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Abstract
Control of both the magnitude and the shape of tokamak profiles will be
necessary to achieve stable, high-performance plasmas. In order to reject dis-
turbances in real time, feedback-control algorithms rely on accurate real-time
knowledge of the plasma state. When diagnostics alone are insufficient, because
they are limited in number or their measurements are too noisy, observers can
be used to combine diagnostic data with a response model to provide a bet-
ter estimation of different plasma properties. An observer has been developed
to estimate the electron temperature profile in real time using both diagnostic
data from the Thomson scattering system and a model based on the electron
heat transport equation describing the evolution of the electron temperature
profile. Neural network surrogate models are leveraged to help improve the
overall model prediction while staying within computation time constraints for
real-time use. The observer algorithm is shown in offline tests to produce smooth
profiles that are consistent with both the diagnostic data and the electron heat
transport equation. When implemented into the real-time plasma control sys-
tem, this observer will provide valuable information on the electron temperature
profile to many potential feedback-control applications.
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1 INTRODUCTION

The spatial variation of kinetic plasma properties such as temperature and density need to be carefully controlled to
achieve high-performance, magnetohydrodynamically stable tokamak plasmas. This will be even more crucial for burn-
ing plasmas, where the reactor power and gain will need to be tightly regulated. In order to achieve this level of control,
feedback techniques are useful for their ability to react to real-time disturbances and to return the plasma to its target
state. However, many approaches to feedback control assume that the full state of the system can be measured. This allows
a tracking error between the measured state and the target (or desired) state to be calculated in real time and used by the
feedback control algorithm to determine the corrective actuation that is needed to reduce such error to as close to zero as
possible. However, in practical applications, there are often limitations on how much of the system state can be measured
in real-time. These limitations could arise from the diagnostics not having a fine enough spatial resolution, the relevant
diagnostics not being available in real-time, or the diagnostics being too noisy to be fed directly to the feedback control
algorithm.
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Thomson scattering[1] is one of the most common diagnostics used to measure electron temperature and density.
It uses laser light that is scattered by electrons, causing a change in both amplitude and frequency. By measuring the
scattered light, electron density can be derived from the change in amplitude, and electron temperature can be derived
from the change in frequency. While extremely useful, this diagnostic does contain a significant amount of noise. In real
time, it does not produce a smooth enough profile to be useful for many feedback controllers. Offline, it is common to
manually fit a smooth profile that visually fits the Thomson scattering data[2]; this approach requires significant physicist
input. Work has also been done on automatically fitting the diagnostic data to an assigned shape such as a hyperbolic
tangent function, with no physicist input.[3] Both of these approaches are dependent on the assumption of the shape of
the fitting function. Gaussian process regression is a statistical tool that is also being explored for the purpose of profile
fitting,[4] but there is currently no widely available tool that uses this method for DIII-D. All of these approaches are
heavily reliant on just the diagnostic data and do not take into account much of the known physics of how the profile
behaves.

Another way to determine the state of the system is to use an observer. In response to the issues presented by inad-
equate measurement capabilities, the Luenberger observer[5] was developed to estimate the unknown state of a linear
system from a combination of a limited number of measurements and a model of the system. The use of both measure-
ments and a model allows the observer, also known as an estimator, to handle both noises in the measured data and
imperfections of the model. This approach grew into an entire subset of control theory known as state estimation, and
now includes a huge variety of observer algorithms for both linear and nonlinear systems. State observers have been
designed to estimate both kinetic[6–8] and magnetic[9,10] profiles in tokamaks. A variety of nonlinear estimation techniques
have been applied, including the extended Kalman filter.[11] The Kalman filter is a well-known approach to determining
the optimal estimator gain for linear systems; the extended Kalman filter is a nonlinear extension of the Kalman filter
algorithm.

The observer designs cited above use a combination of physics-based and empirical models for the model com-
ponent of the observer algorithm. There are three major criteria that models should be graded on in this context:
accuracy, speed, and applicability across a wide variety of scenarios. First-principles models usually demonstrate good
accuracy over a variety of scenarios, but often do not meet the speed criterion to be useful in real time. Empirical
models tend to be fast enough but may only meet the accuracy criterion for the specific plasma scenario they are
tuned to. Tokamak profiles are often modelled by transport equations that describe their evolution over time. For
some components of transport equations, physics-based models are available that are simple enough to run in real
time while also having high levels of accuracy. However, other necessary components of the model, especially auxil-
iary heating and current drive sources and transport coefficients, obey dynamics that are complicated enough that the
models most commonly used for physics applications do not run fast enough to be useful for control applications. This
is a significant issue when estimating kinetic profiles, which are highly sensitive to both external sources and trans-
port. Machine learning offers the ability to develop models that can meet all three criteria. In tokamak applications,
machine learning models have the potential to offer significant advantages for real-time operation. Because of this,
a significant effort has been made to develop machine-learning surrogate models for various time-intensive physics
codes.[12–14] However, there has been very little research using machine learning-based models integrated with tradi-
tional observer architecture for profile estimation in tokamaks, although it has been used for estimation in unrelated
applications.[15,16]

In this work, an observer has been developed to estimate the electron temperature profile in a tokamak. The
estimator uses a nonlinear model based on the electron heat transport equation that contains both analytical and
machine learning-based components. Surrogate models for the Monte Carlo neutral beam code NUBEAM and for
the turbulent transport code MMM have been developed for DIII-D, known as NubeamNet[17] and MMMnet,[18]

respectively. NubeamNet is used here to calculate the neutral beam heating source, and MMMnet is used to cal-
culate the electron thermal diffusivity. The diagnostic data used by the observer comes from the Thomson scat-
tering system. The extended Kalman filter algorithm[11] is used to calculate an optimal gain for the nonlinear
system. The goal of this work is to provide automatic, real-time estimations of the electron temperature profile
that are consistent with both the known physics of the electron temperature profile evolution and the Thomson
scattering data.

The rest of the paper is organized as follows. Section 2 introduces the nonlinear model used by the observer, includ-
ing the two neural network components. Section 3 describes the extended Kalman filter algorithm and the way it is
applied to this work. Section 4 shows the results of testing the observer offline. Section 5 presents conclusions and
future work.
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2 MODEL

The model used by the proposed observer is based on the nonlinear 1D parabolic PDE that describes the evolution of
the electron temperature profile; this is referred to as the electron heat transport equation.[19] The components of this
equation are calculated using a combination of neural networks and analytical models. In order to facilitate calculation,
the PDE is reduced to a system of ODEs through spatial discretization, and then to a system of equations through temporal
discretization. This system of equations can then be used at each time step to predict the electron temperature profile at
the next time step.

2.1 Electron heat transport equation

The electron heat transport equation is given by

3
2
𝜕

𝜕t
[neTe] =

1
𝜌

2
bĤ

1
𝜌

𝜕

𝜕𝜌

[
𝜌

ĜĤ2

F̂

(
𝜒ene

𝜕Te

𝜕𝜌

)]
+ Qe,

𝜕Te

𝜕𝜌
(0, t) = 0, 𝜕Te

𝜕t
(
𝜌bdry, t

)
= 0. (1)

The mean effective minor radius of the plasma is defined as 𝜌 =
√
𝜋B𝜙,0Φ, where B𝜙, 0 is the reference magnetic field

at the geometric major radius R0, and Φ is the toroidal magnetic flux. The scalar 𝜌b is defined as the value of 𝜌 at the
boundary of the plasma. The normalized mean effective minor radius is defined as 𝜌 = 𝜌∕𝜌b. The model introduced here
is only valid for the core region of the plasma, not the pedestal region. The boundary condition is thus set at the location
𝜌 = 𝜌bdry, which is chosen to be constant and less than the 𝜌 value of the pedestal location. The profiles F̂, Ĝ, and Ĥ are
geometrical factors related to the plasma equilibrium,[20] which is assumed prescribed in this control-oriented model.
The equation for electron heating is written as

Qe(𝜌, t) = Qohm(𝜌, t) + Qnbi(𝜌, t) + Qec(𝜌, t) − Qei(𝜌, t) − Qrad(𝜌, t), (2)

and contains terms for Ohmic heating (Qohm), neutral beam heating (Qnbi), electron cyclotron resonance heating (Qec),
collision-driven electron-ion exchange heating (Qei), and radiative heat loss (Qrad). Section 2.2 describes the two neural
networks, NubeamNet and MMMnet that are used to calculate Qnbi and 𝜒 e, respectively. These are two terms that can be
very difficult to calculate accurately using traditional real-time-capable models. Section 2.3 introduces analytical models
for the electron density and for the other components of electron heating.

Equation (1) is rewritten to separate the different derivatives of Te as

𝜕Te

𝜕t
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𝜕
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ĜĤ
𝜌

2
bF̂
χe(𝜌, t),

f2(𝜌, t) =
2
3

ĜĤ
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+
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,

f4(𝜌, t) =
2Qe(𝜌, t)
3ne(𝜌, t)

. (4)

This form of the equation sets up the discretization in Section 2.4.
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4 of 16 MOROSOHK and SCHUSTER

2.2 Neural networks

2.2.1 NubeamNet

Neutral beam heating has a very significant effect on the evolution of the electron temperature profile and is also
one of the most difficult components of Equation (1) to calculate analytically. NUBEAM[21] is a commonly used
code that calculates the effects of neutral beam injection on the plasma using a Monte Carlo approach. Its out-
puts include profiles of the heat, current, and torque deposition from neutral beam injection, as well as scalar
quantities such as neutron rate and shine through. NUBEAM has been extensively validated and is routinely used
across many different tokamaks. However, it can take on the order of minutes to calculate these outputs for a sin-
gle time step, making it impractical to use in real-time applications. Because of this, a neural network surrogate
model for NUBEAM was developed, known as NubeamNet,[17] that can produce similar results on the order of a
millisecond.

NubeamNet was originally developed for NSTX-U[12] to replicate the calculations of NUBEAM with a faster infer-
ence time, and a new version was later generated for DIII-D.[17] The DIII-D version of NubeamNet was trained on nearly
200,000 time slices of NUBEAM input and output data, including profiles. Each profile was reduced to a set of scalar
values using principal component analysis (PCA).[22] In this technique, a profile is reduced to a linear combination of a
set of basis functions; a specific value of the profile can then be defined by the coefficients of each basis function. This
allowed the multi-layer perceptron (MLP) structure[23] (see Figure 1), which typically only accepts scalar data, to effec-
tively handle the spatially-varying profile data. The PCA technique was applied to inputs such as electron temperature,
electron density, and safety factory profiles, among others. The network was trained on 80% of the data, while 10% was
used to determine the optimal hyperparameters, and the remaining 10% was used for testing. The MLP used here consists
of two hidden layers, each containing 75 neurons; these hyperparameters were determined by a grid search. In addition,
five separate neural networks were trained in parallel using the exact same hyperparameters and training data. The only
difference between the networks was in the random initialization of the weights. The total output of the network is taken
to be the average of the five predictions, and the standard deviation of the five predictions gives some quantification of
the uncertainty of the network.

In this work, NubeamNet is used to calculate the beam heating source in Equation (1). NubeamNet predictions of this
output compared to NUBEAM are shown in Figure 2. Figure 2a shows the evolution of the NUBEAM and NubeamNet
predictions of one point in the beam heat deposition profile over the course of a shot. The shot shown in this plot was
part of the testing dataset and was therefore never seen by the network during the training process. Figure 2b shows the
NubeamNet prediction plotted against the actual NUBEAM output for every point in the testing dataset. On this plot, the
line with a slope of 1 represents a perfect match between the NUBEAM and NubeamNet predictions. The coefficient of
determination, or R2 value of linear regression,[24] is calculated as 0.937 for the testing dataset. An in-depth discussion of
these results can be found in Ref. [17]

F I G U R E 1 Structure of a multi-layer perceptron neural network[17]
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MOROSOHK and SCHUSTER 5 of 16

F I G U R E 2 NubeamNet results compared to NUBEAM[17]

2.2.2 MMMnet

The shape of the electron temperature profile strongly depends on the electron thermal diffusivity, which can be very
difficult to calculate accurately. MMM[25] is a turbulent transport code that calculates a number of different thermal,
particle, and momentum diffusivity coefficients. MMM runs significantly faster than NUBEAM, on the order of a couple
of 100 ms, but this is still too slow for real-time control applications that run on the order of tens of milliseconds. Because
of this, MMMnet[18] was developed. MMMnet is trained to predict three of the diffusivity coefficients produced by MMM:
the electron thermal diffusivity (𝜒 e), ion thermal diffusivity (𝜒 i), and toroidal momentum diffusivity (𝜒𝜙). In the future,
it is planned to expand MMMnet to predict other outputs of MMM such as particle and poloidal momentum diffusivities.
Like with NubeamNet, MMMnet uses the PCA technique to reduce the input and output profiles to a set of scalars. The
PCA technique is applied to input profiles including electron and ion temperatures, electron, ion, and impurity densities,
the safety factor, and ExB shear, among others. MMMnet is a multi-layer perceptron containing 3 hidden layers with 100
neurons in each layer. MMMnet also uses five parallel networks to help quantify the uncertainty introduced by using
random initial weights.

In this work, MMMnet is used to calculate the electron thermal diffusivity coefficient (𝜒 e). Note that this diffusivity
coefficient only represents transport driven by turbulence. Other factors such as neoclassical effects exist, but for electron
temperature specifically, the vast majority of transport is in fact driven by turbulence, so those other factors are considered
negligible. Figure 3 shows predictions by a slightly different version of MMMnet than the one presented in[18]; this version
was updated to handle some difficulties the PCA had with certain normalized gradient inputs and to make the units of
the inputs and outputs more consistent with the DIII-D Plasma Control System. Figure 3a shows the evolution of the
MMM and MMMnet predictions of one point in the electron thermal diffusivity profile over the course of a shot from the
testing dataset. Figure 3b shows the MMM and MMMnet predictions of the 𝜒 e profile from 𝜌 = 0 to 𝜌 = 0.8 for a single
time in the same shot. The version of MMM used to train this neural network is not valid in the pedestal region, so the
training data predictions only extend to 𝜌 = 0.8. This plot illustrates that, in the region where the predictions are valid, the
PCA is able to reconstruct the shape of the diffusivity profile. However, Equation (1) requires values of 𝜒 e in the region
from 𝜌 = 0 to 𝜌 = 𝜌bdry. In the case that 𝜌bdry > 0.8, an extrapolation is made from the value of 𝜒 e predicted by MMMnet
at 𝜌 = 0.8 out to 𝜌 = 𝜌bdry.

2.3 Electron density and heating using analytical models

A simple model is used for the electron density, where the profile is assumed to have a constant shape defined by nprof
e (𝜌),

and the magnitude is determined by the line-average electron density. This model is given by
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F I G U R E 3 MMMnet results compared to MMM

ne(𝜌, t) = nprof
e (𝜌)ne(t). (5)

Ohmic heating is calculated as

Qohm(𝜌, t) = jtor(𝜌, t)2𝜂(𝜌, t), (6)

where the toroidal current density is defined as

jtor(𝜌, t) = −
1

𝜇0𝜌
2
bR0Ĥ

1
𝜌

𝜕

𝜕𝜌

(
𝜌ĜĤ 𝜕𝜓

𝜕𝜌

)
, (7)

and the plasma resistivity is modelled as

𝜂(𝜌, t) =
ksp(𝜌)Zeff

Te(𝜌, t)3∕2
. (8)

The physical constant𝜇0 is the permeability of free space, and R0 is the major radius of the plasma. The poloidal stream
function 𝜓 is proportional to the poloidal magnetic flux of the plasma and is assumed to be known. The parameter ksp(𝜌)
is an empirically-derived normalizing factor, and the mean effective charge Zeff is assumed to be constant. The value of
Qnbi is calculated by NubeamNet as described in Section 2.2.1. The Qec contribution is calculated as

Qec(𝜌, t) = Qref
ec (𝜌)Pec(t), (9)

where Qref
ec (𝜌) is a constant profile and Pec(t) is the power coming from the electron cyclotron heating system. The heat

exchanged between electrons and ions are calculated as

Qei(𝜌, t) = 𝜈e(𝜌, t)ne(𝜌, t)
(

Te(𝜌, t) − Ti(𝜌, t)
)
, (10)

where the collisionality is defined as

𝜈e =
0.041Te(𝜌, t)−3∕2 (ne(𝜌, t) ∗ 10−19)

Aeff
, (11)
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MOROSOHK and SCHUSTER 7 of 16

the ion temperature Ti is assumed to be a scalar multiple of Te, and Aeff is the mean effective mass number of the ions.
Although a number of different radiative effects exist, most of the heat lost by electrons through radiation comes from
Bremsstrahlung radiation,[26] which is the only effect considered here (other radiation sources could be modelled if
necessary or desirable). This is calculated as

Qrad(𝜌, t) = kbremZeffne(𝜌, t)2
√

Te(𝜌, t), (12)

where kbrem is the Bremsstrahlung constant.

2.4 Model discretization

2.4.1 In space

The discrete spatial grid used in this work is defined by n number of points evenly spaced between 𝜌 = 0 and 𝜌 = 𝜌bdry < 1.
The spatial grid cuts off at 𝜌 = 𝜌bdry because the model described in this section is not valid in the pedestal region of
H-mode plasmas. The grid is then defined as

Δ𝜌 =
𝜌bdry

n − 1
, 𝜌i = (i − 1)Δ𝜌, i ∈ {1, … ,n}. (13)

The notation Te, i is used to represent Te
(
𝜌i, t

)
. The form of the electron heat transport equation shown in Equation (3)

is discretized in space using the second-order finite difference approximations

𝜕Te

𝜕𝜌

||||𝜌i
=

Te,i+1 − Te,i−1

2Δ𝜌
,

𝜕
2Te

𝜕𝜌2

||||𝜌i

=
Te,i+1 + Te,i−1 − 2Te,i

Δ𝜌2
. (14)

For i ∈ [2, n − 1], Equation (3) is reduced to a system of ODEs written as

Ṫe,i = f1
(
𝜌i, t

)(Te,i+1 + Te,i−1 − 2Te,i

Δ𝜌2

)
+ f2

(
𝜌i, t

)(Te,i+1 − Te,i−1

2Δ𝜌

)
+ f3

(
𝜌i, t

)
Te,i + f4

(
𝜌i, t

)
. (15)

The boundary condition at the edge of the profile is written as

Ṫe,n = 0. (16)

The boundary condition at the centre of the profile is discretized using the forward finite difference equation

𝜕Te

𝜕𝜌

||||𝜌1

=
4Te2 − Te3 − 3Te1

2Δ𝜌
. (17)

Because this boundary condition equation is equal to zero, this can be simplified to

4Tj
e,2 − Tj

e,3 − 3Tj
e,1 = 0. (18)

2.4.2 In time

The discrete temporal grid used in this work is characterized by the time step size Δt. The grid is then defined as

tj = jΔt, j ∈ {0, 1, …}. (19)

The notation Tj
e,i is used to represent Te

(
𝜌i, tj). The system of ODEs from Equation (15) is discretized in time using

the first-order finite difference approximation
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8 of 16 MOROSOHK and SCHUSTER

Ṫj+1
e,i =

Tj+1
e,i − Tj

e,i

Δt
. (20)

A partially implicit, partially explicit finite difference method is used where the Te and spatial derivative of Te terms
are evaluated at tj+1, and the coefficient functions f 1, f 2, f 3, and f 4 are evaluated at tj. This hybrid approach retains the
stability properties of a true implicit approximation while significantly simplifying the computation. Equation (15) is thus
rewritten as

Tj+1
e,i − Tj

e,i

Δt
= f1

(
𝜌i, tj)

(
Tj+1

e,i+1 + Tj+1
e,i−1 − 2Tj+1

e,i

Δ𝜌2

)
+ f2

(
𝜌i, tj)

(
Tj+1

e,i+1 − Tj+1
e,i−1

2Δ𝜌

)
+ f3

(
𝜌i, tj)Tj+1

e,i + f4
(
𝜌i, tj)

, (21)

and Equation (16) is rewritten as

Tj+1
e,n = Tj

e,n. (22)

The system state x is defined as

x ≜
[
Te,1 Te,2 … Te,n

]T
. (23)

The state xj+1
i is calculated using Equation (21) for i ∈ [2, n − 1] and Equation (22) for i = n. For i = 1, the value of xj+1

1
is computed implicitly from Equation (18). Manipulating Equation (21) to isolate the xj+1 terms and defining the input to
the system u as

u ≜
[

ne Pec Pnbi1 … Pnbi8 Ip

]T
, (24)

the full system can be written as

xj+1 = G
(

xj
,uj
, tj)

. (25)

3 OBSERVER DESIGN

The extended Kalman filter[11] algorithm assumes that the nonlinear, noisy system takes the form

xj+1 = G
(

xj
,uj
, tj) + wj

,

yj = C
(

xj
,uj
, tj) + vj

, (26)

where G denotes the noiseless nonlinear system, C denotes the measurable output, w represents internal noise, and v
represents measurement noise. In this work, G is defined as the model presented in Section 2 (see Equation (25)). The
output y is defined as a subset of length m of the state x, so the function C(xj, uj, tj) can be written as Mx where M
is a matrix of ones and zeros. Some statistical properties of the noise are assumed to be known and will be defined in
Section 4.2.

The extended Kalman filter algorithm is composed of two main steps: the prediction step and the correction step. The
prediction step consists of the following two equations:

x̃j = G
(

xj−1
,uj−1

, tj−1)
,

ỹj = C
(

xj
,uj
, tj)

, (27)

where x̃ ∈ R
n×1 is the predicted state and ỹ ∈ R

m×1 is the predicted output. The connections between u, G, x̃, C, and ỹ are
shown visually in Figure 4. The correction step consists of the following five equations:
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MOROSOHK and SCHUSTER 9 of 16

ej = yj − ỹj
,

P̃j = Fj−1Pj−1Fj−1T + Qj−1
,

Kj = P̃jHjT
(

HjP̃jHjT + Rj
)−1

,

xj = x̃j + Kjej
,

Pj =
(

I − KjHj) P̃j
, (28)

where y ∈ R
m×1 is the noisy measured output, e ∈ R

m×1 is the output error, P̃ ∈ R
n×n is the predicted covariance of the

state, F ∈ R
n×n is the Jacobian of G (see Section 3.1), Q ∈ R

n×n is the covariance of the internal noise (see Section 4.2),
H ∈ R

m×n is the Jacobian of C (see Section 3.1), R ∈ R
m×m is the covariance of the measurement noise (see Section 4.2),

K ∈ R
n×m is the observer gain, x ∈ R

n×1 is the corrected state, and P ∈ R
n×n is the corrected covariance of the state. The

goal of the observer algorithm is to generate an estimated state x in real time that is consistent with both the available
measurements and the model in Equation (1). A visual representation of the observer algorithm is shown in the block
diagram in Figure 4.

3.1 Calculation of Jacobians

The Jacobian of the function G is defined as

F =

⎡⎢⎢⎢⎢⎣

𝜕G1
𝜕x1

… 𝜕G1
𝜕xn

⋮ ⋱ ⋮
𝜕Gn
𝜕x1

… 𝜕Gn
𝜕xn

⎤⎥⎥⎥⎥⎦
. (29)

Two methods of calculating this Jacobian have been tested in the work: a numerical method and an analytical method.
For each of these methods, F is recalculated at each time step of the simulation to effectively linearize the model around
the state at that time. The numerical method is implemented by solving the first line of Equation (27) n+ 1 times, once

with the actual value of xj−1 and once using
[

x̂j−1(i) = xj−1
1 … xj−1

i + Δx … xj−1
n

]T
for i∈ [1, n] for a very smallΔx. Each

column of F is then calculated as

F(i, ∶) =
G
(

x̂j−1(i)
)
− G

(
xj−1)

Δx
. (30)

The analytical method uses analytical derivatives with respect to x of each component of the model, including the
neural networks, to calculate F. Results of the observer algorithm using both approaches to calculating the Jacobian will
be shown in Section 4.3.

F I G U R E 4 Block diagram showing the prediction (x̃j) and correction (xj) steps of the observer with K denoting the gain calculated by
the extended Kalman filter
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10 of 16 MOROSOHK and SCHUSTER

Because the output y is defined as a subset of the state x, the output function C is a matrix M multiplied by the vector x.
In this case, the Jacobian H is simply equal to M. Because M is a constant and is only a function of the definition of y (see
Section 4.1), the Jacobian H does not need to be calculated at every time step of the simulation.

4 RESULTS

4.1 Definition of outputs

Observability is a property of the system that determines if the outputs contain enough information to allow for the
estimation of the internal state. During the tests run in this work, observability was checked at every time point. In linear
systems, observability can be determined by examining the rank of what is known as the observability matrix. In this
case, the system is nonlinear, but it is effectively linearized around the state at each time step by the use of the Jacobians.
Therefore, the observability matrix can be calculated as

[
H HF HF2 … HFn−1]T . If this matrix is full rank, the system

is observable at that time point. If the observability matrix is less than full rank, the observer algorithm does not have
enough information to work correctly and more outputs need to be added to the definition of a system.

The output vector y is defined as a subset of the state x at certain values of 𝜌. Initial tests were run using 𝜌bdry = 0.9,

n= 10, and y =
[

x|𝜌=0 x ||𝜌=0.5 x||𝜌=0.9

]T
. It was determined that y must consist of values of the state in at least three different

spatial locations in order for the system to be observable. When y only includes one or two spatial locations, the system
is not observable at any time step. While only three states are necessary to meet the observability threshold, including
additional states in y can still enhance the performance of the observer. The results were noticeably improved by adding
a fourth state, but less difference was seen by adding a fifth state. Because of this, the results presented in Section 4.3 use
a y vector that contains the values of the state at four locations.

4.2 Characterization of noise

The extended Kalman filter algorithm assumes that both the internal and measurement noise follow Gaussian distri-
butions with known covariance matrices Q and R, respectively. In order to use the observer algorithm effectively, these
covariance matrices need to be determined, either by a statistical analysis of experimental data or using a heuristic
approach. In this work, these covariance matrices were chosen to produce results that appeared physically reasonable
while also visually matching the Thomson scattering data. It was assumed that each of these matrices will always have
the same structure, but that the magnitude can change. This approach has the advantage of allowing the magnitude of
the covariance matrices to be easily changed in real time during an experiment if machine conditions change.

The electron temperature in a tokamak will always be highest in the centre of the plasma and decrease toward the
edge. This work assumes that the internal noise in the system is loosely proportional to the actual Te profile. Because of
this, the internal noise covariance matrix is defined as

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n n − 1 n − 2 … 1
n − 1 n − 1 n − 2 … 1
n − 2 n − 2 n − 2 … 1
⋮ ⋮ ⋮ ⋱ ⋮

1 1 1 … 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

× Qmag, (31)

where Qmag is an adjustable parameter that defines the magnitude of the internal noise. Note that this matrix structure
is not perfectly proportional to the Te profile because the Te profile is not linear; however, it does convey that the noise
should be higher where the electron temperature is higher.

Like the internal noise covariance matrix, the measurement noise covariance matrix is assumed to be larger toward
the centre of the profile than at the edge. For all the tests shown in this work, the Thomson scattering data were taken only
from the core Thomson scattering system, which covers the range from 𝜌 ≈ 0.2 to 𝜌 ≈ 0.9. This data is then interpolated
onto the observer spatial grid. The resulting Thomson data at 𝜌 = 0 is less reliable than at other spatial locations, which is
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MOROSOHK and SCHUSTER 11 of 16

communicated to the observer by setting the noise level at the point higher. Unlike the internal noise covariance matrix,
the measurement noise covariance matrix is chosen to be diagonal because individual channels of the Thomson scattering
system are not highly dependent on other channels. The diagonal elements are defined as n+ 1− i where i is the index
that corresponds to each radial location of the state included in y, in decreasing order. So, if n = 10, 𝜌bdry = 0.9, and

y =
[

x ||𝜌=0 x||𝜌=0.2 x ||𝜌=0.6 x||𝜌=0.9

]T
,

R =

⎡⎢⎢⎢⎢⎢⎣

10 0 0 0
0 8 0 0
0 0 4 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
× Rmag, (32)

where Rmag is an adjustable parameter that defines the magnitude of the measurement noise.

4.3 Analysis of results

Results shown in this section were obtained from running the observer offline using Thomson scattering data taken
directly from DIII-D experiments as the measured output y. Tests were run for shot 147634, which is the shot that pieces
of the model were based on (e.g., equilibrium values F̂, Ĝ, and Ĥ). For these tests, n= 10, 𝜌bdry = 0.9, Qmag = 0.3, Rmag = 2,

and y is defined as
[

x ||𝜌=0 x||𝜌=0.2 x ||𝜌=0.6 x||𝜌=0.9

]T
. Tests were performed using both the numerical and the analytical

F I G U R E 5 Observer-estimated state shown across the full profile three times during a test of shot 147634
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12 of 16 MOROSOHK and SCHUSTER

approaches to calculating the Jacobian using all of the same parameters, and these results are compared in Figures 5 and 6.
Figure 5 shows the results across the whole profile at three different times, and Figure 6 shows the results across time
at four different spatial locations. Figures 5a and 6a show the results of using the numerical method of calculating the
Jacobian F. These plots demonstrate that the observer is capable of producing a physically consistent Te profile that is
compatible with the Thomson scattering data while rejecting a significant amount of the noise. Figures 5b and 6b show
results of using the analytical method of calculating the Jacobian F. These figures demonstrate that the analytical method
produces comparable results to the numerical method.

Another test was run for shot 187076. This is a lower single null shot, as opposed to shot 147634 which is upper single
null. Figure 7a shows the results of this test using the same parameters as the previous test at three different times. There
are a significant number of Thomson scattering data points above the observer profiles, and very few Thomson scatter-
ing points below the profiles. At t = 2 s especially, the observer appears to be noticeably underestimating the Thomson
scattering data. Because of the different equilibrium configurations, parts of the model are expected to be less accurate
for this shot. These kinds of assumptions or simplifications in the model are treated by the observer as internal noise. To
account for the different equilibrium, the internal noise magnitude is raised, telling the observer to trust the diagnostic
data more. For another test, Qmag is set to 0.7, and the results are shown in Figures 7b and 8. Figure 7b presents results of
simulating shot 187076 across the whole profile at three times, and shows much less of an underprediction than is seen
in Figure 7a. Figure 8 presents results across time at four spatial locations, and shows the value of Te varying significantly
over time due to large fluctuations in the neutral beam power; the observer is able to follow the fluctuations very closely.
These plots demonstrate that the observer is capable of producing quality results even for shots that have very different
equilibria from the one used to generate the model.

F I G U R E 6 Observer-estimated state shown at the four spatial locations included in the observer output across time during a test of
shot 147634
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MOROSOHK and SCHUSTER 13 of 16

F I G U R E 7 Observer-estimated state shown across the full profile three times during a test of shot 187076 using the numerical method
to calculate the Jacobian

F I G U R E 8 Observer-estimated state shown at the four spatial locations included in the observer output across time during a test of
shot 187076 with Qmag set to 0.7 and using the numerical method to calculate the Jacobian
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14 of 16 MOROSOHK and SCHUSTER

F I G U R E 9 Observer-estimated state shown next to profile fits taken from the offline (ZIPFIT) algorithm and the real-time fitting
algorithm

Figure 9 shows a comparison between the profile estimated by the observer algorithm and both offline and real-time
profile fits for shot 187076. Note that, unlike the other plots shown, this one extends to the edge of the plasma. A linear
interpolation is assumed between the final value predicted by the observer at 𝜌 = 0.9 and a value of 0 at 𝜌 = 1. The offline
fit shown is taken from TRANSP[27] run in analysis mode, which actually takes profile fits as input. The profile fits used
for this TRANSP run were originally generated by ZIPFIT,[28] a code that automatically generates profile fits in between
each DIII-D shot. ZIPFIT by default tries to fit the diagnostic data to a hyperbolic tangent function but has other functions
that it can try if the fit is not good enough. ZIPFIT does not run fast enough for real-time use. The real-time fit shown uses
a hyperbolic tangent function and is available in real time. Both the real-time fitting algorithm and the offline ZIPFIT
attempt to fit the entire spatial range of the profile, including the pedestal. When fitting to a set function, fitting the shape
of the pedestal well can in some cases conflict with fitting the shape of the core well. The real-time fitting algorithm
specifically prioritizes fitting the pedestal well. The observer algorithm is not attempting to predict the pedestal, and so
does not have to make this kind of trade-off. In these plots, the observer calculations appear to match the shape of the
Thomson scattering data in the core better than either of the other continuous profiles, which are both based on the same
diagnostic data.

5 CONCLUSIONS

A state observer has been developed to estimate the electron temperature profile in the DIII-D tokamak. The model
used by the observer is based on the nonlinear transport equation describing the evolution of the electron temper-
ature profile and uses neural network-based surrogate models to calculate the neutral beam heating and electron
thermal diffusivity. The model is observable with as few as three measured outputs, which allows the algorithm
to run with limited real-time processing of diagnostic data. The observer is based on the extended Kalman filter,
a well-known nonlinear extension of the optimal Kalman filter algorithm. The observer has been shown to pro-
duce Te profiles that are consistent with both the transport equation and the Thomson scattering data for the shot
the model was based on. In addition, by adjusting the assumed magnitude of the internal noise, the observer was
shown to produce similar quality results for a shot with a completely different equilibrium. It has also proven effec-
tive using either a numerical or analytical approach to calculating the Jacobian of the model. The observer appears
to produce a better match to the shape of the core Thomson scattering data than other available profile-fitting
approaches.

The observer is currently only valid in the core region of the plasma. In order to extend it into the pedestal region, a
pedestal model could be added to the overall model. This would allow for a better prediction of the location and height
of the pedestal and the estimation of the full profile. One candidate for this extension is the EPEDNN model,[13] a neural
network version of the EPED pedestal model. In addition, the results shown here use noise covariance matrices cho-
sen using a heuristic approach to produce outputs that look physically reasonable and visually match the diagnostic
data. A more rigorous statistical approach to determining the covariance matrices of the noise could be implemented
in the future.
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MOROSOHK and SCHUSTER 15 of 16

This observer is in the process of being integrated into the real-time Plasma Control System (PCS) for DIII-D.
The PCS implementation will take data from both the core and tangential Thomson scattering systems to better
cover the whole spatial range. The observer is planned to be available for general use for the 2023 experimental
campaign and is expected to add a valuable tool to the arsenal of real-time data available for feedback controllers
to use.
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