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Abstract— The control of the toroidal current density spa- Poloidal field Toroidal field omsgm
tial profile in tokamak plasmas will be absolutely critical in mEgne et
future commercial-grade reactors to enable high fusion gai,
noninductive sustainment of the plasma current for steadystate
operation, and magnetohydrodynamic (MHD) instability-free
performance. Since the actuators that are available to ackve
a predefined desired current profile are constrained by physial
limitations, experiments have shown that some target proféds
may not be achievable for all arbitrary initial conditions. This
clearly defines a controllability problem, where the transport
dynamics of the toroidal current density is governed by a
parabolic partial differential equation with diffusivity -interior-
boundary actuation. We first prove that the system is not
completely controllable and later provide an estimate of tke
unreachable region.

Plasma

Fig. 1. Scheme of a tokamak device. The toroidal field (TF)scare

wrapped “poloidally” around the torus (the short way, goihgough the
l. INTRODUCTION center hole), while the poloidal field (PF) coils are wrapgastoidally”

Fusion is the process by which the sun produces heat afice long way) around the torus. Current flowing in these cetidg coils

; ; duces the helicoidal magnetic field that confines thenpdas he plasma
Sunhght' If we can make this process generate energy @mtained within the device can be represented by a set ¢échesntours

Earth, it will represent a clean and unlimited energy SOUrcgs constant poloidal magnetic flux.

As nuclei have positive charges, they repel each other Wh?rr)]/ing to manually adjust the time evolutions of the actusto

they try to fuse together. To overcome the Coulomb forc : . . oo
y uy 9 ) % achieve a desired current profile. The evolution in time
the temperatures of the reactants have to be increased to an o .
of the current profile is related to the evolution of the

extremely high level (50 to 200 million Kelvin). At such . . S ) .
. - oloidal magnetic flux, which is modeled in normalized
high temperatures, the hydrogen gas ionizes and become : . . X . . .
cylindrical coordinates using a partial differential etjoa

plasma. The major challenge in fusion is the conflnementce DE) usually referred to as the magnetic diffusion equatio

the plasma, where nuclgar fusion rea_ctlons _take place. . _Since the actuators that are used to achieve the desiret targ
One of the most promising magnetic-confinement devices

is the tokamak. Tokamaks bend magnetic field lines into rofiles are constrained, experiments have shown that some

torus structure. Charged particles can be confined becays the target profiles may not be achievable for all arbitrary

they follow the generated magnetic field lines. Toroidalfiel :?Efﬂi;s()irr];t;:g)?()s.i&hnetirfif?r:z d%;ﬁg:;ﬂ;ggﬂﬂigggﬁ:f;’mr
coils and poloidal field coils (See Fig. 1) form helicoidal

- ; . - . profiles in order to prevent experimentalists from wasting

endless magnetic field lines trapping the ionized particles . . .
- o enormous amounts of effort and time attempting to achieve

within the torus structure. The magnetic fields produce an

external force (magnetic pressure), which balance therate hem. Fro_r_n t_he perspective of control, this is clearly a
controllability issue.

pressure (kinetic pressure) created by the hot gas. It isipos Controllability is a fund al i q trol
ble to use the poloidal component of the helicoidal magneti ontrofiabiiity’1s a fundamentaf conceptin modern contro
eory and there are numerous degrees of state and output

lines to define nested toroidal surfaces corresponding { trollability that f v defined in the literat
constant values of the poloidal magnetic flux. The poIoide{fon rofiability that are lormally ‘defined in the literature

flux @ at a pointP in the (r,z) cross section of the plasma 1], k[z.]' 'lAsd for ;he Acf:ontgollabﬁny (t)r]: PIE'IIEb Sﬁje”."s' prior
(i.e., poloidal cross section) is the total flux through thg/Or« Includes [3], [4], [5]. Using the Hilbert Uniqueness

surfaceS bounded by the toroidal ring passing throuBh methtod, Ij['u”agf?.twt'::'amsh[ﬁ |nvest|gabte tf:je problt:jr;i of
e, = %[prmdS Thus, the poloidal fluxy can be used fexa?h controfia ”yt' roug d eumar;;: totlﬁln ary tcon son
as a spatial coordinate. or the wave equation and prove that the system is ex-

The development of current profile controllers in presen?Ctly cpntrollable. In [4.].’ Bezerra an_d. Menezes prove_the
experimental tokamaks is aimed at saving long trial-amdrer approximate controllability of a semilinear heat equaion

: - ; - ._.when the nonlinear term is globally Lipschitz and depends
periods of time currently spent by fusion expenmentallst%’n both the state and its spatial gradierifix. In [5], Lin
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an approximate null controllability result, and finally peo 15

that the system is not globally exactly null controllablé&.eT L4} Ramp-Up Phase Flat-Top Phase ]

requirements of our problem imply that the system mus 13 1

be completely controllable. Formally, a system is said tt ™ ‘ |

be completely controllable [6] if it can be driven from any g 12r ? - ‘T -

initial statexg to an arbitrary finite terminal statg with an =11f ! >

admissible control. g 4l |
This paper is organized as follows. In Section I, ar § Phase | Phase

infinite-dimensional dynamic model for the evolution of the £ 09 g

poloidal magnetic flux is introduced. The control problem ig %0.8/ 1

stated in Section Ill. In Section IV, we provide the functbn 0.7/ i

setting and necessary technical lemmas that will be usi

in this paper. In Section V, we study the controllability of 0.6 1

a class of systems. The results are used in Section VI 0.5
demonstrate that the current profile system is not complete _

trollable and to show the existence of an unreachal Fig. 2. The control problem focuses on phase | that inclutdesramp-
Con. ro . ) bJ phase and the first part of the flat-top phase. The contral igoto
region. In Section VII, an estimate of the unreachable mgiadrive during the ramp-up phase the magnetic flux profile frome initial
is provided based on data from the DIII-D tokamak. Fina”yarbitrary condition to a predefined target profile at someetimbetween

. . he time window(Ty, T2].

we close the paper by stating the conclusions and future
research issues in Section VIII.

time (s)

The profiles are assumed to remain fixed. The responses to
[I. CURRENT PROFILE EVOLUTION MODEL the actuators are simply scalar multiples of the reference

Let p be an arbitrary coordinate indexing the magneti(E’rOf”eS- These reference profiles are taken from a DIII-D
surface. Any quantity constant on each magnetic surfadgkamak discharge [7].
could be chosen as the variabfe We choose the mean The temperaturde is assumed proportional t%,
geometric radius of the magnetic surface as the varigble and can be written as
i.e., By op? = ®, whered is the toroidal magnetic flux and R It
Byo IS q':he reference toroidal magnetic field R§ (R, can Te(p,t) = kTeTepmf”e(P)%\{?qv ©))
be the geometric center of the plasiRgo). The evolution _
of the poloidal flux in normalized cylindrical coordinates i whereT&""'® has been identified from DIII-D and is given

given by the magnetic diffusion equation [7], in [7], andkre = 1.7295- 101 m3A-lw~%2
=R The non-inductive toroidal current densiflB> is as-
T NP - -B Byo
Qﬂ;J%QTfLGGHmQ—%Hmuﬁﬂi—i,1 | T 0o
0, @,0 = [}
ot LopiF?p 9p op B sumed proportional t% and can be written as
wheren (Te) denotes the plasma resistiviil is the electron - = . 1/2 5/4
temperature,l, = 4 x 107 (H) represents the vacuum <In-B>_, 'prOf"e(A)M )
s m - ; B N|paFJN|par p t 3/2 )
permeabilityp = % denotes the normalized space coordinate $.0 n(t)
(po is the radius of last closed flux surfacé),G,H arep-  where j&%M'° has been identified from DIII-D and is given

dependent geometric factors [B.is the toroidal magnetic in [7], and ki par — 1.2139- 1018 m~9/2A-1/2-5/4,

field, jn; denotes the non-inductive source of current densi ' par

(neutral beam, electron cyclotron, etc.), aad- represents

the average value on a magnetic surface. np.t) = Kef 1 Zef f (5)
We considen(t), | (t), andRq (t) as the physical actuators Te3/2([),t)’

of the system, wheré(t), n(t) and Rq(t) represent the

total plasma current, the line average density and the totéhereZerr = 1.5, andkerr = 4.2702-10°® Om(keV)

power of the non-inductive current drives, respectivelye T ll. CONTROL PROBLEM DESCRIPTION

boundary conditions of (1) are given by
o o y Ry The safety factoq profile depends on the current profile
- =0, == = _°A7|(t), (2) (and vice versa). Thus, many physicists speak interchange-
op p=0 op p=1 2n G p=1 ably of the current profile and theeprofile. Another quantity
During “Phase I” (see Fig. 2), mainly governed by thgelated toq is its inverse, known as the rot.ational tra_msform
ramp-up phase, the plasma current is mostly driven bh¥) = 1/d(). It can be shown that(y) is proportional
induction. In this case, it is possible to decouple the éqoat to th_e total current inside the flux surface represente_d by th
for the evolution of the poloidal flux from the evolution equa Poloidal flux valuey. The safety factog and the rotational
tions for the temperatur@(p,t) and the densityne(p,t). transformi are related and defined as
Highly simplified models for the temperature and non- 1 oy(p,t)
inductive toroidal current density are chosen for this ghas Hp,t) = q(p,t) P T ©)

Y The resistivityn scales with the temperatufig as

3/2.

p=1 M




The constant relationship betwe®randp, p = ¢ ,and Inthe PDE system (12)-(13)(t) is the interior controly(t)

(0 . . ..
the definition of the normalized radius allow us to rewritp (6iS the boundary control andi(t) is the diffusivity control,
as which satisfy the following constraints,

1(p,t) = ow_1 (M) % ={u(t)| 0< Unmin < U(t) < Umax, U CY0, T]},

9P Byopip’ 1

The control objective, as well as the dynamic models V= {V(t) | 0 < Vmin < V(t) < Vimax, vECT[0,T]},  (22)
for current profile evolution, depend on the phases of the ?” = {W(t) | 0 < Wrin < W(t) < Wrax, w € CY[0, T}
discharge (Fig. 2). During “Phase 1,” which is the focus of IV. PRELIMINARIES

this work, the control goal is to drive the current profile
from any arbitrary initial condition to a prescribed target
or desirable profile at some tim€ € (T;,Ty) in the flat- L2(Q) = {f(x)
top phase of the total curreift) evolution. “Phase I” can

be divided into two parts, the ramp-up phase and the early
stage of flattop phase. During “Phase I”, the three actuato|r_§
[(t), n(t) andRq (t) are assumed avallable for current proflle
control. The physical ranges fdi(t), n(t) and Rq(t) a

We define the following functional space

/sz(x)dx<00}. (23)

emma 1 (Young's inequality): Given functions f, ,g €
0,1) and 4 > 0 (u € R), then we have the following
nequallty,

. 1 1 1
given by / fgox < Zi / de+% / Fdx.  (24)
0 < I(t) < i 0 U Jo 0
{ i)/t < dlyex ® . N
’ emma 2 (Dirichlet Poincare’ inequality): Let U be a
_ 13 bounded, connected, open subsetR®¥, and f be aC!
I(MA) < n(t)x10 < SI(MA), ©) function, with f = 0 on the boundargU. Then, there exists
0 < Prin < Rt (t) < Prax- (10) a positive constart, depending only om andU, such that
The lower and upper limits for the line average density in (9) / F2dx < C/ (O f)zdx. (25)
are set to prevent density instabilities and disruptiortee T U N

upper limit is approximately half of the Greenwald limit [8]

resent in the appendix a proof of this lemma.
To accurately reproduce experimental discharges, we must c P PP P

add constraints fok(t) at the initial time of “Phase 1", Lemma 3 (Green’ formulas [9]): Let U = (0,1). Given
; £ a2
It = 0s) = Io. (11) functionsf,§ € C[0,1],
1 Al
It is worth to note that we can rewrite the equation for the / Adz _ df dg dx+ f@ (26)
evolution of the poloidal flux (1) as e o dxdx dx |,
oy 7} L] R
ot P Z5 ( 4(P) [)) +hpu® - (12) V. A PRIORI THEOREM
with boundary conditions Before tackling the controllability properties of the cemt
oY oY profile control problem, we first study a more general class
r AN 0, b =Vv(t), (13)  of control problems. Consider a 1-D parabolic PDE over
p=0 p=1
and initial condition Qr ={(xt)xe Q=[0,1; 0<t<T},
Y(p,0) = Yo(p), (14) which is governed by
where P P P 3
) et Zets 1 = fow) - (f4(x>a—f) +>aXuit),  (27)
fl(p) = k3/2 F" (ﬁ)(T proflle(ﬁ))3/2 (15) i=1
Te uopb 32 with boundary conditions
wit) = ( > (16) 99| _o 92| _o (28)
(D) = H F" profile 17 X |x=0 OX |y
2(P) = —RoHHoPF(A)Kuipar inipar () 1(P)(17) and initial condition
ut) = ??(t)’ (18) ®(x) = ¢(x0), (29)
(®) wherefi(x) >0, f4(x) >0 andg;(x) € L>(Q) (i=1,2,3) are
ks = &#, (19) coefficients, dependent on the spatial coordixdtat not on
21 G’pzl H ’p:]_ the time coordinate, that satisfy
vit) = kl(b), (20) 0 < fimin < f1(X) (30)
fa(p) = FCGH. (21) 0 < famin < f4(%),



and unreachable region

1
/ ?(X)dx=G;i, i =1,2,3. (31) V=V(O(x.0)
° Ve
The control inputsv(t) andu;(t) > 0 are constrained to the /
spaces?” and % respectively, i.e.,

wt)e?, ult)ew, i=123. (32) K/

Let us define V(8)<0 V(8)<0

e
O(xt) = v X5 - (33)
The control objective is to drivéd(x.t) from an arbitrary WHereUima = max(ui(t)), (i=1,2,3), and we choosg =
initial condition 8(x,0) to a desired profilegds, using ~5..=° to attain
feasible control inputsv(t) andui(t) (i=1,2,3). Wb 17 P P
Theorem 4: Assume 6(x,0) € C°(Q) NL?(Q), then the V(G)g—M/ (— <f4(X)—(p>) dx
0

Fig. 3. Diagram of Lyapunov surface wh&t{6:(x,t)) <V(8(x,0)).

system defined by (27)-(33) is not completely controllable 2 : oX oX (38)
in Qr. 1
T , " s : —FLZu-2 g?(x)dx.
Proof: First, we consider a positive-definite quadratic form 2Winin famin &= 7 Jo
V(0) defined as =1

L L JoN 2 By defining f = f4(x )0x’ we use Lemma 2 (Dirichlet
V(e):§||9(xvt)||2:§/o < /—f4(x)a_‘)l(’> dx.  (34) Poincare’ inequality) to write

V(@ Wmnflmn f
Then, we compute the time derivative \6f

50 020 (39)
' = 35
V(o) /0 falx )(9X (9Xﬁtd (35) 2Wmnflmn |max/ gl
By defining f = f4(x )W and ¢ = f‘;—‘t”dx, we can apply There exists a sufficient Iar@(x t), such that
Lemma 3 (Green’ formulas) to (35) to obtain 1
2

V(G):—/a—<f(x)a)atd+f()ata— _ i1

01 X X Xlo (36) makingV(6) <0.

:_/ 9 (4 (X)d(p 99 4 Let Vin = max{V (6c(x,1)),V(8(x,0))}. As shown in Fig.
o ax \ "Vax ) ot 3, for all 8(x,t) outside the Lyapunov surfacé(8:(x,t)),

we haveV (8(x,t)) < 0. This implies that thosé(x,t) that

Taking into account (27), we can write are outside the Lyapunov surfadg, are not reachable

1 9 g\ \2 (Note thatVyy, is a function of the initial conditiorf(x,0)).
V() = —W(t)/ f1(x) ((?_X (f4( ) ax)) dx Consequently, the system is not completely controllabté wi
, 0 . bounded control inputs.
a u.(t)/ gi(x)i (f4(x)a—) dx Corollary 1: Assume8(x,0) € C°(Q) NL*(Q), then the
— 0 ox ox - solution 8(x,t) of the system defined by (27)-(33) satisfies
< w0t [ (2 (10022 )de Vo)~ 3 [ oax<va (41)
= mn Jo\ax \* ax 2 Jo

Proof: This is a direct consequence of the fact that

1 :
—Zui(t)/ gi(X) = (f4(x)‘9_‘p) dx. V(6(x,t)) < 0 outside the Lyapunov surfgcg_ defined by
- 0 V(6(x,t)) =Vm andV (8(x,0)) < Vi (note definition ofVyy).

VI. CONTROLLABILITY OF THE CURRENT
PROFILE CONTROL PROBLEM

The poloidal flux system stated in equations (1)-(2) can
: 179 210 be written in terms of equations (27)-(32). To simplify the
V(0) < Wminflmin/ (ax (f4( )dx)) dx notation, we replac@ by x hereafter. We propose first the
following homogenization transform,

3 1 [t w [ o I,
+;”m<z_m/og‘2(x>dx+7/o <a_x(f4”ax)> X)’ Px1) = ix1) - V(). @2)

2

Next, we definef = gi(x) andg= 2 v (f4( )BX), and apply
Lemma 1 (Young' inequality) to (37) in order to obtain



which satisfies the homogeneous boundary conditions

a0 oy

ax (0= 501 =0 )
2211 = %1 -vity=0

ax(lat)_ ax( ) )_V()_ .

Then, using (12)-(13) and (42)-(43), it is possible to abtai

the following PDE system fop,

(Z—qto = fl(x)w(t)% <f4(x)Z—f> - %xz%/
d(xfa(x))
] + f1(X)dTW(t)V(t) + f2(x)u(t), (44)
@ @
E(Oat) = E(lat) =0,
O(x.0) = ()~ F0) = @(X)
By making

d(xf4(x))

dx s g3(x) = fz(X), (45)

0109 = - 3%, 62() = (¥

and
up(t) = dv/dt, up(t) = w(t)v(t), us(x) = u(t),
we recover (27)-(29).

(46)

Substituting this into (51) results in

1t oo Dm | Ve
= < — 4 & 52
2/0 X719 (%, t)dx < a2t 302 (52)
By defining
1 1
V() == / X212(x,t)dx, (53)
2 Jo
and o 5
\Y;
V= b e 54
| azf4m_n 302’ ( )

the reachable region of the rotational transfor(w,t) is
bounded by the condition

V(1) < V. (55)

Given a desired*(x,t) profile, if V(1*) is larger thar\, we
can conclude that such desired profile is unreachable.
region outside the Lyapunov surface definedgyi (x,t)) =
Vj) cannot be reached by the system. Therefore, the current
profile control problem with bounded actuators is not com-
pletely controllable.

The

VIl. UNREACHABLE ZONE STUDY
In order to prevent a waste of time and resources in present

Taking into account the definition of the rotational transiokamaks, given initial conditions and actuator limitato
form 1(x,t) in (7), which indeed defines the objective of thelt iS of great interest to have the capablllty_ of determ|n|ng
current profile control problem, we can use definitions (33tj1e unreachable region for the current profile evolution not

and (42) to write
B(x,t) = \/Ta(X) (Bpop2XI (X,t) — xv(t)) .

Letting a = ByopZ and h(x) = ax,/f4(x), we can rewrite
(47) as

(47)

0(x,t) = h(x) (1 (x,t) — %v(t)) . (48)
Using Corollary 1, we can write
1 1 2
/O h2(x) <l(x,t)—av(t)> dx < 2V, (49)

Taking into account (30) this equation becomes
1 2
azfmﬂ/ (x: (Xt) — iv(t)) dx< 2Vm.  (50)
0 a
We divide both sides of (50) byr? f4min to obtain

/01 (x: (xt)— gv(t))zdx < 2V

a?famin’
Then, usingLemma 1 (Young' inequality) with u =2, we
can write

/01 (x: (x,t) — 5v(t

p )) dx
1 1
2/ lez(x,t)dx—:—L/ lez(x,t)dx—ivz(tﬂ— =
0 2 Jo
! 1

(51)

VA(t)

302 3a2

1
:5/ X212(x,t)dx— sz(t).

0

only experimentally but also theoretically. Equations )53
(55) actually can be used to estimate the unreachable region
of the system.

In this section, we illustrate the approach through an
example that uses data from the DIII-D tokamak. The con-
straints for the actuators, total plasma currg}, average
densityn(t) and total non-inductive poweR (t), are given
as follows

05x 100 (A) <I(t) < 1.19141x10°(A)
|dI(t)/dt] < 2x1C°(A/s) (56)
I[(t=0)= 0.7092x 10° (A),
I x 10'° (A) < n(t) <51 x 10'° (A), (57)
1x 10° (W) < Rt (t) < 20x 10° (W). (58)
Using (16)-(20) andks = 1.0996x 10/, we have
Wiin = 1.778x 107%,  Winax = 1.18 x 107°,
Vimin = 5.498%x 1072, Vyax = 1.31x 1074, (59)

Umin = 8.40% 1074 Umex = 6.3 % 10°3.

Using this result together with equations (31), (46), ar) (4
we can obtain

Utmin = 2.19x 1071, Gy =5x 1072,
Uzmin = 1.46x 1074, G, =8.9x 1073,
Ugmin = 6.3 x 1073, Gz = 20.4112
According to equations (15), (21) and (71), we can write

fimin = 6.7x 10 %8 f4in=1.8, C=1. (61)

(60)



-02 055 to achieve current profiles that are indeed unreachable for

o 0s the given initial conditions and actuator constraints. Rec
045 ommendations in terms of the control action distribution,
_— o4 i.e. actuator design, arising from the controllability sés
E: = oas may be of enormous importance for the upgrade of present
-0.35 A
03 tokamaks and the construction of new ones.
-0.4
025 APPENDIX
% ez or w5 o 1 %% oz a4 o o5 1 Since the problem is 1-D, we will prove Lemma 2 for
. " . _ , the casen=1. LetU : [a,b], r =b—a and f’:‘j—f. The
Fig. 4. Initial . Fig. 5. Desired profile. X
statement becomes
. . . . b b
By inserting these values in (40) we obtain / F2dx < kr2/ (#/)2dx, (66)
V(6:(x,t)) =0.0224 (62) a a

) _ ) where f is aC! function satisfyingf (a) = f(b) = 0. By the
Let us consider an initial flux profiley(x,0) extracted £ damental Theorem of Calculus we know that
from experimental shot 119556 in DIII-D and shown in

S
Fig. 4. Let us also consider the desiregrofile shown in f(s) = f(s)—f(a) :/ f/(x)dx (67)
Fig. 5. Taking into account thatt = 0) = 0.0779, we use a
equations (33) and (44) to obtafi(x,0), and then Therefore, .
V(8(x,0)) = 0.0229 (63) 1£(s)] S/a [7(x)[dx. (68)

SinceV (6:(x,1)) <V(8(x,0)), we adopVyn=V(6(x,0)). We apply the Cauchy-Schwarz inequality
Taking into account thatr = 1.1546, we use (54) to finally

i 1/2 1/2
achieve / hgdx < < / hde> ( / gzdx) , (69)
V| =0.0234 (64)

. B e .
We compute (53) for the desiradprofile to obtain with h=1, g=|f'| to obtain

V(ldes) =0.0288 (65) |f(S)| < //S(f/)ZdX\/ES //b(f')de~/b—a

SinceV; < V(19%), we can conclude that the desired profile _ . .
198 s not reachable for the given initial condition andSquaring both sides gives

actuator constraints. b
fOP <r [ (1(9)ds (70)
VIIl. CONCLUSIONS AND FUTURE WORKS a
This paper represents the first attempt to study the contraiVe finally integrate ovefa,b| to obtain
lability of the current profile system in tokamak plasmase Th b b
poloidal flux profile evolution is modeled by a parabolic PDE / f2(s)ds < r2/ (f'(s))?ds, (71)
system with bounded actuators. We prove that the system is a a
not completely controllable and we provide an estimate fas requiredK= 1).
the unreachable region.
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