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Abstract— Tokamaks are devices with a toroidal shape in
which a high-temperature ionized gas (plasma) is confined by
means of helical magnetic fields. The final goal of these devices
is to obtain energy from thermonuclear fusion reactions within
this plasma. A multitude of coupled control problems arise in
tokamak-plasma research that need to be solved simultaneously.
For tokamaks to be able to operate safely while maximizing
plasma performance, integrated control schemes that can han-
dle different aspects of the plasma dynamics must be developed.
Moreover, due to the inherent uncertainty that exists in the
plasma modeling process, such controllers must be robust
against unknown variations of the plasma behavior. In this
work, a nonlinear, robust controller is designed for simultaneous
regulation of magnetic and kinetic scalar variables, namely
the central safety factor, q0, the edge safety factor, qedge,
the total stored energy, W , and the global toroidal rotation,
Ωφ. The controller is synthesized from physics-based, zero-
dimensional (0D) models of the individual scalars’ dynamics.
One-dimensional (1D) simulations using the COTSIM (Control-
Oriented Transport Simulator) code are employed to test the
proposed controller in a DIII-D scenario.

I. INTRODUCTION

Tokamaks magnetically confine a plasma composed of
hydrogen isotopes (normally deuterium, and most likely a
mix of deuterium and tritium in the future). In order to obtain
energy from nuclear fusion reactions, the triple product of
the plasma density, temperature, and confinement time must
be high enough [1]. To achieve a stable plasma, tokamak
magnetic-field lines are twisted and form helical lines as
depicted in Fig. 1. Whereas the toroidal component of the
magnetic field, Bφ, is generated by the toroidal field coils
and is approximately constant in time, the poloidal magnetic
field, Bθ, is mainly due to the electrical current that is driven
through the plasma using a transformer principle [1]. The
plasma current ohmically heats the plasma and increases its
temperature. However, such ohmic heating is only effective
when the plasma is “cold” in the initial stages of the plasma
discharge, because the plasma resistivity decreases when the
plasma temperature increases. To further heat the plasma,
additional auxiliary sources are employed. Two of the most
used and well-known non-inductive auxiliary heating and
current drive (H&CD) methods are neutral beam injection
(NBI) and electron-cyclotron (EC) resonance.

Three plasma properties that are of interest in tokamak
research are the plasma thermal energy-density profile, de-
noted by E, the toroidal rotation profile, ωφ, and the safety
factor profile, q, which is a measure of the pitch of the
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magnetic-field lines. Because E is directly proportional to
the electron and ion temperatures, and to the electron and
ion densities, it is desired that E is as high as possible for
long periods of time (so that the triple product of density,
temperature and confinement time is as high as possible too).
Moreover, both ωφ and q have a close relationship with the
plasma confinement properties. For example, some particular
q-profile shapes promote the development of internal trans-
port barriers, which improve the plasma confinement. Also,
high ωφ profiles may also create internal transport barriers. In
addition, numerous magneto-hydrodynamic (MHD) instabil-
ities, which decrease plasma confinement and may terminate
the plasma discharge, are related with E, ωφ, and q. For
instance, q > 1 avoids the so-called sawtooth instability,
whereas ωφ is closely related to the locking of neoclassical
tearing modes and the development of resistive wall modes.

As a result, active control of E, ωφ and/or q are problems
of interest in nuclear fusion research. Nonetheless, simultane-
ous control of all these profiles is a great challenge due to the
limited actuation capability existing in a tokamak. Instead,
simultaneous control of a particular set of scalar magnitudes
(such as some global magnitudes related to certain profiles,
or particular values of a given profile at specific points)
may fulfill the control requirements in future reactor-grade
tokamaks, and represents a more attainable control problem.
In this work, the central safety factor, q0, edge safety factor,
qedge, global toroidal rotation, Ωφ, and stored thermal energy,
W , compose the set of scalars of interest for control.

To the authors knowledge, there is no previous work on
integrated control of individual scalars related to energy,
rotation, and safety factor simultaneoulsy. Previous work on
simultaneous rotation (either ωφ or Ωφ) and W control can be
found in [2], [3], [4], whereas work on simultaneous energy
(either W , normalized beta, βN , or electron temperature, Te)
and q-profile control can be found in [5], [6], [7], [8]. In this
work, a fully-nonlinear, coupled model of the q0, qedge, W
and Ωφ dynamics is employed to synthesize a controller for
these individual scalars. Moreover, uncertainties are included
in the modeling process to account for unknown and/or
unmodeled dynamics. Nonlinear, robust controllers involving
Lyapunov redesign techniques are employed to handle such
uncertainties. The actuators considered are the NBI and EC
powers, and the plasma current.

This work is organized as follows. The model for the
individual-scalars dynamics is given in Section II. The con-
troller is designed in Section III. A 1D-simulation study
to test the controller in a DIII-D scenario is included in
Section IV. Finally, some conclusions and possible future
work are suggested in Section V.
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Fig. 1. Magnetic configuration in a tokamak.

II. DYNAMICS OF ZERO-DIMENSIONAL PLASMA
VARIABLES

Under ideal MHD conditions, the magnetic-flux surfaces
in a tokamak form toroidally nested surfaces around the
magnetic axis (see Fig. 1). A magnetic-flux surface is defined
by points with the same value of the toroidal magnetic flux,
Φ, mean effective minor radius, ρ, poloidal magnetic flux,
Ψ, pressure p, or others [1]. Only one of these functions
(known as flux functions) is needed to index the magnetic-
flux surfaces. This, together with the assumption of toroidal
symmetry, reduces the 3D-problem in space to a 1D-problem.

At a point P , the toroidal magnetic flux is defined as
Φ =

∫
Sφ
BφdSφ, where Sφ is the surface enclosed by the

magnetic-flux surface that passes through P and is normal
to the φ axis, as depicted in Fig. 1. The mean effective
minor radius, ρ, is defined as Φ = Bφ,0πρ

2, where Bφ,0
is the vacuum toroidal magnetic field at the major radius,
R0. A non-dimensional version of ρ is given by ρ̂ , ρ/ρb,
where ρb is the mean effective minor radius of the last-
closed magnetic-flux surface. Analogously to the toroidal
flux Φ, the poloidal magnetic flux at a point P is defined
as Ψ =

∫
S
BθdS, where S is the surface whose boundary is

a toroidal ring that passes through P and is normal to the z
axis, as depicted in Fig. 1. The poloidal stream function, ψ,
is given by ψ = Ψ/(2π). The safety factor, q, is defined as

q , −dΦ

dΨ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
. (1)

The pressure field, p, is given by

p = neKTe + niKTi, (2)

where ne and ni are the electron and ion densities, respec-
tively, Te and Ti are the electron and ion temperatures, re-
spectively, and K is the Boltzmann’s constant. It is assumed

that the plasma is quasi-neutral and purely hydrogenic, ne ≈
ni , n, so (2) becomes p = nK(Te + Ti). The thermal
energy-density, E, is given by E = 3

2nK(Te +Ti) = 3
2p, so

E is a constant in a magnetic-flux surface as well.

A. Central Safety Factor

The central safety factor, q0, is the value of q at ρ̂ = 0,

q0(t) , − Bφ,0ρ
2
b ρ̂

∂ψ(ρ̂, t)/∂ρ̂

∣∣∣∣
ρ̂=0

= − Bφ,0ρ
2
b

∂θ(ρ̂, t)/∂ρ̂

∣∣∣∣
ρ̂=0

, (3)

where θ , ∂ψ/∂ρ̂, and L’Hopital’s rule has been employed.
If ∂θ(ρ̂, t)/∂ρ̂|ρ̂=0 ≈ θ(∆ρ̂, t)/∆ρ̂, where ∆ρ̂ is a small
parameter, then

q0(t) , − Bφ,0ρ
2
b ρ̂

∂ψ(ρ̂, t)/∂ρ̂

∣∣∣∣
ρ̂=0

≈ −Bφ,0ρ
2
b∆ρ̂

θ(∆ρ̂, t)
, (4)

and taking time derivative, it is found that

dq0

dt
≈ Bφ,0ρ

2
b∆ρ̂

θ(∆ρ̂, t)2

dθ(∆ρ̂, t)

dt
, (5)

so the dynamics of q0 is in fact defined by the dynamics of
θ(∆ρ̂) using this approximation. The dynamics of ψ and θ
is defined by the magnetic diffusion equation (MDE) [9],

∂ψ

∂t
=

η

µ0ρ2
b F̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥηjni, (6)

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= −µ0

2π

R0

Ĝ|ρ̂=1Ĥ|ρ̂=1

Ip, (7)

where η is the plasma resistivity, jni is the non-inductive
current, and F̂ , Ĝ, Ĥ , Dψ , F̂ ĜĤ are profiles corre-
sponding to a particular magnetic configuration, µ0 is the
vacuum magnetic permeability, and Ip is the plasma current.
Following the same ideas and control-oriented models for
Te, ne, η, and jni as in [10], (6) can be written as

∂θ

∂t
=

(
hdiff,1

∂2θ

∂ρ̂2
+ hdiff,2

∂θ

∂ρ̂
+ hdiff,3θ

)
uvirtη

+

NNBI∑
i=1

hNBI,iu
virt
NBI,i + hECu

virt
EC

+

(
hBS,1

1

θ
− hBS,2

θ

∂θ/∂ρ̂

)
uvirtBS , (8)

where h(·) are spatial functions that depend only on ρ̂,
and uvirt(·) are the “virtual inputs” to the system, which are
functions of the physical inputs, namely, Ip, the power of
the i-th NBI, PNBI,i (i = 1, ..., NNBI , where NNBI is the
total number of NBI’s), the total EC power, PEC , and the
line-average electron density, n̄e, as given by

uvirtη = (IγpP
ε
totn̄

ζ
e)

−3/2, (9)

uvirtNBI,i = (IγpP
ε
totn̄

ζ
e)

(−3/2+ξNBI)n̄−1
e PNBI,i, (10)

uvirtEC = (IγpP
ε
totn̄

ζ
e)

(−3/2+ξEC)n̄−1
e PEC , (11)

uvirtBS = (IγpP
ε
totn̄

ζ
e)

−3/2n̄e, (12)

where γ, ε, ζ, ξNBI and ξEC are model parameters, and Ptot
is the total injected power, Ptot =

∑NNBI
i=1 PNBI,i + PEC .



By evaluating (8) at ρ̂ = 0 with its first spatial derivative
∂θ/∂ρ̂|ρ̂=0 discretized as in (4) and its second spatial deriva-
tive discretized as ∂2θ/∂ρ̂2|ρ̂=0 ≈ (θ(2∆ρ̂)−2θ(∆ρ̂))/∆ρ̂2,
and using (4), the dynamics for q0 (5) can be rewritten as

dq0

dt
= q0

(
λdiff,1 + λdiff,2

θ(2∆ρ̂)

θ(∆ρ̂)

)
uvirtη

+ q2
0

(
NNBI∑
i=1

λNBI,iu
virt
NBI,i + λECu

virt
EC

)

− q3
0

(
λBS,1 − λBS,2

θ(2∆ρ̂)

θ(∆ρ̂)

)
uvirtBS , (13)

where λ(·) are constant model parameters derived from h(·).
It is assumed that θ(2∆ρ̂)/θ(∆ρ̂) is uncertain and given
by θ(2∆ρ̂)

θ(∆ρ̂) = θ(2∆ρ̂)
θ(∆ρ̂)

∣∣∣
nom

+ δθ, where θ(2∆ρ̂)/θ(∆ρ̂)|nom
is a nominal, known value, and δθ is an uncertain term.
This assumption not only implies that the influence of the
rest of the q-profile evolution on q0 is taken as uncertain,
but also enables modeling of any other source of unknown
dynamics (e.g., uncertainties in Te, that affects η and jni in
(6), see [10]). Then, (13) is written as

dq0

dt
= q0

(
λdiff,1 + λdiff,2

θ(2∆ρ̂)

θ(∆ρ̂)

∣∣∣∣
nom

)
uvirtη

+ q2
0

(
NNBI∑
i=1

λNBI,iu
virt
NBI,i + λECu

virt
EC

)

− q3
0

(
λBS,1 + λBS,2

θ(2∆ρ̂)

θ(∆ρ̂)

∣∣∣∣
nom

)
uvirtBS + δq0 , (14)

where δq0 = (q0λdiff,2u
virt
η +q3

0λBS,2u
virt
BS )δθ is a term that

bundles the uncertainties in the q0 subsystem.

B. Edge Safety Factor

The edge safety factor, qedge, is the value of q at ρ̂ = 1.
Its dynamics can be obtained by taking time derivative in the
MDE boundary condition at ρ̂ = 1 (second equation in (7)),

dqedge
dt

= −Bφ,0ρ
2
b

kIpI
2
p

dIp
dt
, (15)

where kIp , µ0R0/(2πĜ|ρ̂=1Ĥ|ρ̂=1) > 0 is a model
parameter. It is taken as kIp = knomIp

+δkIp , where knomIp
is a

constant, known value of kIp , and δkIp is an uncertain term,
representing unknown variations in the plasma magnetic
configuration and position.

C. Thermal Stored Energy

The thermal stored energy, W , is defined as

W (t) ,
∫
Vp

E dV =

∫ ρ̂=1

ρ̂=0

E(ρ̂, t)
∂V (ρ̂, t)

∂ρ̂
dρ̂, (16)

where Vp is the plasma region enclosed within the last
magnetic-flux surface, and V (ρ̂) is the plasma volume en-
closed by the magnetic-flux surface labeled with ρ̂.

The dynamics of W is modeled using a 0D energy balance,

dW

dt
= −W

τE
+ Ptot + δW , (17)

where τE = Hnom
H kI0.93

p Ptot
−0.69 is the energy confinement

time, which is modeled using the IPB98(y,2) scaling [11],
k is a constant that depends on the machine parameters
(Bφ,0, R0, etc.), Hnom

H is the nominal H factor, and δW =
W

kI0.93
p Ptot−0.69 ( 1

HnomH
− 1

HH
) + δP is a term that bundles all

the uncertain terms of the W -subsystem [12].

D. Global Toroidal Rotation

The global toroidal rotation, Ωφ, is defined as the average
toroidal rotation of the ions inside the plasma, and it is given
by

Ωφ(t) ,
1

Np(t)

∫
Vp

n(ρ̂, t) ωφ(ρ̂, t)dV, (18)

where Np is the total number of ions within the plasma.
The dynamics of Ωφ is modeled using a 0D toroidal

momentum balance,
dΩφ
dt

= − Ωφ

kΩHnom
H kPtot

−0.69

+

NNBI∑
i=1

kNBI,iPNBI,i
mpR2

0

+ kint
W

IpmpR2
0

+ δΩ, (19)

where kΩ, kNBI,i and kint are model constants, mp is
the mass of the plasma confined within the last-closed
magnetic-flux surface, and δΩ =

Ωφ
kΩkPtot−0.69 ( 1

HnomH
− 1
HH

)+

δT is a term that bundles all the uncertain terms of the Ωφ-
subsystem [12].

E. Summary: State-Space Model

The state-space model for the system is given by ẋ =
f(x, u, t, δ), where x = [q0, qedge,W,Ωφ]T is the state,
u = [Ip, PNBI,1, ..., PNBI,NNBI ]

T is the controllable in-
put, δ = [δq0 , δkIp , δW , δΩ]T is the uncertainty, and f =

[fq0 , fqedge , fW , fΩφ ]T ∈ R4×1, where fq0 , fqedge , fW , and
fΩφ are given by the right hand side of (14), (15), (17), and
(19), respectively. The explicit dependence with t is due to
n̄e and mp, which are non-controllable in this work.

III. CONTROL DESIGN

The control objective is to drive x to a target value, x̄. The
control algorithm is composed of 4 controllers (one for each
individual scalar). Each controller generates one constraint
for the NNBI + 2 components of u. In order to obtain
u at each time step, the constraints are embedded into an
optimization problem together with the saturation limits.

A. qedge control by means of Ip
The first step is to control qedge by means of Ip. It is

convenient to employ θ at the edge, θN = −Bφ,0ρ2
b/qedge,

instead of qedge, because its dependence with Ip and kIp is
linear (θN = −kIpIp). Because dIp/dt is present in (15),
it is discretized for control purposes as dIp/dt ≈ (Ip(t) −
Ip(t −∆t))/∆t, where ∆t is the controller sampling time.
First, the nominal system (δkIp = 0) is considered to look
for a nominal control law Inomp . As knomIp

is a constant, (15)
can be rewritten in terms of θN as

dθN
dt

= −knomIp

Inomp (t)− Ip(t−∆t)

∆t
, fθN (Inomp ). (20)



By setting (20) as

fθN (Inomp ) ≡ −kP,θN θ̃N − kI,θN
∫ t

t0

θ̃Ndt+
dθ̄N
dt

, (21)

where θ̄N is the target for θN (related to q̄edge by θ̄N =
−Bφ,0ρ2

b/q̄edge), θ̃N , θN − θ̄N , and kP,θN > 0, kI,θN > 0
are design parameters, the θN -dynamics becomes dθ̃N/dt =
−(kP,θN θ̃N + kI,θN

∫ t
t0
θ̃Ndt). The nominal control law ob-

tained from (21) ensures θ̃N → 0 for the nominal θN -
subsystem [13]. To ensure robustness under δkIp 6= 0, a
term Irobp is added to Inomp , so that the final control law
is Ip = Inomp + Irobp . Equation (20) can be rewritten in the
uncertain case as

dθ̃N
dt

= knomIp

Ip(t−∆t)

∆t
− dθ̄N

dt
−
knomIp

∆t
(Ip+δθN ), (22)

where δθN = (Ip − Ip(t − ∆t))δkIp/k
nom
Ip

is a term that
bundles all the uncertain terms of the θN -subsystem, and for
which it is assumed that a bound, δmaxθN

, can be estimated.
Using Lyapunov redesign techniques [13], it can be shown
that a stabilizing control law for Irobp is given by

Irobp = KR,θN sign(θ̃N ), if δmaxθN |θ̃N | ≥ εθN , (23)

Irobp = K2
R,θN θ̃N/εθN , if δmaxθN |θ̃N | < εθN , (24)

where KR,θN ≥ δmaxθN
and εθN → 0 are design parameters.

B. W control by means of Ptot
The second step is to control W by means of Ptot. In this

step and the subsequent steps, the value of Ip is fixed and
given by (21) and (23)-(24). To look for a nominal control
law Pnomtot , equation (17) with δW = 0 is set as

fW (x, Pnomtot , t, 0)= − W̄ + W̃

Hnom
H kI0.93

p Pnomtot
−0.69 + Pnomtot

≡−kP,W W̃− kI,W
∫ t

t0

W̃dt+
dW̄

dt
, (25)

where W̃ ,W − W̄ , and kP,W > 0 and kI,W > 0, the W -
dynamics becomes dW̃/dt = −(kP,W W̃ + kI,W

∫ t
t0
W̃dt).

The nominal control law obtained from (25) ensures W̃ → 0
for the nominal W -subsystem. To ensure robustness under
δW 6= 0, a term P robtot is added to Pnomtot so that the final
control law is Ptot = Pnomtot +P robtot . Assuming that a bound
to δW is known, δmaxW , it can be shown [13] that a stabilizing
control law for urobP , P robtot − W̄+W̃

HnomH kI0.93
p P robtot

is given by

urobP = KR,W sign(W̃ ), if δmaxW |W̃ | ≥ εW , (26)

urobP = K2
R,W W̃/εW , if δmaxW |W̃ | < εW , (27)

where KR,W ≥ δmaxW and εW → 0 are design parameters.

C. Ωφ control by means of
∑
i TNBI,i

The third step is to control Ωφ by means of TNBI ,∑
i kNBI,iPNBI,i. In this step and the subsequent steps, the

value of Ptot is fixed (as well as Ip) and given by (25) and

(26)-(27). To look for a nominal control law TnomNBI , equation
(19) with δΩ = 0 is set as

fΩ(x, TnomNBI , t, 0) = − Ω̄φ + Ω̃φ

kΩHnom
H kP−0.69

tot

+
TnomNBI

mpR2
0

+ kint
W̄ + W̃

IpmpR2
0

≡ −kP,ΩΩ̃φ − kI,Ω
∫ t

t0

Ω̃φdt+
dΩ̄φ
dt

, (28)

where Ω̃φ , Ωφ − Ω̄φ, and kP,Ω > 0 and kI,Ω > 0, the Ωφ-
dynamics becomes dΩ̃φ/dt = −(kP,ΩφΩ̃φ+kI,Ωφ

∫ t
t0

Ω̃φdt).
The nominal control law obtained from (28) ensures Ω̃φ → 0
for the nominal Ωφ-subsystem. To ensure robustness under
δΩ 6= 0, a term T robNBI is added to TnomNBI , so that the final
control law is TNBI = TnomNBI + T robNBI . Assuming that a
bound to δΩ is known, δmaxΩ , it can be shown [13] that a
stabilizing control law for T robNBI,i is given by

T robNBI,i = −KR,Ω sign(Ω̃φ), if δmaxΩ |Ω̃φ| ≥ εΩ, (29)

T robNBI,i = −K2
R,ΩΩ̃φ/εΩ, if δmaxΩ |Ω̃φ| < εΩ, (30)

where KR,Ω ≥ max |δΩ| and εΩ → 0 are design parameters.

D. q0 control by means of PNBI,i and PEC
The fourth step is to control q0 by means of PNBI,i and

PEC . By setting (14) with δq0 = 0 as

fq0(x, unom, t, 0) ≡ −kP,q0 q̃0−kI,q0
∫ t

t0

q̃0dt+
dq̄0

dt
, (31)

where q̃0 , q0 − q̄0, and kP,q0 > 0 and kI,q0 > 0, the
q0-dynamics becomes dq̃0/dt = −(kP,q0 q̃0 + kI,q0

∫ t
t0
q̃0dt).

The nominal control law obtained from (31) ensures q̃0 → 0
for the nominal q0-subsystem. It can be noted that (31) is
in fact a constraint for PNBI,i and PEC only (uvirtη and
uvirtBS are already determined because Ip, Ptot and n̄e are
determined, see equations (9)-(12)), and it can be rewritten
as

q2
0FP

nom ≡ −kP,q0 q̃0 − kI,q0
∫ t

t0

q̃0dt+
dq̄0

dt

− q0

(
λdiff,1 + λdiff,2

θ(2∆ρ̂)

θ(∆ρ̂)

∣∣∣∣
nom

)
uvirtη

+ q3
0

(
λBS,1 + λBS,2

θ(2∆ρ̂)

θ(∆ρ̂)

∣∣∣∣
nom

)
uvirtBS , (32)

where F ∈ R1×NNBI+1 is a vector whose i-
th component is given by (see equations (9)-(12))
λNBI,i(I

γ
pP

ε
totn̄

ζ
e)

(−3/2+ξNBI)n̄−1
e , except for the last one,

which is given by λEC(IγpP
ε
totn̄

ζ
e)

(−3/2+ξEC)n̄−1
e , and

Pnom = [PnomNBI,1, ..., P
nom
NBI,NNBI

, PnomEC ]T is a vector with
the nominal NBI and EC powers. To ensure robustness
under δq0 6= 0, a term P rob = [P robNBI,1, ..., P

rob
NBI,1, P

rob
EC ]T

is added to Pnom, so that the final control law is P =
Pnom+P rob. If a bound to δq0 is known (denoted by δmaxq0 ),
the robust term P rob is computed by [13]

FP rob = −KR,q0 sign(q̃0), if δmaxq0 |q̃0| ≥ εq0 , (33)

FP rob = −K2
R,q0 q̃0/εq0 , if δmaxq0 |q̃0| < εq0 , (34)

where KR,W ≥ δmaxq0 and εq0 → 0 are design parameters.
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Fig. 2. Comparison of time evolutions for q0, qedge, W , and Ωφ in 1D simulations.

E. Determination of u by means of optimization

The four equations obtained for the control laws define
constraints for the components of u, i.e.,

Ip = Inomp + Irobp , (35)
NNBI∑
i=1

PNBI,i + PEC = Pnomtot + P robtot , (36)

NNBI∑
i=1

kNBI,iPNBI,i = TnomNBI + T robNBI , (37)

F [PNBI,1, ..., PNBI,NNBI , PEC ] = F (Pnom + P rob), (38)

where Inomp , Irobp , Pnomtot , P robtot , TnomNBI , T robNBI , Pnom and
P rob are determined from (21), (23)-(24), (25), (26)-(27),
(28), (29)-(30), (32), and (33)-(34), respectively. The sys-
tem (35)-(38) has 4 equations with NNBI + 2 unknowns
(PNBI,i for i = 1, ..., NNBI , PEC , and Ip). If NNBI > 2,
then (35)-(38) is an underconstrained system, and additional
constraints must be added to univocally determine the com-
ponents of u. For example, the DIII-D tokamak has 8 NBIs
whose powers can be controlled independently, so NNBI =8.

A possible way to solve (35)-(38) is to write it as an
optimization problem, in which a cost function J = J(u)
has to be minimized or maximized in u and subject to the
constraints (35)-(38). Additional constraints can be added to
the optimization scheme, such as the physical actuation limits

existing on u. In this work, J = uTFBQuFB is minimized,
where uFB , u − uref is the feedback input, uref is a
reference input, and Q is a design matrix.

IV. SIMULATION STUDY

In this section, the control algorithm previously introduced
is tested in 1D simulations using the COTSIM code for
a DIII-D scenario. The simulation study is carried out for
DIII-D shot 147634. Saturation limits are employed for
PNBI,i, PEC ∈ [0, 3] MW. COTSIM is a 1D code for control
testing and simulation that evolves ψ, Te, and ωφ using the
MDE (6) together with the electron heat-transport equation
(EHTE) and the toroidal rotation (TRE) equation, which are
given by

∂( 3
2neTe)

∂t
=

1

ρ2
b ρ̂Ĥ

∂

∂ρ̂

(
ρ̂
ĜĤ2

F̂
χene

∂Te
∂ρ̂

)
+Qe, (39)

mi〈r2〉∂(niωφ)

∂t
=

1

ρ̂Ĥ

∂

∂ρ̂

(
fφχφni

∂ωφ
∂ρ̂

)
+ tω, (40)

where χe and χφ are the electron heat and toroidal momen-
tum diffusivities, respectively, mi is the ion mass, Qe and tω
are the electron-heat and ion-torque depositions, respectively,
and 〈r2〉 and fφ are profiles corresponding to a particular
magnetic configuration. Control-oriented models are used for
ne, ni, jni, Qe, and tω , and a Spitzer-like model is used for
η. It also employs a mixed Bohm/Gyro-Bohm model [14] for
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Fig. 3. Comparison of time evolutions for Ip, PEC , co-current NBI power, PCO , and counter-current NBI power, PCOUNTER.

χe and χφ, which are functions of q among other variables.
Therefore, the MDE, EHTE, and TRE are coupled by means
of both their diffusive terms (through η, χe, and χφ) and their
source terms (through jni, Qe, and tω).

First, a feedforward-only (FF) simulation is carried out
in COTSIM with the inputs uref corresponding to shot
147634, which is employed as the reference. The state
evolution is denoted by xref . A target x̄ is created as a
modification of this simulated reference discharge, so that
q̄edge = qrefedge+0.4, W̄ = W ref +0.03 MJ, q̄0 = qref0 +0.3,
and Ω̄φ = Ωrefφ − 7 krad/s from the beginning of the
simulation until t = 3 s, whereas from t = 3s until the
end of the simulation the targets are kept fixed, q̄edge = 7,
W̄ = 1.27 MJ, q̄0 = 1.3, and Ω̄φ = 27 krad/s . Second, a
closed-loop simulation (feedforward + feedback, FF + FB)
is run in which the controller tries to drive the system to
the target x̄. Fig. 2 shows the state evolution for both the
FF and FF + FB simulations, together with the target x̄.
Fig. 3 shows the Ip, PEC evolutions, co-current NBI power,
PCO (it includes 6 NBI’s), and counter-current NBI power,
PCOUNTER (it includes 2 NBI’s), both in FF and FF + FB
simulations (PCOUNTER is not shown for the FF simulation
because it is constantly zero). It can be seen that the nominal
controller successfully drives x to the target x̄. All powers
and Ip are initially increased to achieve the higher q̄edge
and W̄ required. Also, PCO is initially reduced whereas
PCOUNTER is initially increased to spin down the plasma
and achieve the lower Ω̄φ required. Moreover, due to the
increase in PEC , and probably also due to the increases in
Ptot and W (and therefore, a decrease in η), q0 increases
as well. At t = 3 s, sudden control actions in Ip and
PCOUNTER are found to drive qedge and Ωφ to their targets.
The state x is successfully driven to x̄ after t = 3 s as well.

V. CONCLUSIONS AND FUTURE WORK

A robust controller for the simultaneous regulation of the
central safety factor, edge safety factor, stored energy and
toroidal rotation in tokamaks has been presented. It is a
model-based controller synthesized from nonlinear, control-
oriented models of the 0D dynamics of such individual

scalars. Its embedded optimization scheme is highly con-
figurable by means of the design matrix Q, which defines
the optimization problem and, therefore, the optimal control
actions. Moreover, the controller shows promising results in
1D simulations using COTSIM. Future work may include
experimental testing of the control algorithm in DIII-D.
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