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Abstract

Control of plasma density and temperature magnitudes, as well as their profiles, are among the most fundamental
problems in fusion reactors. Existing efforts on model-based control use control techniques for linear models. In this
work, a zero-dimensional (0-D) nonlinear model involving approximate conservation equations for the energy and the
densities of the species was used to synthesize a nonlinear feedback controller for stabilizing the burn condition of a

fusion reactor.
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1. Introduction

In order to be commercially competitive, a
fusion reactor needs to run long periods of time
in a stable burning plasma mode at working points
which are characterized by a high @, where Q is
the ratio of fusion power to auxillary power.
Although operating points with these character-
istics that are inherently stable exist for most
confinement scalings, they are found in a region
of high temperature and low density. Unfortu-
nately, economical and technological constraints
may require fusion reactors to operate in a zone
where the thermonuclear reaction is inherently
thermally unstable.
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The common denominator of existing works is
the approximation of the nonlinear model of the
fusion reactor by a linearized one for the purpose
of control design [I]. The nonlinear model is
linearized, the controller is synthesized using linear
control techniques and the performance of the
resulting linear controller is tested through simula-
tions that use the original nonlinear model. When
tested through nonlinear simulations, these linear
controllers succeed in stabilizing the system only
against a limited set of perturbations in the initial
conditions. In this work we present a stabilizing
controller for the burn condition in fusion reactors
synthesized using model-based nonlinear control
techniques that avoid the linearization of the
model. The avoidance of the linearization allows
us to achieve much higher levels of performance
and robustness.

Over the years, the physical and technological
feasibility of different methods for controlling the
burn condition have been studied [2—4]. In this
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work, we consider the use of auxiliary power and
fueling rate modulations for stabilizing the burn
condition of a fusion reactor working at a
subignited point against a limited range of pertur-
bations in the initial conditions. However, when
we want to work at an ignited point or we want to
have the capability of rejecting a larger set of
perturbations in the initial conditions, we consider
the controlled injection of impurities as an addi-
tional actuator.

The paper is organized as follows. In Section 2
the model of our plant is stated. In Section 3 the
control objectives are presented and the stabilizing
control laws for the different actuators are intro-
duced in Section 4. Section 5 makes a presentation
of the simulation results. The conclusions and
some suggestions about future work are presented
in Section 6.

2. Model

In this work, we use a zero-dimensional (0-D)
model for a fusion reactor which employs approx-
imate particle and energy balance equations. This
is fundamentally the same model used by Hui,
Fischbach, Bamich and Miley [7] but we introduce
a new equation for the dynamics of the injected
impurities. The alpha-particle balance is given by

dn, _ n,  (mpr\’
= f+(2)ww (1)

[#4

where n, and npt are the alpha and deuterium—
tritium (DT) densities, respectively, and 7, is the
conlinement time for the alpha particles. A first
order lag is introduced to take into account the
diffusion time for neutral fuel atoms to transport
into the Tokamak core. This lag runs from the
start of the fuel injection to the change in DT ion
particle density. The set of equations governing the
neutral fuel atom balance and the DT ionized fuel
particle balance is given by

dnﬁ: _nDT_Q(nDT)Z(Jw +"J (2)
dz o1 2 T4

I Mg 3)
dr 74

where 7, is the neutral fuel density, defined as the
number of neutral fuel atoms divided by the core
volume, S (input) is the refueling rate (50:50 D—
T), defined as the number of ncutral fuel atoms
injected per unit time divided by the core volume,
tpT 18 the confinement time for the i1onized fuel
particles and 74 is the controller lag time. The
impurity presence is determined by the balance
equation

—L=—lys, )

where n; is the impurity density, 77 is the confine-
ment time for the impurities and St (input) is the
impurity injection rate. The energy balance is given
by

dE E

_:__+Poc+Pohmic_Pmd+Paux (5)
dz Tg

where FE is the plasma energy, 7g is the energy
confinement time, Q, = 3.52 MeV is the energy of
the alpha particles and P,,x (input) is the auxiliary
power. P, = (npr/2)?{ov>Q, is the alpha power
and the ohmic power is written as Pgpmic = 7j-
where # is the Spitzer resistivity and ; is the plasma
current density. The radiation loss P,,q4 is given by
P =Wor(Dinpr + ¥, (Tn, + Y (Tngln, (6)
where the radiation due to the DT particles is
bremsstrahlung radiation ¥pT = Yurem = AxV'T
and the radiation losses due to the alpha and

impurity particles are computed according to the
law

W T) = 1022, A loglT (e} (7)

where Z is the type of ion and the constant
parameters A; can be found in [8]. The DT
reactivity {ov)> is a highly nonlinear, positive
and bounded function of the plasma temperature
T given by

a 2 3 4
(JU>=eXp(Tr—|—a2+a3T—|—a4T +a,T —|—a6T)

and its parameters ¢; and r taken from [9].

No explicit evolution equation is provided for
the electron density #n. since we can obtain it from
the neutrality condition #n,=npr+2n,+2Z1n,
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where Zy is the atomic number of the impurities,
whereas the total density and the energy are
written as n=2npr+3n,+(Z;+1)n; and E=
3nT/2.

The energy confinement scaling used in this
work is ITER90H-P [10] because it allows the
comparison with previous linear controllers based
on this scaling. However, it will be clear from the
synthesis procedure that the results can be ex-
tended to newer scalings. This scales with plasma
parameters as

e =f'0‘08211.02R1.6B0.ISA?.SK;O.19P70.47 — kP70.47

where the isotopic number A; is 2.5 for the 50:50
D-T mixture, the ITER machine parameters can

be obtained from [l1] and the factor scale f

depends on the confinement mode. The isotopic
number, factor scale and ITER machine para-
meters can be rewritten as a constant & because it
is assumed that a magnetic controller is regulating
these variables. The net plasma heating power is
defined as P = P, —Prag + Paux + Pohmic:

The net plasma heating power is compared with
the L—H transition power (threshold power) Py,
to determine the value of /. This threshold power
can be written as [12] P =
2.84M ' B982,038 g1.00,08L where the units are
amu, T, 10 m~3 and m. When P drops below
Py we adopt f=f~ =712, where f' =0.85. The
confinement times for the different species are
scaled with the energy confinement time ¢ as 7, =
kytr, ToT = kpTTE and 11 = k. We also scale lag
time with the energy confinement time as 74 =
kqte. For synthesis and simulation purposes we
choose ky=1 arbitrarily which represents an
appreciable lag in the actuation.

3. Control objective

The possible operating points of the reactor are
given by the equilibria of the dynamic equations.
The values of the variables at the equilibrium are
denoted by a bar. An ignition point is character-
ized by P, =0 while at a subignition point we
have P, >0. In this case we look for those
operating points where S, =0 because we are

interested in an operating condition free of im-
purities. The density state variables 71, fipy, 7, 7]
energy state variable E and inputs P _, S at the
equilibrium, are calculated as solutions of the
nonlinear algebraic equations obtained by setting
the left hand sides in equations Eqgs. (1)—(5) to
zero. Taking into account that $; =0 and 7, =0,
we define the deviations from the desired equili-
brium values as 71, = n, —#,,, fipy = Mot —Apy, A, =

na—a,, fA=m—i=m>0, E=E—E P, =
Pox—Poy, S=85—-5 and $,=5-5,=9>0,
we write the dynamic equations for the deviations

as

dia,  #, Anr\® 1
dar 7 + [(;T) "‘E nDTnDT] (ov) +u, (8)

o)

ddi 7] i z i
npr — _nﬂ_ [2 (rlzﬂ) _ ﬁDTﬁDT:| (JU) _|_ﬂ

dr TpT 7y
gy )
dii
= S* 10
P (10)
a7 -
Lo My, (11)
dr T
dE. E
dr e
E
_{_[Pa+Pohmic_Prud+Paux]} (12)
g
where
n A\~
Uy = ——* (D) (ov) (13)
T, 2
- - 2 -
n
z%T=—"BI—2<ﬁ£><a@4fi (14)
Tpr 2 74
sr=_ Ty g Mg Mg (15)
T4 Tq Tq

The control objective is to drive the initial
perturbations in 7, fipyp, 7, A, E to zero using
actuation through P,,., S and 5 =§1 >0. It is
important to note that in the ignition case (P, =

0) we have P, > 0 as a constraint, we do not have
the possibility of modulating P,,x in both the
positive and negative sense. However, the addi-

tional actuator Sp= 51 >0, although constrained
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in sign by itself, will help us to overcome the
constraint in P,.x. All the states are assumed to be
available for feedback, cither by measurement or
by estimation.

4. Controller design

We start by looking for a control, which
stabilizes £. We choose P, and P,,q(n1) 1n order
to reduce Eq. (12) to
dE E

= —KE —,

— K.>0
dr TE K

This means we choose P,y and P.q{n) such that

E E E
_KE_:____+Pu+Pohmic _Prad
T T g
+ P, (16)

The gain Kg allows us to regulate the response rate
of E. This helps us to regulate the control force in
order to keep the modulation rate of the auxiliary
power in MW s~ ! below the technological limits.
Nevertheless the computation of P, from Eq.
(16) 1s not direct because g 1s a function of P,,.
In order to simplify the computation of P,,x we
choose Kg =1, i.e. we choose P,ux and Praq(ny)
such that

E

=Poz+P _Prad+Paux=P (17)

ohmic
Tg

From the equilibrium equation for the energy F,
0= —(E/7)+P, and the correlation between the
energy confinement scaling tg and the power P,
we realize that the solution for Eq. (17) is P = P.
Therefore, the control strategy will be to adjust
P,.x and sy to make P constant and equal to P
satisfying Eq. (17) and reducing Eq. (12) to

dE E

dz Tg

The subsystem E is exponential stable since 7 > 0.
In practice, there are limitations on the power
supply system that constrain the rate at which the
auxiliary power can be varied. This condition can
be written |dP,u/df| < R,ux Where R,,. 1S the

maximum auxiliary power ramp rate. It is thought
that Raux ~ 10-20 MW s~ ! may be achievable for
ITER [3] and this value was used for all the
simulations. The controller that implements Eq.
(17} is synthesized in two steps:

First Step: We compute Py« as

Paux:P_[Pa+P P'ad] (18)

ohmic ~ 4

If P,ux = 0 then we keep this value for P,, and let
S1=0. If P,ux <0 then we take P,,, = 0 and go to
the second step.

Second Step: We look for the least ny=nf >0
such that

_P + Poc + Pohmic = Prad(n;k) (19)

In order to simplify the computation of this
solution we need to find an expression for the
radiation losses, that can be used for the design of
our controller, simpler than the one given by Post
et al. in [8] and stated in Eq. (7). Stacey proposes in
[13] a simpler law that scales the bremsstrahlung
component with 72 the line component with
7' and the recombination component with
T 2. Capturing this physics, we use an approx-
imate law of the form

YTy =k, TV + I T2 + ke, T2 (20)

where the constants ky,, & and &, are adjusted such
that Y& T) < vrz(T) for all T. This law allows
the reduction of Eq. (19) to a polynomial equation
in ny, making the search for n{ almost trivial. The
fact that Y%"°"(T) < yz(T) guarantees that the
approximate nf is always higher than the real np*
and there is no risk of losing stability by not
injecting enough impurities. As conclusion, no
matter how complex the law for the radiation
losses may be, there will always be a simple
approximation of the radiation loss law that is
good enough for control purposes.® and there is
no risk of losing stability by not injecting enough
impurities. As conclusion, no matter how complex
the law for the radiation losses may be, there will
always be a simple approximation of the radiation
loss law that is good enough for control purposes.
Defining

*
_M

no— 9 * ol
Ay=d —nf, S=—+58]

71
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o~ E
f(nla E: Ry, nDT) = - ?_ (Poc + Pohmic _Prad):|
E

we can rewrite Eqs. (11) and (12) as

dr, i dE E N
—=——4+S5Sf —=——4+f 0, L, A, f

& S P o Sy, E, ot)
We take V= (#’ +£7)/2 as our Lyapunov function
candidate, write f=7#,¢, where ¢ is a continuous
function because f(0, E, A, fipt) = 0, and compute

2

. ~ A e i’l’\% E 5 ' 7 -
V=nmn+EE=————+n[ST+ E¢(r;, E)]
T Tg
We take
n¥ . ~
Sy == E¢Gi, B)— Ky, K =0 (21)
T

which gives ¥V = —((1/7)+ Kpia? —(E*/7g) <0 and
achieves exponential stability.

We note from Eq. (11) that #; is input-state
stable (ISS) [14] with respect to S;. This ensures
that 7; will be bounded as long as Sy is bounded
and exponentially stable once S| becomes zero.

After stabilizing E using P,,x and S| as con-
trollers, we must focus in Egs. (8) and (9) to
achieve stability for Ay and 7,. We apply a
backstepping procedure to achieve stability of
fipp. Toward this goal, we start taking 7, as the
virtual control w,

diipr _ [L + flm(ﬂ)} A — 2 (%) 2(01/)

dz TpT

W
+Upr +—
Ta

since [(1/tp1)+app{ov)] is positive, we exponen-
tially stabilize 7, taking w equal to

st o, B = [2(22) o) ] 22

reducing in this way Eq. (9) to

dripr B

drs

1 _ N
—|— +ipp{ov) | fipy
Tpr

Defining now z =7, —o <ji, = z+ o, we can write

i=7#, —d=S* — g Taking the Lyapunov func-
tion candidate V = (#3,/2)+(z/2), recalling the
equations for i and Z and taking into account
our definition Eq. (22) for o we can compute

V = fipriny + 22

. 1 7
V=— [——F I’_lDT<0'U>:| i + Z[S* —a -I—nﬂ}
Tpr Tq
Taking
S= KA, —ay+s— ot M (23)

Ty Ta

with K >0, we have
) 1 _ - 5
V =—|—+fipp(ov) | iy — Kgz” <0

and we achieve exponential stability for (fipy, 7).

To have a closed expression for the control law
Eq. (23) for S, we compute « in terms of 7, Apr, A;
and E which can be obtained from Eqgs. (8)—(12).

We note from Eq. (8) that 7, is ISS (input-state
stable) with respect to 7ipr and u,. Therefore, since
Aipr 1s bounded (because it is exponentially stable),
and u, is bounded (because E is exponentially
stable and {ov) is a bounded function), 7, will be
bounded for all time. In addition, once E con-
verges to E (£ —0), npT converges 1o fipy (fp; —0)
and ny=7; converges to ;=0 this equation

reduces to

~ ~ —_ 2
dnd__ﬁ_i_ * u*z_n_d "pr (ov)
dr , 7 z, 2

The function {¢v) is a function of T = (2/3)(E/
(2itipr +3n,)) once ny=#; converges to zero, and
has a positive derivative in the region of interest.
Consequently u} has the same sign as —7, /7, and
vanishes when 7, vanishes ({ov) = {av ) because
0= —(i/7,)+ (i /2)’(Gv> is the equilibrium
equation for n,. This implies exponential stability
for 1i,.
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5. Simulation results

It should be noted that our controller can be
independent of k; choosing a sufficiently high
value for Kj. Therefore, the choice of k&1 = 10 can
be considered completely arbitrary and with the
only purpose of the simulation. In addition, we
consider kg =3, k, = 7.

The controller designed shows capability of
rejecting different types of large perturbations in
initial conditions. Fig. 1 shows a tested domain of
stability for the nonlinear controller. This study is
carried out generating initial perturbations around
the equilibrium (T =7.5 KeV, i, =1.20 x 10>
m °, f,=553%, f=3%, i,=6.64x10" m~ 7
fipp =1.07 x10° m 3, E=421x10°Jm % P,
=0Wm °, §=552x%x10"m *s ') for 7 and
n. and keeping the alpha-particle fraction f,:=n,/
n. equal to that of the equilibrium. The figure
compares its performance with other two control-
lers synthesized by linear pole placement [5] and
linear robust [6] techniques, for a linearization
point very close to our equilibrium point, which
use mainly the same dynamical model presented
here but considering only the fueling rate as
actuator. While the boundaries shown for the
linear controllers are absolute, for the nonlinear
controller they only indicate the limits within
which we performed our tests.

x 10° Stability Domain
o < ! ! — Linéar PoIeIPIacemém
; = : : — Linear Robust
3.5 ; B (AR o Nonlinear
", « Equilibrium
sl e B Limit ||
25f ]
T
E 2 1
=¢D
151 7
1r K-
0.5 1
o
0 i
0 16

Fig. 1. Stability Domain Comparison.

Robustness

120 ¥
O e erere s re o e 4

=+= Linear Pole Placement 4
— Linear Robust
------ Nonlinear B

8T [%]

Fig. 2. Robustness against uncertainty in %,. Comparison with
linear controllers synthesized in [5], [6].

The robustness of our controller was also
studied against those of the linear controllers.
Figs. 2 and 3 show, respectively, the regions of
stability against uncertainty in the parameter k.,
whose nominal value is equal to 7, and uncertainty
in the parameter &4, whose nominal value is equal
to 1, when the system suffers perturbations in the
initial temperature. Again, the region shown for
the nonlinear controller is not a limit. With the
sole objective to show its performance we tested it
against uncertainties up to 400% and perturba-
tions for initial 7" between —90 and 100%.

Robustness

120 T
OO e e +

8or — Linear Robust ]

otk Ll Nonlinear E

40 ]
20 &‘ 1
0

8T/T [%]

Fig. 3. Robustness against uncertainty in k,. Comparison with
linear controller synthesized in [7] for k, =0.
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6. Conclusions and future work

The information taken into account by the
controller when it is synthesized using the full
nonlinear model makes it capable of dealing with
perturbations in initial conditions that were un-
manageable until now. On the other hand, the
multi-input nature of the controller allows it to
reject large perturbations in initial conditions
leading to both thermal excursion and quenching.
In addition, the effectiveness of the controller does
not depend on whether the operating point is an
ignition or a subignition point. Since the nonlinear
controller depends parametrically on the equili-
brium point, it can drive the system from one
equilibrium point to another allowing in this way
the change of power, other plasma parameters and
ignition conditions. No scheduled controllers are
necessary and the same control law is valid for
every equilibrium point. The controller can deal
with arbitrary values of k4 allowing ecither pellet
injection or gas puffing. Simulation results show
good robustness properties against uncertainties in
the confinement times.

One possible extension of this work involves
developing a one-dimensional (1-D) dynamic
model. In this way we would not only achieve
results for a plant that is closer to reality but also
gain expertise that could be directly applicable to
other problems in control of nuclear fusion.
Problems like transport control, the improvement
of the energy confinement time and MHD stabi-
lity, among others, require control of not only the
values of the density, temperature and current, but
also of their profiles.
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