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a b s t r a c t

A control algorithm that can locally stabilize a specific class of multi-input multi-output nonau-
tonomous nonlinear dynamical systems while satisfying individual input constraints is developed. The
proposed Lyapunov-based state-feedback control law inherently accounts for the actuator amplitude
saturation limits without the need for computationally expensive real-time optimization techniques.
In addition to the control law, a formal definition for the local ‘‘controllable region’’ within which the
controller can asymptotically drive the system states to the origin and satisfy the input saturation limits
is also presented. The nonautonomous nature of the system dynamics implies that the ‘‘controllable
region’’ continuously evolves with time. Therefore, a sufficient condition to maintain the system states
within the ‘‘controllable region’’ is proposed in this work to make practical implementation feasible.
The effectiveness of the controller is tested for a specific control problem arising in tokamaks, which
are toroidal devices that use strong magnetic fields to confine a plasma (hot ionized gas). The primary
emphasis of tokamak research is to regulate the plasma properties around predetermined values
to achieve stable plasma confinement. Nonlinear simulations show that the proposed controller can
achieve the desired plasma control objectives in a DIII-D tokamak scenario.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

A controller’s ability to track an arbitrary set of targets,
irrespective of the application, is constrained by the physical
saturation limits of the actuators. In some systems, a careful
selection of targets may be sufficient to ensure the inputs pre-
scribed by the controller are within the physical saturation limits.
However, such flexibility in target selection may not be viable
in certain practical applications. In such cases, an unconstrained
ontroller may prescribe inputs that are unrealizable by the
hysical system. Such physically infeasible inputs can result in
ndesirable effects, such as the integral windup observed in
roportional–integral–derivative (PID) controllers.
A review of existing control literature reveals that several

control strategies have been developed to handle the physical
onstraints on the inputs. The inclusion of anti-windup blocks is
one of the most common methods used to handle actuator satu-
ration produced due to integrator windup (Tarbouriech & Turner,

✩ The material in this paper was partially presented at the 2023 American
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aper was recommended for publication in revised form by Associate Editor
ang Zhu under the direction of Editor Miroslav Krstic.
∗ Corresponding author.

E-mail addresses: saitejp@lehigh.edu (S.T. Paruchuri),
pajaresa@fusion.gat.com (A. Pajares), schuster@lehigh.edu (E. Schuster).
https://doi.org/10.1016/j.automatica.2024.111998
0005-1098/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
2009). However, the anti-windup prevents saturation a poste-
riori, i.e., the anti-windup block is separate from the controller
block. Furthermore, not all controller algorithms have integral
action. Methods like model predictive control (MPC) (Camacho &
Alba, 2013) provide a straightforward solution for incorporating
actuation constraints into the controller block (Giovanini, 2003;
Gutjahr, Gröll, & Werling, 2017; Jeong & Park, 2005; Kapila &
Valluri, 1998). During the MPC problem formulation, the actua-
tor saturation limits can be incorporated as algebraic inequality
constraints. However, MPC, particularly for nonlinear systems,
can be computationally expensive for real-time implementation.
Researchers have developed a large class of controllers (both lin-
ear and nonlinear) that account for saturation without relying on
real-time optimization like MPC. In general, these control strate-
gies for handling saturation constraints can be broadly classified
into methods that

(i) consider bounds on input norms, where the norm of the in-
put vector is bounded by a constant (El-Farra & Christofides,
2003a, 2003b; El-Farra, Mhaskar, & Christofides, 2005; Kose
& Jabbari, 2001; Phat & Niamsup, 2015),

(ii) employ a saturation function, where the unbounded input
in the model is replaced by a function of the input that
accounts for saturation (Jin, Qin, Shi, & Zheng, 2018; Wang,
data mining, AI training, and similar technologies.
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Chan, & Zhang, 2005; Wang & Liang, 2018; Wu & Grigori-
adis, 1999; Yuanyuan, Dayi, & Wenbo, 2021; Zheng, Huang,
Xie, & Zhu, 2018),

(iii) incorporate individual actuator bounds, where the bound
on each input is considered (Hu, 2008; Lei, Yu, & Zou, 2008;
Leonessa, Haddad, Hayakawa, & Morel, 2009; Nguyen &
Jabbari, 2000; Pakmehr & Yucelen, 2014; Piga, Formentin,
& Bemporad, 2018; Shen, Xiong, & Hong, 2018; Xiong,
Derong, Qinglai, & Ding, 2015).

Most of the literature cited above consider autonomous sys-
tems. Solutions for nonautonomous systems (both linear and
onlinear) that account for saturation without relying on real-

time optimization like MPC are limited. The explicit dependence
of the state and input matrices of linear time-variant systems
on time increases the complexity of the problem. Some exam-
les of controllers for linear time-variant systems that incor-

porate the effect of the input saturation include Niamsup and
hat (2018), Phat and Niamsup (2006). The problem of nonlinear
onautonomous systems with input constraints, as expected, is

less explored.
In this work, a Lyapunov-based control algorithm is studied for

 certain class of nonlinear nonautonomous systems. A closed-
orm expression for the control law that intrinsically accounts
or the saturation limits is derived. Thus, the presented algorithm
oes not rely on real-time optimization methods and is computa-
ionally inexpensive. A detailed analysis discussing the conditions
ecessary to prove the closed-loop system’s stability and the in-
ut’s boundedness is presented. The proposed controller is tested

by implementing it in a control problem arising in a specific type
f plasma-confinement devices (referred to as tokamaks). Non-
inear tokamak-based-plasma-property simulations demonstrate
he effectiveness of the controller. The control law presented in
his work can be considered as a direct extension of the series
f input-bounded control algorithms (based on Sontag’s law (Lin
 Sontag, 1991)) presented in El-Farra and Christofides (2003a,

2003b), El-Farra et al. (2005) for a particular category of nonlin-
ear autonomous systems. These control algorithms rely on the
assumption that the initial condition is contained in a predefined
time-invariant ‘‘controllable’’ set. This work generalizes these
esults on ‘‘controllable’’ sets, input boundedness, and closed-
oop stability to a particular class of nonautonomous systems.
ince the system is nonautonomous, the ‘‘controllable region’’ is
ontinuously evolving with time. Thus, even if the initial state
s contained in the ‘‘controllable region’’, the region can shrink
ventually such that the state trajectory is no longer contained
n it. Thus, the condition proposed in El-Farra and Christofides
(2003a, 2003b), El-Farra et al. (2005) cannot be directly applied
to the system under consideration. A new sufficient condition
n the system’s initial state is presented in this work to handle
onautonomous cases. The ‘‘controllable region’’ definition pre-
ented in this work can also be used as an ad hoc definition
or controllability for the specific class of systems used in this
aper. Controllability is hard, if not impossible, to define for

nonlinear systems. The ‘‘controllable region’’ defined in this work
an be used to determine the class of trajectories that can be
tabilized a priori. Besides, the controllers presented in El-Farra
nd Christofides (2003a, 2003b), El-Farra et al. (2005) define
nputs whose norms are bounded. On the other hand, the control
lgorithm presented in this work can handle individual input
ounds.
The following sections are organized as follows. Section 2

presents the class of nonlinear systems studied in this paper. Sec-
ion 3 discusses the control law and presents a rigorous stability
and input bound analysis. Special cases on how the controller
simplifies for autonomous systems and systems with symmet-
ric input bounds are also studied in this section. Section 4 is
 p

2

reserved for the safety factor profile control problem arising in
okamaks, which are used to confine a plasma (hot ionized gas).
he numerical simulation results are given in Section 5. The
onlinear simulations consider a DIII-D tokamak (Fenstermacher

et al., 2022) scenario. Finally, the conclusions and potential future
extensions of this work are presented in Section 6.

2. Problem formulation

Consider a nonlinear dynamical system governed by ordinary
differential equations of the type

ẋ = f (x, t) + g(x, t)u(t), x(0) = x0, (1)

where x ∈ Rn is the state vector, u = [u1, . . . , um]
T

∈ Rm is the
input vector, f : Rn

× R+

0 ↦ → Rn and g : Rn
× R+

0 ↦ → Rn×m are
nonlinear functions, R+

0 := R+
∪ {0}. Suppose the input saturation

limits are given by, for each i ∈ {1, . . . ,m}, for all time t ,

ǔi ≤ ui(t) ≤ ûi. (2)

The goal of this work is to develop a computationally inexpen-
ive control algorithm that prescribes the input u and analyze
the conditions under which u asymptotically stabilizes the sys-
tem governed by (1) while satisfying the constraints (2). The
roblem formulated above adheres to the conventional safety
actor control problem encountered in tokamaks, as detailed in
ection 4.
The following assumptions hold throughout the analysis car-

ied out in the paper.

Assumption 1. The function f satisfies f (0, t) + g(0, t)uoff = 0,
where

uoff :=
ǔ + û

2
, (3)

ˇ , û are the vector of lower and upper saturation limits, respec-
tively. In addition, at each time t , any x ∈ Rn, the function g
atisfies 0 < g ≤ ∥g(x, t)∥ ≤ ḡ , where ∥ · ∥ represents the induced
2-norm and g, ḡ ∈ R are constants.

In the above assumption, the input uoff can be considered
s a feedforward term that offsets the function f . Incorporating
he offset term also makes the bounds on the feedback term
ymmetric. In other words, ǔi ≤ ui(t) ≤ ûi H⇒ −ŭ∗

i ≤

i(t) − uoff ,i(t) ≤ ŭ∗

i , where

ŭ∗

i :=

(
ûi − ǔi

2

)
≥ 0 for 1 ≤ i ≤ m. (4)

On the other hand, the lower and upper bounds on |g(x, t)| imply
that the influence of the input on the system dynamics neither
decreases beyond a certain level nor grows unbounded. Note that
the assumption on g can be relaxed by restricting x to the union
over time t of all ‘‘controllable regions’’ (defined in (14)) rather
than the entire state space.

Assumption 2. The state x(t) is contained in the left null
space of the matrix g(x(t), t) only when it is at the origin,
i.e., g(x(t), t)Tx(t) = 0 ⇐⇒ x(t) = 0.

A direct consequence of the above assumption is that ∥gTx∥ =

0 ⇐⇒ ∥x∥ = 0, where ∥ · ∥ represents the Euclidean norm of
a given vector. The need for these assumptions becomes evident
in the theorem proofs presented in Section 3. Analysis on how
the above assumptions can be tested for a practical example are
resented in Section 5.
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3. Control synthesis and analysis

This section presents the control law with the corresponding
tability and input bound analysis. In addition, a discussion on
ow the control law simplifies in certain special cases is also
resented.

3.1. Control input definition

The feedback control input that can locally stabilize the system
governed by (1) is given by

u(t) = uoff − utr (t), (5)

where uoff is defined in (3),

utr (t)=
{
A(x(t), t)(s(x(t), t))T if ∥s(x(t), t)T∥ ̸ =0,

0 if ∥s(x(t), t)T∥ =0. (6)

The term A in (6) is a diagonal matrix of the form

A(x, t) :=

⎡⎢⎣α1(x, t) 0
. . .

0 αm(x, t)

⎤⎥⎦ , (7)

where the ith diagonal element is defined as

αi(x, t) :=
r1(x, t)+

√
r2(x, t)2 +

(
ŭ∗

i ∥s(x, t)T∥
)4

∥s(x, t)T∥2

[
1 +

√
1 +

(̆
u∗

i ∥s(x, t)T∥
)2] . (8)

The terms in (6) and (8) are defined as

s(x, t) := xTg(x, t), (9)

r1(x, t) := r(x, t) + µ∥2x∥
(

∥2x∥
∥2x∥ + λ

)
, (10)

r2(x, t) := r(x, t) + µ∥2x∥, (11)

r(x, t) := xT f ∗(x, t), (12)
∗(x, t) := f (x, t) + g(x, t)uoff (t), (13)

ŭ∗

i is defined in (4), µ > 0 and λ > 0 are adjustable scalar param-
eters. As mentioned in the previous discussions, the control input
stabilizes the system locally. From a practical standpoint, it is vital
to understand the scope of this local stabilizable region. In this
work, a closed-form expression for a set contained in this local
stabilizable region is given. This set is termed the ‘‘controllable
region’’ in the following analysis and is defined as

Πt =
{
x ∈ Rn

|a(x, t) ≤ b(x, t)
}
, (14)

where

a(x, t) := max{|r1(x, t)|, |r2(x, t)|}, (15)

(x, t) := ŭ∗
∥s(x, t)T∥, (16)

ŭ∗
:= min

{
ŭ∗

1, . . . , ŭ
∗

m

}
. (17)

Remark 3. The condition in (6) defined in terms of ∥s(x(t), t)T∥
can be replaced by ∥x(t)∥ since ∥s(x(t), t)T∥ = 0 ⇐⇒

∥x(t)∥ = 0 (Assumption 2).

Remark 4. The term ŭ∗, defined in (17), is one of the parameters
hat determine the size of the ‘‘controllable region’’ Πt . In certain
ases, the size of the set Πt could be increased by appropriately
caling the input u, and hence changing the value of ŭ∗. The
Appendix gives a detailed overview of the modified control law
ith scaled inputs.
3

3.2. Stability analysis

The following lemma and theorem prove that if the state-
feedback input given in (5) is used to close the control loop,
then the equilibrium at the origin of the closed-loop system is
uniformly asymptotically stable. Recall that the equilibrium at the
origin is uniformly asymptotically stable if it is uniformly stable
and there is a constant c > 0, independent of the initial time t0,
such that for all ∥x(t0)∥ < c , x(t) → 0 as t → ∞ (refer to
Chapter 4 of Khalil, 2002). In the following analysis, the explicit
dependence of certain terms on the state x(t) and time t has not
een specified for brevity.

Lemma 5. Consider the closed-loop system governed by (1) and
(5). If the state x is contained in the set Πt at time t, then the time
derivative of the Lyapunov function V =

1
2x

Tx is bounded from
bove by

V̇ ≤ −
µ∥2x∥2

(∥2x∥ + λ)
[
1 +

√
1 + ( ˘̄u∗∥sT∥)2

] , (18)

where ˘̄u∗
:= max

{
ŭ∗

1, . . . , ŭ
∗
m

}
.

Proof. The time derivative of the Lyapunov function is

V̇ = xT ẋ = xT [f + gu] , (19)

where (1) is used. From (6), it is clear that the input u depends
n the value of ∥s(x(t), t)T∥. When ∥s(x(t), t)T∥ = 0, we have u =

off . From Assumptions 1 and 2, it is evident that the inequality
in (18) holds trivially. On the other hand, if ∥s(x(t), t)T∥ ̸ = 0, we
have

V̇ = xT
[
f ∗

+ g
(
−AsT

)]
(20)

= r + s
(
−AsT

)
(21)

≤ r − α̂∥sT∥2, (22)

where the equations in (5), (6) and (13) are used. In the above
equation, the term α̂ is defined as

α̂ := min{α1, . . . , αm}. (23)

Suppose the minimum in the above equation is achieved at
the jth element, i.e., α̂ = αj with 1 ≤ j ≤ m. Let ˘̄u be the value
of ŭ∗

i corresponding to the jth actuator, i.e., ˘̄u = ŭ∗

j . Using (8), the
time derivative of the Lyapunov function can now be written as

V̇ ≤ r − ∥sT∥2

⎡⎢⎢⎣ r1 +

√
(r2)2 + ( ˘̄u∥sT∥)4

∥sT∥2

[
1 +

√
1 + ( ˘̄u∥sT∥)2

]
⎤⎥⎥⎦

=

r
[
1 +

√
1 + ( ˘̄u∥sT∥)2

]
− r1 −

√
(r2)2 + ( ˘̄u∥sT∥)4[

1 +

√
1 + ( ˘̄u∥sT∥)2

]

≤

r
[√

1 + ( ˘̄u∥sT∥)2
]

−

√
(r2)2 + ( ˘̄u∥sT∥)4[

1 +

√
1 + ( ˘̄u∥sT∥)2

]
  

I

−
µ∥2x∥2

(∥2x∥ + λ)
[
1 +

√
1 + ( ˘̄u∗∥sT∥)2

]
  

. (24)
II
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In the above derivation, we have used the fact that r − r1 ≤ 0
refer to (10)) and ˘̄u ≤ ˘̄u∗ (refer to the lemma statement). By
hypothesis, the state x is assumed to be contained in the set Πt .
By definition of Πt given in (14) and the fact that ŭ∗

≤ ˘̄u, we have

|r2| ≤ ŭ∗
∥sT∥ ≤ ˘̄u∥sT∥. (25)

Thus, at any given time t , the term r2 can take values in the
ange [−˘̄u∥sT∥, ˘̄u∥sT∥].

Case 1: Suppose that −˘̄u∥sT∥ ≤ r2 ≤ 0. Since the parameter µ

in (11) is strictly positive by selection, we conclude that r ≤ 0.
Thus, Term I in (24) is negative, which implies (18).

Case 2: Suppose that 0 < r2 ≤ ˘̄u∥sT∥. Algebraic manipulation
ill show that

−

√
(r2)2 + ( ˘̄u∥sT∥)4 ≤ −r2

√
1 + ( ˘̄u∥sT∥)2. (26)

Using the above inequality and the fact that r2 defined in (11)
satisfies r − r2 ≤ 0, we conclude that Term I in (24) is negative.
ence, we get the inequality in (18).

Theorem 6. Suppose that the initial condition of the closed-loop
system governed by (1) and (5) is such that the state trajectory x
s contained in the set Πt for all time t. Then, the state x uniformly
onverges to the origin as t → ∞.

Proof. The Lyapunov analysis carried out in Lemma 5 shows
hat the time derivative of the Lyapunov function V =

1
2x

Tx is
ounded from above by

V̇ ≤ −
µ∥2x∥2

(∥2x∥ + λ)
[
1 +

√
1 + ( ˘̄u∗∥sT∥)2

] . (27)

Using Cauchy Schwarz inequality, we get

V̇ ≤ −
µ∥2x∥2

(∥2x∥ + λ)
[
1 +

√
1 + ( ˘̄u∗∥gT∥∥x∥)2

] . (28)

Using Assumption 1, we conclude that

V̇ ≤ −
µ∥2x∥2

(∥2x∥ + λ)
[
1 +

√
1 + ( ˘̄u∗ḡ∥x∥)2

] , (29)

which is a negative definite function. Using the Lyapunov theo-
em for nonautonomous systems (Theorem 4.9 in Khalil, 2002),
e conclude that the equilibrium at the origin is uniformly
symptotically stable. □

Remark 7. The above analysis assumes that the model is perfect
and utr is continuous at the origin. If the second assumption
oes not hold, utr could be held constant in the neighborhood
f the origin such that it is continuous. In such cases and with

bounded model uncertainties, it is possible to prove that the
state converges to a neighborhood of the origin for certain initial
conditions (refer to Chapter 9 of Khalil, 2002).

3.3. Input bound analysis

The input equations shown above include the upper and lower
aturation limit values, û and ǔ, respectively. However, it is not
evident from the input definition if the saturation limits are
satisfied at any given time t . The following theorem proves that
the control input lies within the saturation bounds (2) provided
hat the state is contained in the set Π .
t

4

Theorem 8. If the state x of the closed-loop system governed by (1)
and (5) is contained in the ‘‘controllable region’’ defined by (14),
hen the control input u = [u1, . . . , um]

T defined by (5) satisfies the
saturation limits ǔi ≤ ui ≤ ûi for all i ∈ {1, . . . ,m} and all time t.

Proof. Consider the ith components ui and uoff ,i of the input
ector u and uoff , respectively. Since the matrix A is diagonal, (5)

and (7) gives us the inequality

|ui − uoff ,i| ≤ |−αi||si| (30)

≤
|r1 +

√
(r2)2 + (ŭ∗

i ∥sT∥)4|

∥sT∥2
[
1 +

√
1 + (ŭ∗

i ∥sT∥)2
]∥sT∥. (31)

Since the state x is contained in the set Πt by hypothesis and
since ŭ∗

≤ ŭ∗

i by definition in (17), the inequalities

|r1| ≤ ŭ∗
∥sT∥ ≤ ŭ∗

i ∥s
T
∥, (32)

r2| ≤ ŭ∗
∥sT∥ ≤ ŭ∗

i ∥s
T
∥ (33)

hold. Thus, the term |ui − uoff ,i| in (30) can further be bounded
from above by

|ui − uoff ,i| ≤
|r1| +

√
(r2)2 + (ŭ∗

i ∥sT∥)4

∥sT∥
[
1 +

√
1 + (ŭ∗

i ∥sT∥)2
] (34)

≤
ŭ∗

i ∥s
T
∥ +

√
(ŭ∗

i ∥sT∥)2 + (ŭ∗

i ∥sT∥)4

∥sT∥
[
1 +

√
1 + (ŭ∗

i ∥sT∥)2
] (35)

≤

ŭ∗

i ∥s
T
∥

[
1 +

√
1 + (ŭ∗

i ∥sT∥)2
]

∥sT∥
[
1 +

√
1 + (ŭ∗

i ∥sT∥)2
] = ŭ∗

i . (36)

Rearranging the terms in the above inequality and using the
efinition of uoff from (3) proves the theorem. □

3.4. Sufficient conditions for stability and satisfying input bounds

The theorems in the previous subsection assume that the
state x is contained in the set Πt at any given time t . Such
n assumption might be too strong for practical controller im-

plementation in some real-world applications. In particular, the
inherent uncertainty and external disturbance can make it hard to
redict the range of values the state x can take as the closed-loop

system evolves. Alternatively, a condition on the initial state x0 of
the system can make controller implementation more practical.
owever, even if the initial state x0 is contained in the set Πt=0,
he state trajectory can eventually leave the set Πt . This effect
an be attributed to the continuous variation of the ‘‘controllable
egion’’ with time. Thus, even if the state x initially converges
owards the region, the set Πt may shrink such that the state is no
onger contained in it. No convergence guarantees can be made
utside the set Πt , and thus, the system may become unstable.

Fig. 1 gives an intuitive illustration of how shrinking of the set
Πt can result in state divergence from the origin. The following
orollaries show that the hypothesis of Theorem 6 can be replaced
by conditions on the initial state x0 in some instances.

Corollary 9. Suppose that there exists a ball Bε(0) of radius ε
centered at the origin contained in the set Π := ∩t≥0Πt . The
quilibrium at the origin of the closed-loop system is asymptotically
table if the initial condition x0 of the system governed by (1) with
feedback input (5) is contained in Bε(0), i.e., x0 ∈ Bε(0).

Proof. The proof follows directly from the fact that the ball
Bε(0) ⊆ ∩t≥0Πt is invariant since the state x is always contained
n the set Πt at any given time t . Theorem 6 shows that the

closed-loop system is stable. □
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Bε(0) ⊆ ∩t≥0Πt , Right — Autonomous case with initial state contained in Bε(0) ⊆ Πt=0 .
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Corollary 10. Suppose that the nonlinear system governed by (1)
is autonomous, i.e., the functions f (x, ·) and g(x, ·) are constant.
urthermore, suppose that the ball Bε(0) of radius ε centered at the
origin is contained in the set Πt=0. The equilibrium at the origin
is asymptotically stable if the initial condition x0 of the closed-loop
system (obtained by substituting (5) into (1)) is contained in the ball
Bε(0).

Proof. Since the functions f (x, ·) and g(x, ·) are constant, the
ontrollable region Πt does not vary with time. Using an analysis
imilar to the one used in Corollary 9’s proof, we arrive at the
required result. □

A graphical interpretation of both the corollaries discussed
above is given in Fig. 1.

4. Application to a tokamak control problem

4.1. Safety factor profile control in tokamaks

The plasma safety factor profile control in tokamaks primarily
nspires the control design problem considered in this work. A
plasma is a hot ionized gas in which matter exists in the form
of positively charged ions and negatively charged electrons. The
charged particles in the plasma react to external electric and
agnetic fields. A tokamak is a toroidal device that uses strong
agnetic fields to confine plasma at high temperatures (about ten

imes the sun’s core temperature) (Wesson & Campbell, 2011). At
uch high temperatures, the positively charged ions in the plasma
an have sufficient kinetic energy to overcome the Coulombic
orces of repulsion and fuse together to form heavier nuclei. The
ifference in masses of the reactants and the products is released
s thermal energy. Nuclear fusion research emphasizes maintain-
ng tokamak operating conditions at ideal levels to avoid highly
isruptive magnetohydrodynamic instabilities and achieve stable
onfinement. Ideal operating conditions are prescribed in terms
f plasma properties such as safety factor (a parameter related to
he pitch of the helical magnetic field) and normalized β (ratio
f the kinetic pressure to the magnetic pressure). In fact, MHD

studies indicate a direct correlation between these parameters
nd plasma instabilities. For instance, instabilities called neoclas-
ical tearing modes (NTMs) (Wesson & Campbell, 2011) can arise
t locations where the safety factor takes a rational value. Thus,
aintaining such plasma parameters at pre-determined optimal
onditions is crucial for tokamak operation, and active control
ay become indispensable.
In this work, the problem of safety factor regulation is consid-

red to demonstrate the effectiveness of the proposed controller.
n advanced tokamak (AT) scenarios, the safety factor profile is
egulated using noninductive current drives. These are actuators
hat do not rely on the conventional transformer-like effect to
ontrol the plasma parameters. Examples of noninductive drives
 N

5

used to drive current and heat the plasma include neutral beam
injectors or NBIs (which inject a stream of neutrally-charges
articles) and electron cyclotron heating and current drives or

EC H&CDs (which produce electromagnetic waves whose fre-
quency matches that of the electron cyclotron frequency).

4.2. Finite-dimensional control model

The safety factor is a spatially varying parameter that charac-
terizes the pitch of the helical magnetic field in a tokamak. It is
mathematically defined as

q(ρ̂ , t) := −
Bφ ,0ρ

2
b ρ̂

θ (ρ̂ , t)
, (37)

where ρ̂ is the spatial variable and is called the normalized
mean effective minor radius, θ is the poloidal flux gradient, ρb
is the mean effective minor radius of the last closed magnetic
flux surface, Bφ ,0 is the vacuum magnetic field at the magnetic
axis. From the above equation, it is evident that the safety factor
can be regulated by controlling the poloidal flux gradient θ . The
evolution of the poloidal flux gradient is governed by a nonlinear
artial differential equation (PDE). Due to the complex nature of
he evolution model, the nonlinear PDE is spatially discretized,
nd the resulting ordinary differential equation (ODE) is used for
ontrol synthesis. After using finite-difference approximation, the
esulting ODE model takes the form

θ̇(t)=Gη(θ, t)uη+G∗

aux(t)Paux+GBS(θ, t)uBS, (38)

where θ ∈ RN+1 is the vector of poloidal flux gradient values at
the finite-difference nodes. The terms Gη and GBS are nonlinear
functions of the state θ and time t , accounting for the plasma
resistivity and bootstrap current (a self-generated current that
is driven by the radial pressure gradient in tokamaks) in the
poloidal flux gradient model, respectively. The terms uη and uBS
are the virtual inputs that depends on the plasma current, total
power and line-averaged electron density. In the context of this
work, these terms are assumed to be prescribed values. The term
Paux represents the vector of auxiliary drive powers, comprising
neutral beam injector and electron cyclotron heating and current
drive powers. It is defined as

Paux = [PT
NBI , P

T
EC ]

T
∈ Rm, (39)

NBI = [PNBI,1, . . . , PNBI,NNBI ]
T , (40)

PEC = [PEC,1, . . . , PEC,NEC ]
T , (41)

where PNBI and PEC are vectors representing the NBI and EC H&CD
powers, respectively. The term G∗

aux(t) in (38) accounts for the
spatial current deposition of the above-mentioned auxiliary drives
In the context of this work, the term Paux represents the input
vector u that is prescribed by the controller. Note that the total
ower Ptot , which is assumed to be prescribed, depends on the
BI and EC H&CD powers. Thus, as the controller modulates the
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NBI and EC H&CD powers, the total power could deviate from the
rescribed value. However, it is assumed that additional auxiliary
rives, which are tuned for solely heating the plasma without
nfluencing the plasma current or the poloidal flux gradient, are
vailable to compensate for any discrepancies in the total power
rom the prescribed valued. Readers can refer to Pajares and
chuster (2021) for a detailed discussion on the derivation of the
bove ODE model.

4.3. Error equations

Suppose a target poloidal flux gradient vector θ̄ is given. The
volution of the poloidal flux gradient error θ̃ := θ − θ̄ is given

by the ODE
̇̃(t) = f (θ̃(t), t) + g(t)u(t) (42)

with

f (θ̃, t) = Gη(θ, t)uη(t) + GBS(θ, t)uBS(t) −
̇̄θ, (43)

g(t) = G∗

aux(t), (44)

u(t) = Paux(t). (45)

Thus, the goal of the controller is to choose the auxiliary powers
= Paux within the saturation limits

0 MW ≤ ui ≤ P̄i MW (46)

for all i ∈ {1, . . . ,m} to drive the error θ̃ → 0 as t → ∞. Note
that P̄i represents the upper saturation limit of the ith auxiliary
drive.

Remark 11. The function f defined above has θ̃ as one of the
ariables even though Gη and GBS depend on θ since θ = θ̃ + θ̄.
ote that the function g does not depend on the state θ̃, and, as a

result, the above model is a special case of the model given in (1).
Furthermore, the above definitions of f and g reduce the problem
of tracking a target θ̄ to a stabilization problem.

Remark 12. Most tokamak scenarios have a feedforward input
omponent uff . In such cases, the feedback input ufb can be
alculated as ufb := u−uff , where u is computed using (5). Such a
computation of the feedback input does not require reformulation
of the above problem.

Remark 13. For safety factor profile control problem in toka-
maks, the error equation (42) and the corresponding ‘‘controllable
egion’’ Πt depend on the time evolution of the target ̇̄θ. Generally
n tokamaks scenarios, the safety factor profile evolves with time.
owever, during the flat-top phase of certain scenarios, the target
an be fixed. In such cases, the target derivative term ̇̄θ vanishes.

Remark 14. The condition f ∗(0, t) = 0 given in Assumption 1
may not hold for all targets θ̄ in (43). However, if the value of
f ∗(0, t)| is small, then, following the discussion in Remark 7,
t can be shown that the state converges to a neighborhood
of the origin under certain conditions. Note that the simula-
tions discussed in Section 5 demonstrate the effectiveness of the
ontroller while considering a target that does not satisfy the
ssumption mentioned above.

Remark 15. As noted earlier, a nonlinear partial differential
equation governs the poloidal flux gradient in a tokamak, and
he model in (38) is obtained using the finite-difference approx-
mation. Since the control law is implemented on an infinite-
imensional system during experiments, it could be valuable
6

to analyze if the solution of the finite-dimensional closed-loop
system approaches its infinite-dimensional counterpart as the
number of finite-difference nodes is increased. Using Theorem
3.1 and Remark 3.2 in Verwer and Sanz-Serna (1984), it can be
oncluded that the convergence of the approximated closed-loop
system’s solution to its infinite-dimensional counterpart relies
primarily on the Lipschitz continuity of the right-hand side of
(42) with respect to the state θ̃ on a specific set. In particular,
the Lipschitz constant must be independent of the grid. Note that
the theorems provided in Verwer and Sanz-Serna (1984) assume
that the approximation scheme is consistent, and all the solutions
to the underlying governing equations are assumed to be unique
and sufficiently smooth.

The function f comprises Lipschitz continuous terms, and the
existence of a Lipschitz constant independent of the grid is valid.
On the other hand, the Lipschitz continuity of the feedback con-
rol law (5) could be hard to prove in some tokamak scenarios.
he complexity primarily arises from the ∥s(x, t)T∥ term in the

denominator of the feedback law, which approaches 0 as the
state θ̃ approaches the origin. To ensure Lipschitz continuity of
he input, the value of ∥s(x, t)T∥ could be set to be a small
constant when the state enters a neighborhood of the origin. This
modification introduces a perturbation term into the closed-loop
system’s model. However, as mentioned in Remark 7, the state
ill converge to a neighborhood of the origin if the perturbation

s small.

5. Numerical simulations

The controller developed in Section 3 was tested for a DIII-D
okamak scenario using nonlinear simulations. This section high-
ights the results of these simulations. During the simulations,
1 finite-difference nodes were considered. The simulations as-
ume that there are 2 NBIs and 1 EC H&CD available for safety
actor profile control, i.e., NNBI = 2 and NEC = 1. In the
following description, the notations u1 and u2 represent the first
nd second NBI powers PNBI,1 and PNBI,2, respectively. The input

corresponding to the EC H&CD PEC,1 is denoted as u3.
The lower bound on three inputs is 0 MW since power cannot

be negative. The upper bounds on the 2 NBIs and 1 EC H&CD are
5 MW and 7.5 MW, respectively, i.e., u1 ≤ 15 MW, u2 ≤ 15 MW,
3 ≤ 7.5 MW. Using the formula given in (17), the value of ŭ∗

i
for the three actuators can be calculated as ŭ∗

1 = 7.5, ŭ∗

2 = 7.5,
ŭ∗

3 = 3.75. From (14), it is clear the size of the set Πt depends
n ŭ∗, which is equal to ŭ∗

3 in this case. To increase the size
f the ‘‘controllable region’’, the scaling matrix D is selected as

D = diag(1, 1, 2) and the problem is reformulated as discussed
in the Appendix. Thus, the size of the scaled controllable region
now depends on the minimum of ´̆u1 = 7.5, ´̆u2 = 7.5, ´̆u3 = 7.5.

The effectiveness of the NBIs and EC H&CDs vary with the
patial variable ρ̂. The primary reason is that the current deposi-
ion profiles of NBIs and EC H&CDs vary with the spatial variable
and are typically high for ρ̂ ∈ [0, 0.5]. Thus, the controller
may not track the target at locations where current deposition
s low, i.e., ρ̂ > 0.5. This is particularly true when the controller
annot prescribe the value of plasma current, which affects the
oundary at ρ̂ = 1. The limited number of actuators and their
orresponding saturation limits further restrict the ability of the
ontroller to track the complete target profile. To account for
hese system limitations, two control nodes at ρ̂ = 0.2 and
ρ̂ = 0.45. In other words, the controller is designed to track
the target at only these two locations. The control inputs are
computed using (5) by considering the elements of θ, f , and g that
orrespond to these two nodes. Note that the simulation model
still considers 41 nodes. Thus, the control inputs computed based
on the two control nodes are used in the closed-loop simulations
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Fig. 2. Auxiliary drive powers: Right — PNBI,1 MW, Center — PNBI,2 MW, Left — PEC,1 MW.
Fig. 3. Poloidal flux gradient: Right — θ (0.2, ·), Center — θ (0.45, ·), Left — θ (·, 6s).
Fig. 4. Safety factor: Right — q(0.2, ·), Center — q(0.45, ·), Left — q(·, 6s).
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of a higher-fidelity model. Furthermore, the control parameters
ere selected as µ = 1×10−5 and λ = 1 during the simulations,
nd the controller was activated at 2.75 s. The gray background
enotes the time when the controller is active in all the figures.
Before going over the simulation results, it is crucial to discuss

f Assumptions 1 and 2 hold for this particular problem formu-
lation. As mentioned in Remark 14, the condition f ∗(0, t) = 0
as per Assumption 1 is not precisely satisfied in the simulations.
However, as mentioned in the remark, the state should converge
lose to the target if the value of f ∗(0, t) is small. On the other
and, the bounds on g mentioned in Assumption 1 are trivially
alid in almost all tokamak scenarios and are easy to predict a
riori. To test the validity of Assumption 2, it is sufficient to show

that the dimension of the left null space of g at any given time
t is 0. Since two nodes are considered for control with three
actuators, the matrix g at any given time t is in R2×3. Since
the current deposition profiles of the actuators are different at
the two control nodes, the effect of the actuators on the control
odes, characterized by the term g(t) in (44), is different. In
ther words, the matrix g(t) has independent rows at time t . This
mplies that the matrix g(t) has rank 2, and its left null space is
trivial. Thus, the assumptions necessary for ensuring the closed-
loop system’s stability and boundedness of the inputs are valid for
 e
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the case considered. Note, in case Assumption 2 fails, choosing
a different set of control nodes may ensure the validity of the
assumption.

Fig. 2 shows the feedback input that was generated by the
control algorithm. Generally, for any given target, the feedforward
inputs are first computed using techniques such as feedforward
optimization. However, in experimental tokamak scenarios, the
system uncertainty, and unmodeled dynamics cause the state
rajectory to deviate from the target. In the nonlinear simulations,
the feedforward inputs shown in Fig. 2 are intentionally selected
such that the feedforward trajectory deviates from the target.
The feedforward trajectory is then compared to the closed-loop
trajectory to examine the effectiveness of the controller. Fig. 3
shows the poloidal flux gradient evolution at the two control
odes. The closed-loop trajectory (denoted FF + FB in the figure)

tracks the target as expected. The figure also shows the poloidal
lux gradient profile at t = 6 s. The profile corresponding to
he FF + FB case matches the target profile, thus showing that
he choice of control nodes plays a crucial role in determining
he error across the whole profile. Fig. 4 shows the safety factor
evolution at the two control nodes and the safety factor profile
at t = 6 s. The safety factor results conclude that the controller
ffectively achieves the desired control objective. In addition to
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Fig. 5. Input values with upper and lower bounds.

Fig. 6. Hypothesis testing.

asymptotically stabilizing the system, another primary objective
f the controller is to ensure that the inputs agree with the
aturation limits. Fig. 5 clearly shows that the inputs agree with
the upper and lower bounds. Fig. 6 shows that the closed-loop
ystem’s state is contained in the set Πt during the simulation.

6. Conclusion

A Lyapunov-based state-feedback control law that implicitly
accounts for the actuator saturation limits is developed in this
work. The assumptions made on the system and the hypothesis
required for asymptotically stabilizing the system and maintain-
ing the input within the saturation limits are discussed rigorously.
Sufficient conditions are developed to make the practical imple-
mentation of the controller feasible for a certain class of real-
world systems. This work also addresses how the controller can
be implemented to regulate the safety factor profile in a tokamak.
8

Nonlinear simulations carried out for a DIII-D tokamak scenario
are presented in this work. The simulation results illustrate the
ffectiveness of the controller in achieving the desired control
bjective. Future extensions of this work can potentially include
esting the controller in higher-fidelity models, implementing the
controller for simultaneous regulation of multiple plasma profiles,
nd experimental validation of the controller performance.
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Appendix. Input scaled control law

As mentioned in Remark 4, the size of the set Πt depends on
the minimum value of ŭ∗

i :=
(
ûi − ǔi

)
/2 for i = 1, . . . ,m.

he inputs can be scaled such that the value ŭ∗

i corresponding to
ach of the inputs are equal. The scaling of the input u is achieved
y defining ú := Du, where ú is the new input vector such that

˘∗

i = ŭ∗ for all i. The term D is a diagonal scaling matrix of the
form

D = diag(d1, . . . , dm), (A.1)

where di > 0 for i = 1, . . . ,m. A new function ǵ := gD−1 replaces
in the governing equation (1) to account for the scaling of the

inputs. This is evident from the fact ǵú = gD−1Du = gu. The
governing equations can be rewritten as

ẋ = f (x, t) + ǵ(x, t)ú(t), (A.2)

where ú = [ú1, . . . , úm]
T

∈ Rm is the scaled input vector. Note
hat the lower and upper saturation limits of the new input ú are
iven by ´̌ui := diǔi and ´̂ui := diûi for i = 1, . . . ,m, respectively.
he new control law for stabilizing (A.2) can be synthesized using

the steps presented in Section 3.
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