Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 56-2 (2023) 44664471

Distributed Regulation of the Safety Factor
Profile in Tokamaks Using Nonlinear

Infinite-dimensional Control *
Sai Tej Paruchuri* Eugenio Schuster *

* Mechanical Engineering and Mechanics, Lehigh University,
Bethlehem, Pennsylvania, USA
(e-mail: saitejp@lehigh.edu).

Abstract: Tokamaks are toroidal devices that use helical magnetic fields to confine a plasma
(hot ionized gas). Such confinement increases the probability of ionic collisions. When the
colliding ions have high enough kinetic energy, they can overcome the Coulombic forces of
repulsion and fuse to form a heavier ion. The difference in mass between reactant and product
ions is turned into energy, which can potentially be harvested to meet the growing world’s energy
demands. In tokamaks, the safety factor profile is a plasma property that characterizes the pitch
of the helical magnetic field. Experiments have shown that the safety factor is related to the
magnetohydrodynamic (MHD) stability of the confined plasma as well as to the capability of
achieving highly-confined steady-state operation. Thus, active control of the safety factor profile
or related plasma properties is critical for achieving MHD-stable, high-performance plasma
operation. The evolution of the safety factor profile is governed by a nonlinear nonautonomous
partial differential equation (PDE). The most commonly used control design approach reduces
the governing PDE to a set of ordinary differential equations (ODEs) before synthesizing a
control law. In this work, a distributed nonlinear safety-factor control law that does not require
a finite-dimensional approximation of the governing PDE is proposed. Rigorous analysis shows
that the proposed control law can drive the error between the safety factor profile and target
profile to zero. The effectiveness of the proposed control law is demonstrated using nonlinear
simulations for the DIII-D tokamak.
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1. INTRODUCTION

Nuclear fusion has been proposed as one of the potential
solutions to meet the world’s growing energy needs in
the forthcoming decades. In nuclear fusion, two or more
nuclei combine to form a heavier nucleus. The difference
in mass between the reactants and the products is released
as energy. Only those positively-charged nuclei with high
enough kinetic energy to overcome the Coulombic forces
of repulsion can undergo nuclear fusion when they collide.
Thus, maintaining high temperatures (around 10® K) and
consequently a high probability of collisions among the
reactants are critical, among other factors, to achieving nu-
clear fusion. Different configurations have been proposed
as potential solutions for realizing nuclear fusion. Of these,
tokamaks are the most developed and researched devices
(Wesson and Campbell, 2011). Tokamaks are torus-shaped
devices that use magnetic fields to confine a plasma (a
hot ionized gas). Such confinement is possible since the
plasma exists in the form of positively-charged ions and
negatively-charged electrons, which react to external mag-
netic fields.

* This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Fusion Energy Sciences,
under Award Numbers DE-SC0010537 and DE-SC0010661.

The safety factor is a plasma parameter that characterizes
the pitch of the helical magnetic field lines in a tokamak.
The spatial variation of the safety factor from the mag-
netic axis to the plasma edge (refer to Figure 1) defines
the safety factor profile. Magnetohydrodynamic (MHD)
studies show that the safety factor profile is related to
the stability of the confined plasma, and achieving stable
confinement in a tokamak requires maintaining the profile
at preset levels. For instance, MHD instabilities like neo-
classical tearing modes (NTMs) can appear at locations
where the safety factor is a rational value (Wesson and
Campbell, 2011). Fusion reactors must also operate in
scenarios characterized by a high bootstrap current (self-
generated current produced due to pressure gradients in
the tokamak) to achieve steady-state conditions. Maintain-
ing the safety factor profile at optimal levels is critical
to achieving scenarios characterized by high bootstrap
current. Due to the presence of external disturbances,
active control algorithms are required to regulate plasma
parameters like the safety factor profile.

Safety-factor-control algorithms in the literature can be
broadly classified into local and global control algorithms.
Local control algorithms are designed to regulate the scalar
safety factor values at specific locations, i.e., safety factor
at the core go (Boyer et al., 2015), safety factor minimum
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Gmin control (Paruchuri et al., 2021). On the other hand,
the objective of global control is to regulate the whole
safety factor profile. Solutions for global safety factor
control have been developed based on optimal control
(Wehner et al., 2017), predictive control (Ou et al., 2011),
robust control (Barton et al., 2015), feedback linearization
(Pajares and Schuster, 2016). Safety factor dynamics is
modeled using a nonlinear nonautonomous partial differ-
ential equation. The above-cited control algorithms rely
on the approximate-then-design (ATG) approach, where
the model is reduced to an ordinary differential equa-
tion (ODE) before synthesizing the “finite-dimensional”
controller. The performance of the finite-dimensional con-
troller, when implemented to regulate the original infinite-
dimensional plant, depends on the model approximation
scheme used and can be hard to quantify mathematically.
On the other hand, the design-then-approzimate (DTA)
approach, which synthesizes an infinite-dimensional con-
troller based on the distributed parameter model and then
introduces an approximation to obtain a finite-dimensional
controller that is useful for practical implementation, pro-
vides a comparatively easier way to quantify the effect of
approximation error on closed-loop performance. However,
a controller based on the DTA approach is much more
complex to synthesize in most practical scenarios due to
the infinite-dimensional nature of the underlying control
problem. Nevertheless, linear control algorithms based on
the DTA approach have been developed and successfully
implemented for safety factor regulation in tokamaks (Ar-
gomedo et al., 2013a,b; Mavkov et al., 2018).

As mentioned, advanced scenarios associated with next-
generation tokamaks rely on a high bootstrap-current frac-
tion. The effect of the bootstrap current on the safety
factor dynamics is nonlinear. Thus, a linear approximation
of the bootstrap current contributions to the plasma dy-
namics may not always be sufficient in such high bootstrap
current scenarios. This work develops a nonlinear dis-
tributed Lyapunov-based control algorithm that can drive
the safety factor profile to the desired target. The underly-
ing dynamics model used for synthesizing the control law
accounts for the nonlinear effects of the bootstrap current.
A rigorous analysis is presented to show that the controller
can stabilize the error system. The infinite-dimensional
control law is then approximated using a finite-difference
scheme. Such approximation enables the computation of
actual physical inputs (powers of current drives set for
safety factor control) from the virtual input (controller
demand computed from the infinite-dimensional control
law). The effect of model uncertainties and approximation
errors on the closed-loop system’s performance is also
discussed in detail. The proposed controller is shown to
be effective in a DIII-D tokamak scenario using nonlin-
ear simulations.

This paper is organized as follows. Section 2 develops the
distributed-parameter model for poloidal flux gradient (a
parameter related to the safety factor). This model is
used in Section 3 to synthesize the infinite-dimensional
controller. The control law approximation is also presented
in Section 3. Section 4 presents the results of simulation
studies carried out to test the effectiveness of the proposed
control law. Finally, Section 5 concludes the paper and
discusses potential future extensions of this work.
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Fig. 1. Magnetic field lines and flux surfaces in a tokamak.
2. DISTRIBUTED PARAMETER MODEL

2.1 Preliminary Definitions

The helical magnetic field lines in the tokamak can be
decomposed into the poloidal magnetic field By and the
toroidal magnetic field B4. The poloidal magnetic flux ¥
at a point P in the tokamak is defined as ¥ := fs By - dS,
where S is the surface enclosed by the loop contained
in the horizontal plane and passing through the point P
(refer to Figure 1). Under ideal MHD conditions, regions
of constant magnetic flux form nested flux surfaces as
shown in Figure 1. The safety factor ¢ (defined below)
takes a constant value on these flux surfaces. As a result
of constant ¢ values on flux surfaces and axisymmetry of
tokamaks, a parameter that indexes the flux surfaces can
be used as the spatial variable to model the safety factor
dynamics. In this work, the normalized mean effectiveness
minor radius p is used as the spatial variable. It is defined
as p := p/py, where p is the mean effectiveness minor

radius that is given by p := \/®/ By o7. Here, the term ® is
the toroidal magnetic flux, and By g is the vacuum toroidal
magnetic field at the major radius Ry of the tokamak.
Thus, the spatial variable p is obtained by normalizing p
with its value at the last closed magnetic flux surface py.
The safety factor at location p and time t is defined as
~ 92 A
q(p.t) = —% = —gi/a? = Deonp )
/0p o /0p
where 1» = ¥/27. The variation of the safety factor with p
generates the “safety factor profile.” Note that the safety
factor is related to the poloidal flux gradient 6(p,t) :=
oY (p,t)/9p. Thus, the control of the poloidal flux gradient
is equivalent to the regulation of the safety factor profile.

2.2 Poloidal Flux Gradient Model

The evolution of the poloidal stream function ¥ : (p,t) —
Y(p,t) is governed by the magnetic diffusion equation
(MDE) (Hinton and Hazeltine, 1976), which is given by

b= F(@)[GEW + H(p)jni (2)
subject to the Neumann boundary conditions | p=0 =0,
V'|pey = —ki, Iy, where F(p) == n/(noppF?p),G(p) =

In the above equations, the terms 7, po, jn; and I, are
the plasma resistivity, vacuum permeability, noninductive
current source and plasma current, respectively. It is as-
sumed in this work that the plasma resistivity is estimated
in real-time. The value of 7 is a function of the electron
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temperature T, which can indeed be estimated in real time
as proposed in Morosohk et al. (2022). The terms F, G,

H are geometric factors that depend on the plasma MHD
equilibrium and are functions of the spatial variable . The
term kj, in the boundary condition is a scalar constant,
which is also a function of the MHD equilibrium.

The current driven in tokamaks can be decomposed into
inductive and noninductive currents depending on their
sources. Inductive currents are generated by a transformer-
like effect where the magnetic coils in the tokamaks act as
the primary coils and the plasma acts as the secondary coil.
All the other current terms fall under the noninductive
currents category. These includes the current driven by
auxiliary drives such as neutral beam injectors (NBIs) and
electron cyclotron heating and current drives (EC H&CDs)
and the self-generated bootstrap current. Thus, the non-
inductive current source j,; is equal to the sum of the
auxiliary current ju., and bootstrap current j,s sources,
i.., Jni = Jaur + Jbs- In this work, the auxiliary current
sources are considered the controllable inputs, i.e., the
control law prescribes the auxiliary profile ju,. (-, t) at each
time ¢. On the other hand, the bootstrap current source
Jps is determined by the control-oriented model used in
Barton et al. (2013), which combines Sauter model (Sauter
et al., 1999) with control oriented models for electron
temperature and electron density. Note that the formula
in Barton et al. (2013) assumes tight electron-ion coupling,
ie. ne = ny, T, = T;, where n., n; are the electron and
ion densities, respectively, and T, T; are the electron and
ion temperatures, respectively. The control-oriented model
takes the form

L 1
]bs(ﬂ t) = Kbsubs 67 (3)
L(pt)
where K, is a function of the spatial variable p and models
the spatial distribution of bootstrap current. On the other

hand, the term wus is a scalar that varies with time. It is
defined as

wps := (I Piyn) ™1, (4)

where P;,; is the total plasma current, n. is the line-
averaged electron density, and +, €, { are scaling constants.
In this work, the terms Pio, . and I, are assumed to be
prescribed inputs.

Substituting the above model for bootstrap current (3)
into the MDE (2) and taking the derivative on both sides
with respect to the spatial variable p results in the partial
differential equation

0= [F (GO + [Hjua] + s, (5)
subject to the boundary conditions
0 p=0 — 0, 9|p:1 = —k1,1p, (6)

where hyy(p,0,0',t) = [H(p)L(p.t)]' 5 — [H(p)L(p,1)] &
2.8 Error Model

Suppose that @ is the target profile generated by Jjyuas.
Note that if a target safety factor profile g is given,
the corresponding target poloidal flux gradient 6 can
be computed from (1). Thus, the target poloidal flux
gradient 6 satisfies the partial differential equation
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- — / —
0= [FLGOV] + [Hiual + o (7)

subject to the boundary conditions
0], =0, 0|,y = ~k1,Ip. (8)

Define the error state as 6 := §—6. Subtracting (7) and (8)
from (5) and (6) results in the error model of the form

b= [F [G] } 4 [Houz] + hos(5,0,0'.1) — ho(5,0,0, 1), (9)
A

subject to the boundary conditions

o| =0 4 -o (10)
p=0 p=1

where 5(““ = jauz — jaus- Before proceeding to control syn-
thesis, it is critical to express Term A in (9) as a function
of the error state # and its derivative §’. Methodologies like
polynomial interpolation and kernel-based nonparametric
regression can be used to approximate Term A. In this
work, approximation based on Taylor’s series is used. Par-
ticularly, the two-dimensional Taylor series expansion of
function h about the target states 6 and 6’ is approximated
up to n order. The choice of n can depend on the error
states 6 and 6’ and the effect of bootstrap current on
plasma dynamics in a given tokamak scenario. Suppose
g:(p,0,0.t)— g(p,0,0,t) represents the bootstrap error
function, i.e., the approximation of Term A. The final error
model takes the form

0= {F[GéHIjL [HJaus) + 9. (11)

3. CONTROL SYNTHESIS

8.1 Lyapunov-based Control Design and Stability Analysis

In this work, Lyapunov analysis is used to prove the
exponential convergence of the error state 6 to the origin.
Before defining a Lyapunov function, we assume a strictly
positive continuous function f : p +— [e,00) (e > 0) exists
in the Sobolev space W22([0, 1]) such that

f'FG+ f'[FG'+ (FG)]| - f(FG') < —af,  (12)
where « is a positive scalar. Note that W22([0,1]) is the
space of functions on [0, 1] such that their weak derivatives
up to the 2"? order have a finite L? norm (Adams and
Fournier, 2003). The existence of f satisfying (12) is
critical for proving the stability result; however, as shown
below, it does not appear in the control law. Now, define
the Lyapunov function V : § € L? — V(0) € R as

1
V@) =3 [ 160

Since the function f is positive, the above Lyapunov
function can be used to define a weighted norm as

10]l; = 1/V(8) (even if f does not satisfy (12)). Since the

positive function f is continuous on a compact domain, it
is bounded from above and below by a positive constant.
This fact can be used to prove that the weighted norm ||- ||y
is equivalent to the L? norm, which implies that the con-
vergence in the weighted norm is equivalent to the conver-
gence in the L? norm. In the following analysis, Lyapunov
theory is used to prove that the error state 6 converges
exponentially to the origin in the weighted norm sense.

(13)
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Theorem 1. The time derivative of the Lyapunov function
defined in (13) satisfies the inequality

/fH H joua ) dp+/ flgdp. (14)
&

B

V< aV

Proof. The proof follows the steps involved in traditional
Lyapunov analysis. The time derivative of the Lyapunov

function defined in (13) is given by vV = fo 99dp
Expanding (11) and substituting the resulting expression

for 6 in the above equation gives us
1
V= / £0 [(FG’)’9+ [FG' + (FG)) ¢
0

HFGO + (Hjous) + g} dp. (15)

Using integration by parts and simplifying the resulting
equation gives us

1
V= % / [f'FG+ f [FG' + (FG)Y| — f(FG'Y)82dp
0
1 1
4 [ 19 ((Hiuws) +9) o~ | FPGId5. (16)
0 0

Term C>0
Since f is chosen such that the inequality in (12) holds
and Term C in the above equation is always nonnegative,
the time derivative of the Lyapunov function is bounded
from above by

) 1 /o 1 -
V<ol / 10%dp + / 10 ((Hjows) +9) dp. (17
2 Jo 0
which gives the desired inequality.

A similar inequality for the linear (i.e., ¢ = 0) normalized
version of the model given in (11) is shown in Argomedo
et al. (2013b). In the linear case, it can be shown that the
system stabilizes to the origin even in the absence of the
input jguz. This is evident when g and ]aw in (11) are
set to 0. The above inequality simplifies to V < —aV(0).
From Lyapunov theorem (Walker, 2013), we conclude that
10, )llf < e 2Y6(-,0)||s. Note that even though an
input is not required in this case, a carefully selected input
Jauz can increase the rate of convergence. For instance, by
selecting jgu. as

- 1 [P8-
jaus = — 35 79dv7
e = =37 | 5040
atpB

it is possible to show that [|0(-,t)||; < e~ t[|0(-,0)| ;.
The above analysis is not longer valid in the nonlinear case
(i.e., when g # 0) because the presence of nonlinear boot-
strap error term g in the model given in (11) introduces
Term B in the inequality given in (14). Thus, if jaue = 0,
the error state # may not converge to the origin (unlike
the linear case discussed above). An input is necessary to
compensate for the effect of the nonlinear bootstrap term
and ensure convergence.

(18)

Theorem 2. If the term jam is chosen as

jaum: H/ ( 9+g> dp7

where 8 > 0 is a scalar constant, then the equilibrium at
the origin is exponentially stable.

(19)
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Proof. The proof follows from the inequality given in
Theorem 1. Substituting (19) into (14) results in the
inequality

V< — //3 f62%dp — a= /f92d,0— (a+pB)V. (20)

Using Lyapunov theorem (Walker, 2013), we get the in-
Blly < e F)6(, 0

equality ||(,
theorem.

)||f- which proves the

Note that the input given by (19) stabilizes the system
by canceling the nonlinear term ¢ in (11). Recall that
the term ¢ is the error between the plant and target
system’s bootstrap terms. Thus, in other words, the input
regulates the bootstrap current of the plant to match
the corresponding value of the target plant to get the
desired stabilization. The term (5/2)6 in (19) is included

to increase the rate of convergence of the error state 6.
8.2 Physical Inputs Computation
The total auxiliary source profile jgq. is given by
1 ﬁ /3 ~ v - ~
§0+g dp+jauz(pat)' (21)
0

.auac Avt = -7
Jauz(Pyt) = — 47

jCL‘U.I (ﬁ’t)

In any given tokamak scenario, the auxiliary current is
driven by actuators like NBIs and EC H&CDs. The plasma
control system can prescribe the power of these actuators.
Thus, it is necessary to calculate the auxiliary drive power
values from the virtual input in (21). To make computation
feasible, the infinite-dimensional control law in (21) is first
approximated using a finite-difference scheme. Consider
N finite-difference nodes at p1, ..., py. The assumption is
that none of these nodes coincide with the boundary since
the boundary conditions are fixed. Then the approximated
control input vector is

jaum = [jauz,h cee 7jau:z:,N]T7 (22)
where jouz.i(t) = Jaus(pi,t). The relation between the
control input vector jgu. and the auxiliary powers is
modeled using the control-oriented models developed in
Barton et al. (2013). Suppose there are m and n actuators
available for safety factor profile control. The control-
oriented model for i*" component of the vector juuz,; is

given by
m n
t) = Z 9nb,j,iUnb,;j (t) + Z gec,k,iuec,k(t)a
j=1 k=1

where gnp j.i = gnb,j(Pi), Jee,ki = Jee,k(Pi). Here, the terms
gnb,; and gecr are profiles that account for the current

depositions of j** NBI and k" EC H&CD, respectively.
The terms u,p; and uec in (23) are defined as

W(Anr%)P:O(t*nb*%)ﬁg(knb*%)*lp

nb,j (24)
_3 _3\_
'Y(AGC 2 )Pto(tAec 2 )ﬁg()‘” 2) lpec,k- (25)

(23)

jaum,i(

unb,j =1
Uec,k ‘= I

In (24), (25), the terms P, ; and P..jp are j* NBI
and k" EC H&CD powers, respectively, A\, and A.. are
constants that accounts for NBI and EC H&CD current-
drive efficiencies, respectively. Note that the total power
Py is related to the NBI and EC H&CD powers through
the equation
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Ptot:ZPnb,j+ZPec,k+ZPo,la (26)
j=1 k=1 =1

where n, is the number of additional actuators that
are tuned to heat the plasma (without driving the net
current), and P, is the power of [** additional actuator.
Once the values of Piot, Ppp,; and Pe. ) are prescribed
the corresponding controllers, the values of P, ; are chosen
such that (26) is satisfied. Thus, the relation between the
control input vector j,.. and the auxiliary powers is given
by the equation

jauw (t) =G" (t)Paux (t)a (27)

where
Paul‘ = [Pnb’17...
G* =[G

nbi’

oy Peen]T, 28

29

:Pnb,m’ Pec,l: ..
*
Gec]7

(28)
(29)
Gy = Gy x [0 7D penn=3) 5 C0m=3)=1 (g
(31)

Xee=5) pe(Ree=3) C(Aee—3)—1
G, = Gee % I;( 2)Pt€o(t 2)712( 3) ,

31
9gnb,1 Gec,1

Gnp = ,Geec = H (32)
gnb,N Gec,N

Gnb,i = [Inb,1,is -+ > Gnb,m.il, (33)

7gec,n,k}- (34)

Thus, at any given time ¢, the auxiliary powers (elements
of P,,, vector) can be computed from the virtual input
vector jaue by solving the linear equation (27). In any
given tokamak scenario, the number of actuators available
for safety factor control is limited. On the other hand,
the number of finite-difference nodes must be chosen
sufficiently high so that the approximated control inputs
is close to the infinite-dimensional control input. Thus, the
system given in (27) is overdetermined for most tokamak
scenarios. In such cases, a solution may not exist. Least
squares minimization can be used to determine the best
possible combination of auxiliary powers that create an
input profile closest to the one generated by (21).

Gec,k = [gec,l,kv o

Remark: Model uncertainties and controller errors can
cause the controller to deviate from ideal performance. The
uncertainties in the model can arise from any unaccounted
plasma dynamics or the bootstrap approximation error.
On the other hand, controller errors can arise from the
introduction of finite-difference approximation and the
residual from solving the least squares problem as dis-
cussed above.

4. NUMERICAL SIMULATIONS

The proposed control algorithm was tested using nonlinear
simulations for a DIII-D tokamak scenario. The DIII-D
configuration used in shot 147634 was used during the
simulations. The plant model, obtained by approximat-
ing (5) using the finite-difference scheme, was simulated
by considering 41 equidistant finite-difference nodes. In
the simulations, 0.5D control-oriented models for electron
temperature T, and plasma resistivity 7, first introduced
in Barton et al. (2013), were used. Readers can refer
to Pajares and Schuster (2021) for the steps involved
in deriving the finite-dimensional control-oriented plant
model based on empirical laws. On the other hand, the
finite-difference scheme for the controller considered 19
equidistant control nodes at p = 0.05,...,0.95. In other
words, the control input vector jgu..(t) has 19 elements,
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which are computed by evaluating the infinite-dimensional
control law (21) at each of the control nodes. A total of
three auxiliary drives (1 on-axis co-current NBI, 1 off-axis
co-current NBI, 1 EC H&CD cluster) were assumed to
be available for safety factor control. Furthermore, one
additional EC H&CD was assumed to be available to
account for the discrepancy between the total power and
the sum of auxiliary drive powers, i.e., the term n, in (26)
is equal to 1. The saturation limits of the NBIs and EC
H&CD were assumed to be 8 MW and 4 MW, respectively.
The scalar constant 3 in (21) was selected as 3 = 2x 1075.
The controller was activated at 3 seconds.

In the simulations, open-loop (FF only) and closed-loop
(FF+FB) cases were considered. The open-loop case was
designed to replicate a scenario where the state drifts
from the target during the flat-top phase. Such drifting
can occur in the presence of model uncertainties or the
accumulation of errors. The goal of the closed-loop case
was to check if the controller could maintain approximately
zero error. Figure 2 shows the results obtained in the open-
loop and closed-loop simulations. The figure shows the
poloidal flux gradient profile §(-,¢) at ¢ = 6 seconds for
p € [0.05,0.95] since the maximum discrepancy between
the target and the open-loop profile was observed in this
region. The poloidal flux gradient profile obtained in the
closed-loop case matches the given target. The figure
also shows the evolution of the poloidal flux gradient
values at p = 0.4 and p = 0.6. Clearly, the poloidal
flux gradient drifting is not observed in the closed-loop
case. Figure 3 shows the auxiliary powers in both the
open-loop and closed-loop cases. As discussed above, the
auxiliary powers in the closed-loop case were obtained
by solving a least squares optimization problem with the
cost function || jauz — G*(t) Pawz (t)]|3. In the cost function,
the terms P,,.(t), G*(t) are defined in (28) and (29),
respectively. The vector jau. is computed from (21), (22)
and (23). Figure 3 also shows the total power P, used
in the simulations. Since the sum of auxiliary powers
> Puys is not equal to the total power, the power of the
additional heating actuator P, ; (also shown in Figure 3)
is modulated to satisfy (26).

5. CONCLUSION

This work develops a nonlinear Lyapunov-based dis-
tributed control law to regulate the safety factor profile in
tokamak scenarios associated with high-bootstrap current
fraction. The infinite-dimensional controller is designed to
account for the nonlinear effects of bootstrap current on
the safety factor dynamics. Stability analysis shows that
the Ly norm of the system error converges exponentially
to zero. The analysis also shows that convergence might
not be possible when the nonlinear effects of the bootstrap
current are pronounced. A detailed discussion of the steps
involved in computing the auxiliary drive powers from the
virtual infinite-dimensional control law is presented. The
effect of model uncertainties and controller errors on the
system performance is also discussed in detail. Nonlinear
DIII-D tokamak scenario simulations show that the con-
troller effectively tracks a given target. Future extensions
of the work can include developing a robust version of the
proposed controller, integrating a function estimator with
the controller to estimate model uncertainties, and testing
the effectiveness of the proposed controller in experiments.
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