpose is simply the conversion of this accepted
physics model to a form useful for control. We focus
on introducing the model and discussing its qualitative
behavior. It is important to note that we are modeling-
for-control and not for physical understanding and,
consequently, the model needs only to capture the dom-
inant effects of the system dynamics because one of
the main characteristics of feedback is the ability to
deal with model uncertainties. It is often not possi-
ble, however, to assess the true requirements for model

accuracy until experimental tests of the controller are
performed.

This paper is organized as follows. In Section 2,
a dynamic model for the poloidal flux ψp is intro-
duced. Section 3 describes the control objectives during
the different phases of the discharge. Models for the
density, temperature, parallel current, and resistivity
during the inductive phase of the discharge, as well
as a control-oriented dynamic model for the poloidal
flux evolution, are introduced in Section 4. Simulation
results are presented in Section 5. Section 6 discusses
the control needs for the inductive phase of the dis-
charge. Finally, conclusions and identified future work
are presented in Section 7.

2. Current profile evolution

From the conservation of the magnetic field B̄,
∇ · B̄ = 0, we can write it as the curl of a vector
potential, i.e., B̄ = ∇ × Ā. In cylindrical coordinates
R̄ = (R, φ,Z), we write the vector potential as Ā =
(AR,Aφ,AZ). Assuming an axisymmetric configura-
tion, i.e., ∂/∂φ = 0, the magnetic field results

B̄ =
(

− 1
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∂ψ

∂Z
,
f

R
,

1

R

∂ψ
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)
, (1)

where we define the stream function ψ(R,Z) =
RAφ(R,Z), closely related to the poloidal flux ψp,

ψp=
∫
B̄p · dS̄=

∫ 2π

0
dφ

∫ R

0
RBZ(R,Z) dR= 2πψ

(2)

as the poloidal flux per radian inside a major radius
R, and f (R,Z) = RBφ(R,Z). The magnetic surface
ψ(R̄)=constant, is such that all magnetic lines of force
lie upon on that surface, i.e., ∇ψ(R̄) · B̄ = 0.

From Ampere’s law, ∇ × B̄ = μoj̄, where j̄ is the
current density and μo is the vacuum magnetic perme-
ability, we can write the current density as
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We are interested in the dynamics of the current density
profile, characterized by the resistive time constant τr =
μoa

2/η (a is the minor radius of the tokamak, η is
the plasma resistivity), which is the order of a second.
On this time scale, we can consider the system to be
at equilibrium, i.e., ∇p = j̄× B̄, where p denotes the
plasma pressure. This implies that j̄ · ∇p = 0, which
in turns implies that f is parallel to ∇ψ, and therefore,
a surface quantity too.

We let ρ be an arbitrary coordinate indexing the
magnetic surfaces. Any quantity constant on each mag-
netic surface could be chosen as the variable ρ. We
choose the mean geometric radius of the magnetic sur-
face as the variable ρ, i.e., πBφ,oρ

2 = Φ, where Φ is
the toroidal flux andBφ,o is the reference toroidal mag-
netic field at Ro (Ro can be the geometric center of the
plasma Rgeo).

Defining the average of any arbitrary quantity A on
a magnetic surface S by 〈A〉 = (∂/∂V )

∫
V
A dV , and

considering that 〈∇ · A〉 = (1/V ′)(∂(V ′〈A · ∇ρ〉)/∂ρ),
where V ′ = ∂V/∂ρ, we use (1), (3) and (4) to obtain

〈j̄ · B̄〉 = − f 2

μoV ′

{
∂

∂ρ

[
V ′

f

〈 |∇ρ|2
R2

〉
∂ψ

∂ρ

]}
(5)

From Faraday’s law, ∇ × Ē = −dB̄/dt, where Ē is the
electric field, it can be shown that [8,9]

∂ψ

∂t
= − 〈Ē · B̄〉

〈R−2〉f . (6)

The inductive component of the current density satis-
fies Ohm’s law

Ē + v̄× B̄ = η(j̄− j̄NI) (7)

where v̄ is the mean velocity of the particles and j̄NI
is the non-inductive current density. Then, combining
(5), (6) and (7), it is possible to write

∂ψ

∂t
= fη

μo〈R−2〉V ′

{
∂

∂ρ

(
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f

〈 |∇ρ|2
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〉
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)}

+ η

f 〈R−2〉 〈j̄NI · B̄〉. (8)

From the definition of the toroidal flux,

Φ =
∫
Bφ dSφ = 1

2π

∫ (
f

R2

)
dV (9)

and πBφ,oρ
2 = Φ we can write

V ′ = ∂V

∂Φ

∂Φ

∂ρ
= 4π2ρBφ,o

f 〈R−2〉 (10)

By defining,

F = RoBφ,o

f
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,
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2〉 , (11)

and ρ̂ = ρ/ρb, where ρb is the radius of last closed flux

surface, and using (10), we can write (8) as

∂ψ

∂t
= η

μoρ
2
bF̂
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(12)

where the geometric factors F̂ = F (ρ̂), Ĝ = G(ρ̂), and

Ĥ = H(ρ̂), shown in Fig. 2 (a), have been determined
from DIII-D experimental data using the definitions
stated above.

The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= μo

2π

Ro

Ĝ|ρ̂=1Ĥ |ρ̂=1
I(t)

(13)

where I(t) denotes total plasma current.

The model makes the simplifying assumption that
the magnetic geometry is fixed in time. This excludes
two potential sources of flux—a change in ρb (either
by a change in the shape of the last closed flux surface
or in Bφ,o) and a change in location of the geometric
center of the interior flux surfaces relative to that of
the last closed flux surface. Changes in ρb are small by
design in the experiments of interest, but it is straight-
forward to include this effect in the model for situations
where it would be important. Changes in the relative
positions of the flux surfaces do occur, but for cases of
interest, these happen slowly enough and they can be
neglected.

3. Control objectives

Fig. 1 shows the different phases of the discharge.
During “Phase I” the control goal is to drive the cur-
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Fig. 1. Current evolution.

rent profile from any arbitrary initial condition to a
prescribed target profile at some time T ∈ (T1, T2) in
the flat-top phase of the total current I(t) evolution.
This prescribed target profile is an equilibrium profile
for the current (∂(∂ψtarget/∂ρ̂)/∂t = 0) during “Phase
II.” The available actuators during “Phase I” differ
from those used during “Phase II,” and are constrained
(saturation, rate limit, etc.). Therefore, the prescribed
target profile cannot be sustained in equilibrium (steady
state) using the available actuators during “Phase I.”
During “Phase II” the control goal is to regulate the
current profile around its equilibrium using as little
control effort as possible because the actuators are
not only limited in power but also in energy. For this
reason, the goal during “Phase I” is to set up an ini-
tial profile for “Phase II” as close as possible to its
equilibrium profile. During “Phase I,” mainly gov-
erned by the ramp-up phase, the plasma current is
mostly driven by induction. In this case, due to the
difference in the time scales, it is possible to neglect
the dynamics of the electron temperature and den-
sity. Therefore, evolution equations for the electron
temperature Te(ρ̂, t) and density n(ρ̂, t) are not nec-
essary to complete the model. Spatial-temporal laws
are used instead (see Section 4, Eqs. (14) and (15)).
During “Phase II” (exclusively flat-top phase) the cur-
rent drive is mainly non-inductive (boostrap current is
significant), and for completeness, the magnetic diffu-
sion Eq. (12) must be accompanied by similar parabolic
PDEs describing the evolution of the temperature and
the density.

4. Models for the inductive phase (Phase I)

Simplified models for the density and temperature
are chosen for this phase. Based on experimental obser-
vations at DIII-D, the profiles are assumed to remain
fixed for each specific experiment. The temperature and
density responses to the actuators are simply scalar
multiples of the reference profiles, which are taken
from tokamak discharges associated with the experi-
ment of interest.

4.1. Density

The density n is independently controlled, and can
be written as

n(ρ̂, t) = nprofile(ρ̂)un(t), (14)

where nprofile is given in Fig. 2 (b). The average density
is defined as n̄(t) = ∫ 1

0 n(ρ̂, t) dρ̂.

4.2. Temperature

The temperature Te is proportional to
(I(t)

√
Ptot(t))/n̄(t), and can be written as

Te(ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√
Ptot(t)

n̄(t)
(15)

where T profile
e is given in Fig. 2 (b), kTe = 1.7295 ×

1010, and Ptot is the total power of the non-inductive
heating sources (ECH, NBH, etc.).

4.3. Parallel current

The non-inductive toroidal current density 〈j̄NI ·
B̄〉/Bφ,o is written as

〈j̄NI · B̄〉
Bφ,o

(ρ̂, t) = C(ρ̂)
Ptot(t)

√
Te(ρ̂, t)

n̄(t)
, (16)

whereC(ρ̂) is a deposition profile. Taking into account
(15), we can rewrite (16) as

〈j̄NI · B̄〉
Bφ,o

= kNIparj
profile
NIpar (ρ̂)

I(t)1/2Ptot(t)5/4

n̄(t)3/2 (17)

where j
profile
NIpar is given in Fig. 2 (b), and kNIpar =

1.2139 × 1018.
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Fig. 2. (a) Geometric factors F̂ , Ĝ, and Ĥ , (b) density (nprofile), temperature (T profile
e ), and parallel non-inductive current (jprofile

NIpar (ρ̂)) profiles,
(c) resistivity η.

4.4. Resistivity

The resistivity η scales with the temperature Te as

η(ρ̂, t) = keffZeff

T
3/2
e (ρ̂, t)

(18)

UsingZeff = 1.5, it is possible to determine that keff =
4.2702 × 10−8. Fig. 2 (c) compares the “computed”
η using (18) with the measured η from the refer-
ence DIII-D discharge at the time of the reference
profiles.

The poloidal flux diffusion equation is solidly based
on Ampere’s, Faraday’s and Ohm’s laws in the usual
limit where the Maxwell displacement current is neg-
ligible. Experiments in tokamaks have validated the
roles of the various terms in this equation. For example,
the time scale for electric field penetration was found
to be governed by the neoclassical resistivity [10],
and the change in the poloidal flux evolution owing
to non-inductive current drive has also been verified
[11].

We consider now n̄(t), I(t), and Ptot(t) our physical
actuators, and put (12) in a control framework.

4.5. Diffusivity control

Considering (18), and taking into account (15), we
can write

η

μoρ
2
bF̂

2
(ρ̂, t) ≡ f1(ρ̂)u1(t), (19)

f1(ρ̂) = keffZeff

k
3/2
Te
μoρ

2
b

1

F̂2(ρ̂)(T profile
e (ρ̂))

3/2 , (20)

u1(t) =
(

n̄(t)

I(t)
√
Ptot(t)

)3/2

. (21)

4.6. Interior control

Considering (17) and (18) we can write

RoĤη(ρ̂, t)
〈j̄NI · B̄〉
Bφ,o

(ρ̂, t) ≡ f2(ρ̂)u2(t), (22)
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f2(ρ̂) = RoĤμoρ
2
bF̂

2(ρ̂)kNIparj
profile
NIpar (ρ̂)f1(ρ̂), (23)

u2(t) =
√
Ptot(t)

I(t)
. (24)

4.7. Boundary control

The boundary condition (13) can be written as

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

≡ k3u3(t), (25)

k3 = μo

2π

Ro

Ĝ|ρ̂=1Ĥ |ρ̂=1
, u3(t) = I(t). (26)

4.8. Control plant

Considering (19), (22) and (25), we can rewrite the
equation for the evolution of the poloidal flux (12) as

∂ψ

∂t
= f1(ρ̂)u1(t)

1

ρ̂

∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ

∂ρ̂

)
+ f2(ρ̂)u2(t)

(27)

with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= k3u3(t), (28)

and where f4(ρ̂) = F̂ ĜĤ . If NBH were considered as
the only heating and non-inductive current source, dif-
fusivity and interior control would be coupled through
Ptot. Use of both NBH and ECH could somewhat, but
not completely, decouple them.

As the experiment and the equilibrium change, and
therefore the profiles in Fig. 2 (a) and (b), the depen-
dence of f1, f2, and f4 on ρ̂ will also change, but the
structure of (27) and (28) will remain. Thus, it is impor-
tant to understand the control challenges associated
with this system.

5. Simulation results

The system of equations describing the poloidal
flux evolution has been successfully implemented in
a numerical solver. Fig. 3 shows the profile evolu-

tions for ι = 1/q = −(Bφ,oρ
2
bρ̂)

−1
(∂ψ/∂ρ̂),ψ, and 〈j̄ ·

B̄〉/Bφ,o, based on the dynamic model (27) and (28),

Fig. 3. Simulation of profile evolution: (a) ι, (b) ψ, (c) 〈j̄ · B̄〉/Bφ,o.
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when n̄(t)[1019 m−3] = 2.7I(t)[MA], Ptot = 2.6 MW,
and the current evolution is that shown in Fig. 1. As
expected, the total current density increases with time,
consistent with the boundary condition related to the
total current at ρ̂ = 1. The maximum of the current
density moves slowly to smaller radius, as expected
from a diffusive process. Given the three order of mag-
nitude variation in the plasma resistivity (small in the
hot center and large at the cold edge), the current den-
sity rapidly equilibrates at the edge, but evolves much
more slowly in the center. The small spatial scale struc-
ture in ι at small radius is an artifact of the numerical
differencing scheme used to derive this variable from
the calculated poloidal flux.

6. Control needs

The control of parabolic diffusion-reaction PDE
equations such as (27) has been extensively studied
using interior control (defines a feedback control law
for u2(t)), usually making use of model reduction
techniques (see Ref. [12] and references therein) or
boundary control (defines a feedback control law for
u3(t)) [13,14]. However, control throughu1(t), what we
name diffusivity control here, has not been previously
considered. In addition, significant actuator constraints
must also be considered, which adds to the complexity
of the problem.

During “Phase I” an optimal control problem must
be solved, where control laws ui(t), for i = 1, 2, 3, are
sought to minimize the cost functional

J = 1

2

∫ 1

0
α(ρ̂)(ι∗(ρ̂) − ι(ρ̂, T ))2 dρ̂

+ 1

2

3∑
i=1

γi

∫ T

0
u2
i (t) dt

where α(ρ̂) and γi’s are weight functions, and ι∗(ρ̂) is
the prescribed target profile. Experimentalists usually
describe the target profile in terms of ι or q. In this case,
we have chosen to define the cost function in terms of ι,
but it can be defined in terms of q as well. This problem
has been previously studied for u1(t) = cte (cte stands
for a constant value); where optimality conditions can
be stated using the Maximum Principle and solutions
can be obtained using numerical methods [15]. How-

ever, due to their high computational demands these
optimization techniques based on infinite dimensional
models are restricted to open loop control. In addi-
tion, this approach must be extended to the u1(t) 
= cte
case to apply to the current profile control problem in
tokamaks.

Model reduction via Inertial Manifold (IM) [16]
and Proper Orthogonal Decomposition (POD) [17]
have been considered to some extent when u1(t) = cte
[18,19]. Additional efforts are necessary to be able
to address the u1(t) 
= cte (nonlinear) case. Once an
approximate finite dimensional representation of the
system is obtained, many well established control tech-
niques for ordinary differential equations (ODEs) can
be considered. In particular, Model Predictive Control
(MPC) [20] is well suited to handling constraints within
an optimal framework. Although MPC is a control
technique widely used for ODE systems, and exten-
sive research has been done in this area, its extension
to PDE systems is still an open problem. This is espe-
cially true when one takes into account that the eventual
approximate, reduced-order, finite dimensional models
will be bilinear or driftless (nonlinear), which may not
be controllable by continuous control laws [21].

7. Conclusions

A simplified, experiment-specific, dynamic model
describing the evolution of the poloidal flux, and there-
fore the q profile, during the inductive phase of the
discharge has been introduced. Simulation results show
qualitative agreement with experiments. This model
will be used for the design of feedback control strate-
gies for the current profile during the ramp-up and early
flat-top phases at DIII-D. The proposed model, and the
controllers developed based on it, will be tested experi-
mentally. Different control approaches and needs have
been discussed.
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