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Abstract— Tokamaks are torus-shaped devices designed to
confine a plasma (ionized gas at around 100 million degrees
where fusion reactions can take place) using helical magnetic
fields. Such magnetic confinement enables light ions, such as
isotopes of hydrogen, to stay confined long enough to undergo
a fusion reaction. The pitch of the helical magnetic field
in a tokamak is characterized by the safety factor q. The
safety factor is closely related to the magnetohydrodynamic
stability of the plasma. For instance, instabilities that can
degrade or even terminate plasma confinement can occur at
spatial locations with rational values of the safety factor q.
Thus, actively increasing the minimum magnitude of the safety
factor can reduce the occurrence of low-order (low rational
q values) instabilities. Non-inductive sources of current like
neutral beam injection (NBI) and electron cyclotron current
drive (ECCD) are used to control the q-profile. ECCD generates
electromagnetic waves to drive current and/or heat the plasma.
Mirrors are used to control the spatial region of incidence of
the generated electromagnetic waves. In this work, the ECCD
mirror’s position is treated as a controllable input, and its
effects are included in the response model used for control
design. A controller based on feedback linearization is proposed
to simultaneously allocate the NBI and ECCD powers and
the ECCD position to track a target minimum safety factor.
The effectiveness of the controller is assessed for a DIII-D
tokamak scenario in nonlinear one-dimensional simulations
using COTSIM (Control-Oriented Transport SIMulator).

I. INTRODUCTION

A plasma is a state of matter in which the atomic particles
are dissociated into positively charged ions and negatively
charged electrons. Since particles that make up the plasma
are charged, magnetic fields can be used to confine it. A
tokamak is a torus-shaped device designed to magnetically
confine a plasma at a temperature six times the temperature
of the Sun’s core [1]. Such high temperatures enable light
ions, such as isotopes of hydrogen, to undergo thermonuclear
fusion reactions and release energy that can be used to gen-
erate electricity. Plasmas inside tokamaks exhibit complex
dynamics that are modeled by nonlinear partial differential
equations (PDEs).

The magnetic field confining the plasma in a tokamak has
two components, namely the toroidal magnetic field B̄φ and
the poloidal magnetic field B̄θ (see Figure 1). The pitch
of the resulting helical magnetic field lines is measured by
the so-called safety factor q. Research on high-performance
operating scenarios for tokamaks, which are characterized
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by potential high fusion power density and steady-state
operation, has shown that the safety factor is not only
linked to the performance of the plasma but also to its
magnetohydrodynamic (MHD) stability [1]. For instance,
instabilities like neoclassical tearing modes (NTMs), which
can degrade or even terminate the plasma confinement, can
occur at locations where the safety factor has a rational value.
Thus, actively increasing the minimum of the safety factor
profile, qmin, can help reduce the likelihood of instabilities
corresponding to low safety factor values.

The active control of the safety factor profile in tokamaks
has therefore attracted significant attention in recent years
[2], [3], [4], [5], [6], [7], [8]. Ideally, it is desirable to
control the safety factor value at all the spatial locations
from the magnetic axis to the plasma edge (see Figure 1).
The spatial shape of the safety factor defines what is usually
referred to as a “profile.” The evolution of the safety-factor
profile is therefore governed by a nonlinear PDE known
as the Magnetic Diffusion Equation (MDE). Due to the
finite number of actuators available for control, the shaping
of the q-profile is achieved either by regulating its value
at a finite number of fixed locations or by controlling a
finite number of characteristic modes. Moreover, the q-profile
usually needs to be controlled in conjunction with other
plasma properties such as the plasma beta β, which is defined
as the ratio between kinetic and magnetic pressures and is a
metric of plasma performance. This need for integration of
multiple control objectives further constrains the actuation
capabilities for q-profile control, hence reducing the number
of controllable spatial locations [8]. As described above, it
is often the case where controlling the minimum value of
the safety factor profile becomes the main objective due
to MHD stability considerations. Controllers proposed in
previous work, which are designed to regulate the safety
factor at fixed locations, are useful only for special operating
modes where the location of the minimum safety factor is
fixed (usually at the magnetic axis). However, this is not,
in general, the case and the location of the minimum safety
factor varies during operation.

Noninductive actuation like neutral beam injection (NBI)
and electron cyclotron current drive (ECCD) are used for
q-profile control. As the name suggests, a neutral beam in-
jector injects a stream of high-speed neutral particles into the
plasma, both driving current and heating the plasma. ECCD,
on the other hand, generates electromagnetic waves whose
frequency matches that of the electron cyclotron frequency.
The resulting resonance is used to drive current and heat
the plasma. Mirrors are used to control the ECCD position



(the spatial region of incidence of the electromagnetic waves
generated by ECCD). In previous work [2]-[9], the ECCD
position is assumed to be fixed during tokamak operation.

By following the original steps in a very recent work
by the authors [9], a controller is proposed in this work
to regulate the minimum value of the safety factor at
time-varying spatial locations. As a notable difference from
previous work, the ECCD central position is considered
a controllable variable and is allowed to vary over time.
The objective of this work is therefore twofold: first, to
develop a control-oriented response model that includes the
effect of the ECCD position on the q-profile dynamics and,
second, to design a model-based controller for the regulation
of the minimum safety factor. To the best of the authors’
knowledge, this is the first time that a moving ECCD is
considered as an actuator for q-profile control in general and
for qmin control in particular. While this work focuses on
controlling the minimum safety factor, the proposed models
and methodologies could be extended to the control of other
plasma properties that are responsive to a moving ECCD.

The contributions of this work are as follows. A response
model that governs the dynamics of the poloidal flux-
gradient θ (closely related to q) at the location of the mini-
mum safety factor is introduced in Section II. The proposed
model assumes that the ECCD central position can vary over
time. A controller based on feedback linearization of the
response model and Lyapunov theory is designed in Sec-
tion III to track a target value for the minimum safety factor.
The controller simultaneously allocates the auxiliary powers
(NBI and ECCD powers) and the ECCD central position
based on a predefined optimal criterion. The effectiveness
of the proposed controller is assessed in Section IV for a
DIII-D tokamak [10] scenario in nonlinear one-dimensional
simulations using the Control-Oriented Transport SIMulator
(COTSIM). Finally, conclusions and possible future work are
summarized in Section V.

II. MODEL FOR MINIMUM SAFETY FACTOR DYNAMICS

A. Evolution of the Poloidal Flux Gradient

The helical magnetic field B̄ in a tokamak can be decom-
posed into its toroidal and poloidal components, B̄φ and B̄θ,
respectively (refer to Figure 1). The poloidal magnetic flux
at point P is defined as Ψ :=

∫
S̄
B̄θ · dS̄, where S̄ is

the surface perpendicular to the z direction and enclosed
by the toroidal ring passing through the point P, as shown
in Figure 1. A magnetic flux surface is defined by the set
of points with identical value of poloidal magnetic flux Ψ.
Under ideal magnetohydrodynamic (MHD) conditions, these
magnetic flux surfaces form toroidally nested surfaces as
shown in Figure 1. It can be shown using the ideal MHD
theory that certain plasma variables, like the safety factor q,
remain constant on a magnetic flux surface. Furthermore,
it is assumed in this study that plasmas inside tokamaks
are axisymmetric. As a result, a single spatial variable, as
opposed to three spatial variables, that indexes the nested
magnetic surfaces is sufficient to characterize the spatial
dependence of the plasma properties. In this work, the
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Fig. 1: Magnetic field inside a tokamak.

normalized mean effective minor radius ρ̂ := ρ
ρb

is used
as the spatial variable. The variable ρ is the mean effective
minor radius and satisfies the relation Φ = Bφ,0πρ

2, where
Φ is the toroidal magnetic flux, and Bφ,0 is the vacuum
toroidal magnetic field at the major radius R0. The term ρb
is the value of ρ at the last closed magnetic surface. By
definition, the normalized mean effective minor radius takes
values in [0, 1]. Mathematically, the safety factor at location
ρ̂ and time t is given by

q(ρ̂, t) := − ∂Φ/∂ρ

2π∂ψ/∂ρ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ
, (1)

where ψ = Ψ/2π is the poloidal stream function. The
minimum safety factor at time t is defined as

qmin(t) := q(ρ̂qmin
(t), t), (2)

where ρ̂qmin
(t) ∈ [0, 1] is equal to the value of ρ̂ at which

the function q(·, t) takes the minimum value. During tokamak
operation, the safety factor profile is computed in real-time.
Thus, in this work, the value ρ̂qmin

(t) at time t is assumed
to be computed and available.

The evolution of the poloidal stream function over time is
modeled by the magnetic diffusion equation [11]

∂ψ

∂t
=

η

µ0ρ2
b F̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥηjni (3)

subject to the Neumann boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0

2π

R0

Ĝρ̂=1Ĥρ̂=1︸ ︷︷ ︸
kIp

Ip. (4)

In the above equations, η is the plasma resistivity, jni is the
non-inductive current, µ0 is the vacuum permeability, and
Ip is the plasma current. The terms F̂ , Ĝ, Ĥ are geometric
factors (functions of ρ̂) pertaining to the magnetic configu-
ration of a particular MHD equilibrium, and Dψ := F̂ ĜĤ .



In this work, control-oriented models developed in [12] are
employed to compute the terms η and jni. The control-
oriented model for η is given by

η ≈ gη × (IγpP
ε
totn̄

ζ
e)
−3/2, (5)

where gη is a function of ρ̂ that accounts for the spatial
variation of the plasma resistivity, Ptot is the total injected
power, n̄e is the line-average electron density, and the scaling
coefficients γ, ε and ζ are constants. On the other hand, the
control-oriented model for jni is such that

ηjni ≈
NNBI∑
i=1

gNBI,i × (IγpP
ε
totn̄

ζ
e)(−3/2+εNBI )n̄−1

e PNBI,i

+ gEC × (IγpP
ε
totn̄

ζ
e)(−3/2+εEC)n̄−1

e PEC

+ (∂ψ/∂ρ̂)−1gBS × (IγpP
ε
totn̄

ζ
e)−1/2n̄e,

(6)

where gNBI,i, gEC , gBS are functions of ρ̂ that account for
the NBI, EC and bootstrap current depositions, respectively.
Note that the EC term gEC corresponds to the (a priori)
fixed ECCD position ρ̄ec. The efficiency of the NBIs and
the ECCD is modeled by the constants εNBI and εEC ,
respectively. The term NNBI represents the total number of
NBI actuators. The terms PNBI,i and PEC are the ith NBI
power and EC power, respectively. In the context of this
work, these powers are considered the controllable inputs
(in addition to the ECCD position, which is discussed in the
latter parts of this section). On the other hand, the inputs
Ip, n̄e, and Ptot are either prescribed as feedforward inputs
or determined in real time by competing controllers [8].
The prescribed Ptot value will in turn impose a constraint
for the qmin controller over PNBI,i, for i = 1, . . . , NNBI ,
and PEC since the total injected power Ptot is given by
Ptot =

∑NNBI

i=1 PNBI,i + PEC .
Substituting the expressions (5) and (6) for η and ηjni,

respectively, into (3) and taking the derivative with respect
to ρ̂ on both sides yields the nonlinear PDE

∂θ

∂t
=

(
hη,1

∂2θ

∂ρ̂2
+ hη,2

∂θ

∂ρ̂
+ hη,3θ

)
uη + hECuEC

+

NNBI∑
i=1

hNBI,iuNBI,i +

(
hBS,1
θ
− hBS,2

∂θ/∂ρ̂

θ2

)
uBS

(7)

subject to the boundary conditions θ(0) = 0, θ(1) = −kIpIp.
In the above equations, the term θ := ∂ψ

∂ρ̂ is the poloidal flux
gradient. Note from (1) that the safety factor profile is in-
versely related to the poloidal flux gradient. Hence, the above
dynamical model is used as the basis for safety factor control
design. In (7), the terms hη,1, hη,2, hη,3, hEC , hNBI,i, hBS,1
and hBS,2 are functions of the spatial variable ρ̂ and are
given by the expressions

hη,1 :=
1

µ0ρ2b

gη

F̂ 2
Dψ ,

hη,2 :=
1

µ0ρ2b

[(
gη

F̂ 2

)′
Dψ +

gη

F̂ 2

(
Dψ

ρ̂
+ 2D′ψ

)]
,

hη,3 :=
1

µ0ρ2b

[(
gη

F̂ 2

)′ (Dψ
ρ̂

+D′ψ

)
+
gη

F̂ 2

(
D′ψ ρ̂−Dψ

ρ̂2

)]
,

hNBI,i := R0 × (Ĥ × gNBI,i)
′, hEC := R0 × (Ĥ × gEC)′,

(8)

hBS,1 := R0 × (Ĥ × gBS)′, hBS,2 := R0 × Ĥ × gBS .

The notation (·)′ represents the partial derivative with respect
to the spatial variable ρ̂. The virtual input terms uη , uNBI,i,
uEC and uBS are functions of time and are defined as

uη := (IγpP
ε
totn̄

ζ
e)
−3/2, uBS := (IγpP

ε
totn̄

ζ
e)
−1/2n̄e,

uNBI,i := (IγpP
ε
totn̄

ζ
e)

(−3/2+ζNBI)n̄−1
e PNBI,i,

uEC := (IγpP
ε
totn̄

ζ
e)

(−3/2+ζEC)n̄−1
e PEC .

Readers can refer to [8] for the details and intermediate steps
involved in deriving (7).

B. Effect of the ECCD Position on the Plasma Dynamics

In the evolution model discussed above, the ECCD po-
sition is fixed, i.e., the function gEC that appears in (6)
corresponds to the fixed ECCD position ρ̄ec. In this case,
the value of the function gEC at ρ̂ is computed using the
control-oriented model [8]

gEC(ρ̂) = jprofEC (ρ̂)gη(ρ̂)
(T profe (ρ̂)(nprofe (ρ̂))ζ)λEC

nprofe (ρ̂)
, (9)

where jprofEC is the ECCD deposition profile, T profe and nprofe

are functions of the spatial variable ρ̂, and λEC is a constant
that characterizes the current drive efficiency of the ECCD.
In this work, it is assumed that moving the ECCD to a new
center ρec(t) at time t shifts the entire profile accordingly.
Thus, to model the effect of the steering of the ECCD center
on jprofEC , a new current deposition profile function j̄profEC

is defined as j̄profEC (ρec, ρ̂) := jprofEC (ρ̂ + ρ̄ec − ρec), where
ρec : t 7→ ρec(t). Note that jprofEC (ρ̂) = j̄profEC (ρ̄ec, ρ̂). Thus,
in the governing equation (7), the function hEC(ρ̂) (defined
in (8)) is replaced by h̄EC(ρec, ρ̂), which is given by

h̄EC(ρec, ρ̂) := R0 × (Ĥ(ρ̂)ḡEC(ρec, ρ̂))′, (10)

where

ḡEC(ρec, ρ̂) := j̄profEC (ρec, ρ̂)gη(ρ̂)
(T profe (ρ̂)(nprofe (ρ̂))ζ)λEC

nprofe (ρ̂)
.

It is clear from the definition of j̄profEC that the value of jprofEC

at points outside [0, 1] may sometimes be required. For ex-
ample, suppose ρ̄ec = 0. Then, j̄profEC (0, 0.5) = jprofEC (−0.5).
Experiments show that the effect of the ECCD is highly
localized and the function jprofEC has compact support. Thus,
it is assumed that the fixed ECCD position ρ̄ec is such that
the support of jprofEC is contained in (0, 1). Thus, under this
assumption, the value of the function jprofEC at ρ̂ /∈ [0, 1] can
be defined to be equal to zero.

C. Evolution of θ at the Minimum Safety Factor Location

To design a controller that tracks a target minimum
safety factor q̄min, a model that captures the dynamics of θ
explicitly at the location ρ̂qmin

of the minimum safety factor
is required. Recall that ρ̂qmin : t 7→ ρ̂qmin(t) maps time t
to the location of the minimum safety factor. Substituting
ρ̂ = ρ̂qmin

into the governing equation (7) with the term hEC



replaced by h̄EC(ρec) in (10) reduces the autonomous PDE
into a nonautonomous ordinary differential equation (ODE)
of the form

θ̇qmin
=
(
hminη,1 θ

′′
qmin

+ hminη,2 θ
′
qmin

+ hminη,3 θqmin

)
uη︸ ︷︷ ︸

c1

+

NNBI∑
i=1

hminNBI,iuNBI,i + h̄minEC (ρec)uEC

+

(
hminBS,1

1

θqmin

− hminBS,2

θ′qmin

θ2
qmin

)
uBS︸ ︷︷ ︸

c2

,

(11)

where θqmin
:= θ(ρ̂qmin

(·), ·), θ′qmin
:= θ′(ρ̂qmin

(·), ·),
θ′′qmin

:= θ′′(ρ̂qmin(·), ·), hmin(·) := h(·) ◦ ρ̂qmin , h̄minEC (ρec) ≡
h̄minEC (ρec, ·) := h̄EC(ρec, ρ̂qmin(·)). In the above equation,
the notation ˙(·) denotes the derivative with respect to time t
while the notations (·)′ and (·)′′ represent first and second
order derivatives with respect to the spatial variable ρ̂. Note
that the terms θqmin , θ

′
qmin

, θ′′qmin
, and hmin(·) are functions of

time t. The term h̄minEC , on the other hand, is a function of
the controllable variable ρec as well as time t.

III. CONTROL DESIGN

In this section, the response model derived above is used
to develop a control algorithm. If a target q̄min is given, the
target poloidal flux gradient at the minimum safety factor
location θ̄qmin(t) at time t is given by

θ̄qmin(t) = −Bφ,0ρ
2
b ρ̂qmin

(t)

q̄min(t)
. (12)

The objective is to choose the inputs PNBI,i, PEC
and ρec such that the system tracks the target. Sup-
pose that the terms h∗,minNBI,i and h̄∗,minEC (ρec) are defined
such that hminNBI,i uNBI,i = h∗,minNBI,i PNBI,i and
h̄minEC (ρec) uEC = h̄∗,minEC (ρec) PEC . The tracking is
achieved through feedback-linearization, in which the inputs
PNBI,i, PEC and ρec are chosen such that

NNBI∑
i=1

h∗,minNBI,iPNBI,i + h̄∗,minEC (ρec)PEC + c1 + c2

= −Kpθ̃qmin −KI

∫ t

t0

θ̃qmindt+ ˙̄θqmin , (13)

where Kp > 0, KI > 0 are controller gains and θ̃qmin
=

θqmin
− θ̄qmin

. From (11), note the definition of c1 and c2, it
is evident that the LHS of the above equation (13) is equal
to θ̇qmin . Thus, when the inputs satisfy the above equality,
the evolution of the error θ̃ is governed by

˙̃
θqmin

= −Kpθ̃qmin
−KI

∫ t

t0

θ̃qmin
dt. (14)

The asymptotic stability of the above system is proven
in [9]. Suppose that the inputs PNBI and PEC have both
feedforward and feedback components. That is, PNBI,i =
PNBI,ff,i+PNBI,fb,i and PEC = PEC,ff +PEC,fb, where

the subscripts ff and fb represent the feedforward and
feedback terms, respectively. Then, (13) can be rewritten as

hT (ρec)ufb + b1(ρec) = 0, (15)

where

h(ρec) =
[
h∗,minNBI,1, · · · , h∗,minNBI,NNBI

, h̄∗,minEC (ρec)
]T

,

b1 = Kpθ̃qmin +KI

∫ t

t0

θ̃qmindt− ĉ,

ĉ = ˙̄θqmin − c1 − c2 − hT (ρec)uff ,

u(·) =
[
PNBI,(·),1, · · · , PNBI,(·),NNBI

, PEC,(·)
]T
.

In addition to the above equation, it is clear from the
discussion in Subsection II-A that the inputs must satisfy

1Tufb + b2 = 0, (16)

where 1 = [1, . . . , 1]T ∈ RNNBI+1 and b2 = −Ptot +
1Tuff . Since there are NNBI+2 control inputs and only two
constraints ((15) and (16)), there is no unique way to choose
PNBI,fb,i, PEC,fb and ρec. In this work, these values at
each time t are chosen by minimizing a cost function subject
to the constraints imposed by (15) and (16). The following
subsection focuses on deriving a closed-form expression for
the solution of the optimization problem.

A. Statement and Solution of Optimization Problem
The optimization problem at each time t is posed as

argmin
u(t),ρec(t)

f(u(t)) = argmin
u(t),ρec(t)

uT (t)Qu(t) (17)

subject to the constraints

g1(ρec(t), u(t)) := ĥT (ρec(t))u(t) + b1(ρec) = 0, (18)

g2(u(t)) := 1̂Tu(t) + b2 = 0, (19)
u(t) ∈ Γ× (−∞,∞)× (−∞,∞), and (20)

ρec ∈ [0, 1]. (21)

In the above equations, u ,
[
uTfb s1 s2

]T
, ĥ(ρec) ,[

hT (ρec) 1 0
]T

, 1̂ ,
[
1T 0 1

]T
, where s1 and s2 are

slack variables introduced to ensure the existence of a solu-
tion to the optimization problem even when constraints (15)
and (16) cannot be satisfied exactly. The term Q is a diag-
onal matrix given by Q = diag(q1, . . . , qNNBI+1, qs1 , qs2),
qs1 , qs2 >> qi > 0 for i = 1, . . . , NNBI + 1. The set Γ =
[γ

1
, γ̄1] × . . . × [γ

NNBI+1
, γ̄NNBI+1] ⊂ RNNBI+1 accounts

for the lower and upper saturation limits associated with the
NBI and ECCD powers. Note that the ECCD position term
explicitly appears only in the constraint equation and not in
the cost function. In the following analysis, the time notation
(t) is dropped for convenience.

To simplify the above optimization problem, the optimiza-
tion problem for a fixed ECCD position ρ̂ec ∈ [0, 1] without
actuator saturation limits (20) is first solved. The Lagrange
multiplier theorem gives a closed form expression for the
solution of this problem. Suppose that g∗1 := g1(ρ̂ec, ·),
ĥ∗ := ĥ(ρ̂ec), h∗ := h(ρ̂ec) and b∗1 := b1(ρ̂ec). Define the
Lagrangian as

L(u, λ1, λ2) = f(u)− λ1g
∗
1(u)− λ2g2(u), (22)



where λ1, λ2 ∈ R are the Lagrange multipliers. The La-
grange multiplier theorem [13] states that if a local mini-
mum u∗ exists, and the Jacobian

[
∇ug∗1(u∗) ∇ug2(u∗)

]T
has rank 2, then there exist λ∗1 and λ∗2 such that
∇L(u∗, λ∗1, λ

∗
2) = 0. Solving the equation for u∗ results in

the expression

u∗ =
1

2
Q−1 [

ĥ∗ 1̂
] [ĥ∗T Q−1ĥ∗ ĥ∗

T

Q−11̂

1̂TQ−1ĥ∗ 1̂Q−11̂

] [
−2b∗1
−2b2

]
(23)

Note that the level sets f(u) = p, where p is some arbitrary
positive constant, form concentric ellipses. Also, the set of
points that satisfy both constraints forms a hyperplane. The
solution u∗ corresponds to the point at which the level set
with the least value of p is tangential to the hyperplane. This
shows that the above expression for u∗ is indeed a minimum.

It is known that if the solution of the optimization prob-
lem without saturation constraints is outside the set Γ, the
extremum of the same problem with saturation constraints
is achieved at the boundary of the set Γ. The following
algorithm uses this fact to solve the optimization problem
with saturation limits in an iterative manner. The subscript i
represents the ith element of a vector.

Algorithm 1: Algorithm for computing the saturated
inputs for a given ECCD position.

Inputs: h∗, b∗1, b2, Q. Outputs: u∗.
1) Set h̃ = [ ], an empty vector; and calculate u∗

using (23).
2) For i = 1, . . . , NNBI + 1,

• if ui <= γ
i

b∗1 = b∗1 + γ
i
∗ h∗i , b2 = b2 + γ

i
• elseif ui >= γ̄i

b∗1 = b∗1 + γ̄i ∗ h∗i , b2 = b2 + γ̄i
• else

h̃ = [h̃;h∗i ], q̃ = [q̃; qi]

3) Set h∗ = h̃, 1 = ones(size(h̃)),
Q = diag(q̃, qs1 , qs2).

4) If size(h∗) == 0,
stop;

else,
return to Step 1.

The next step is to come up with an algorithm that treats
the ECCD position as a variable. Before proceeding further,
note that during tokamak operation, the maximum allowable
change in the ECCD position at every time step is bounded
from above by a constant δ. The following algorithm pro-
vides a simple solution for solving the nonlinear optimization
problem posed at the beginning of this subsection. A finite
discrete set of possible ECCD positions at a given time step is
first considered. For each value of the ECCD position in the
set, Algorithm 1 is implemented. The optimal ECCD position
and inputs are the ones that correspond to the least cost value.
Similar to the previous algorithm, the subscripts i and j in the
following algorithm represents the ith and jth elements of a
vector, respectively. Additionally, the superscript k represents
the kth time step.

Algorithm 2: Algorithm for optimization problem with
moving ECCD.

Inputs: ρk−1
ec . Outputs: u∗,k, ρ∗,kec .

1) Define the vector

Ωk :=


[
0, δ
]

if ρk−1
ec = 0,[

1 − δ, 1
]

if ρk−1
ec = 1,[

ρk−1
ec − δ, ρk−1

ec , ρk−1
ec + δ

]
otherwise.

In the above definition, the term ρk−1
ec represents

the position of the ECCD at the previous time step.
2) For i = 1, . . . , length of Ωk,

a) Set ρ̂kec = Ωki .
b) Compute inputs u∗,ki with ρ̂kec using Algo-

rithm 1. Set Jki = u∗,ki
T
Qu∗,ki .

3) Set j such that Jkj = miniJ
k
i . Set u∗,k = u∗,kj

and ρ∗,kec = Ωkj .

IV. PERFORMANCE ASSESSMENT VIA SIMULATION

The above control algorithm was tested in 1D nonlinear
simulations using the Control Oriented Transport SIMulation
(COTSIM) for the DIII-D tokamak scenario. In the simula-
tions, NNBI = 2, δ = 0.01, and ρ0

ec = 0.475 were chosen.
The target q̄min was generated using the input data corre-
sponding to the DIII-D shot 147634. The NBI feedforward
signals were set equal to those inputs used to generate the
target values, while the feedforward EC power were set equal
to zero in all the simulations (i.e., PEC,ff = 0). The total
power Ptot was generated using the control algorithm for
tracking a target plasma total energy given in [8]. During the
simulations, the controller was activated at 2.5 seconds. The
grey background in the figures denotes the time interval when
the controller is active. The controller gains were chosen as
KP = 0.03 and KI = 5 × 10−4, and the Q matrix in the
cost function was selected as Q = diag(1, 1, 1, 1000, 1000).
The upper saturation limits of PNBI,1, PNBI,2 and PEC
were 12 MW, 6 MW and 4.5 MW, respectively; whereas the
lower saturation limits for all three powers were 0 MW.

To evaluate the difference in performance when the ECCD
position is used for control, the control algorithm for the
fixed ECCD case (i.e., Algorithm 2 with Ωk = {ρk−1

ec }) is
tested along with the moving ECCD case. Figure 2 shows
the qmin evolution over time for both cases. The figure also
shows the ρec and ρ̂qmin

values. The qmin starts to diverge
from the target after 2 seconds in the absence of feedback. On
the other hand, the system under feedback control tracks the
given target in both the fixed and moving ECCD cases. It can
also be seen that the optimal ECCD position for the moving
ECCD case is roughly located at ρ̂qmin

+ 0.115. Figure 3
shows how the NBI and ECCD powers change with time
when the ECCD position is both fixed and allowed to vary.
When the ECCD is fixed PNBI,2 saturates approximately
from 3.5 to 4 seconds and from 5.25 to 5.75 seconds. The
control algorithm compensates for this saturation by causing
a significant increase in the ECCD power PEC . Note that
there are three actuators and two linear constraints (18)
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Fig. 2: Fixed and moving ECCD cases: minimum safety factor evolution (left), ECCD position (right).
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Fig. 3: Fixed and moving ECCD cases: Auxiliary powers - PNBI,1 (left), PNBI,2 (center), PEC (right)

and (19). The ECCD power PEC increases because there
is only a unique choice of PNBI,1 and PEC to satisfy both
constraints when PNBI,2 saturates. In contrast, PNBI,2 does
not saturate when the ECCD position is allowed to vary. As
a result, the controller does not cause any spike in PEC .

V. CONCLUSION AND FUTURE WORK

A dynamic model for the poloidal flux gradient θ at the
location of the minimum safety factor qmin was presented.
The model treats the ECCD position as a controllable in-
put. An optimal feedback-linearization-based controller that
tracks a target minimum safety factor was also proposed. The
effectiveness of the controller was tested in COTSIM simu-
lations for a DIII-D tokamak scenario. This work suggests
that treating the ECCD position as a controllable variable can
enhance actuation efficiency in q-profile control applications.
In particular, simulations in this work show that controlling
the ECCD position can prevent actuator saturation and/or
a sudden increase in actuator powers. Future work could
potentially focus on employing a spatially moving ECCD
in other plasma control applications like the regulation of
the electron temperature profile.
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