
Controllability Analysis for Current Profile Control in Tok amaks

Yongsheng Ou and Eugenio Schuster

Abstract— The control of the toroidal current density spa-
tial profile in tokamak plasmas will be absolutely critical in
future commercial-grade reactors to enable high fusion gain,
noninductive sustainment of the plasma current for steady-state
operation, and magnetohydrodynamic (MHD) instability-free
performance. Since the actuators that are available to achieve
a predefined desired current profile are constrained by physical
limitations, experiments have shown that some target profiles
may not be achievable for all arbitrary initial conditions. This
clearly defines a controllability problem, where the transport
dynamics of the toroidal current density is governed by a
parabolic partial differential equation with diffusivity -interior-
boundary actuation. We first prove that the system is not
completely controllable and later provide an estimate of the
unreachable region.

I. INTRODUCTION

Fusion is the process by which the sun produces heat and
sunlight. If we can make this process generate energy on
Earth, it will represent a clean and unlimited energy source.
As nuclei have positive charges, they repel each other when
they try to fuse together. To overcome the Coulomb force,
the temperatures of the reactants have to be increased to an
extremely high level (50 to 200 million Kelvin). At such
high temperatures, the hydrogen gas ionizes and becomes a
plasma. The major challenge in fusion is the confinement of
the plasma, where nuclear fusion reactions take place.

One of the most promising magnetic-confinement devices
is the tokamak. Tokamaks bend magnetic field lines into a
torus structure. Charged particles can be confined because
they follow the generated magnetic field lines. Toroidal field
coils and poloidal field coils (See Fig. 1) form helicoidal
endless magnetic field lines trapping the ionized particles
within the torus structure. The magnetic fields produce an
external force (magnetic pressure), which balance the internal
pressure (kinetic pressure) created by the hot gas. It is possi-
ble to use the poloidal component of the helicoidal magnetic
lines to define nested toroidal surfaces corresponding to
constant values of the poloidal magnetic flux. The poloidal
flux ψ at a pointP in the (r,z) cross section of the plasma
(i.e., poloidal cross section) is the total flux through the
surfaceS bounded by the toroidal ring passing throughP,
i.e., ψ = 1

2π
∫

BpoldS. Thus, the poloidal fluxψ can be used
as a spatial coordinate.

The development of current profile controllers in present
experimental tokamaks is aimed at saving long trial-and-error
periods of time currently spent by fusion experimentalists
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Fig. 1. Scheme of a tokamak device. The toroidal field (TF) coils are
wrapped “poloidally” around the torus (the short way, goingthrough the
center hole), while the poloidal field (PF) coils are wrapped“toroidally”
(the long way) around the torus. Current flowing in these conducting coils
produces the helicoidal magnetic field that confines the plasma. The plasma
contained within the device can be represented by a set of nested contours
of constant poloidal magnetic flux.

trying to manually adjust the time evolutions of the actuators
to achieve a desired current profile. The evolution in time
of the current profile is related to the evolution of the
poloidal magnetic flux, which is modeled in normalized
cylindrical coordinates using a partial differential equation
(PDE) usually referred to as the magnetic diffusion equation.
Since the actuators that are used to achieve the desired target
profiles are constrained, experiments have shown that some
of the target profiles may not be achievable for all arbitrary
initial conditions. Therefore, given an initial current profile,
it is desirable to identify in advance those unreachable target
profiles in order to prevent experimentalists from wasting
enormous amounts of effort and time attempting to achieve
them. From the perspective of control, this is clearly a
controllability issue.

Controllability is a fundamental concept in modern control
theory and there are numerous degrees of state and output
controllability that are formally defined in the literature
[1], [2]. As for the controllability of PDE systems, prior
work includes [3], [4], [5]. Using the Hilbert Uniqueness
method, Liu and Williams [3] investigate the problem of
exact controllability through Neumann boundary conditions
for the wave equation and prove that the system is ex-
actly controllable. In [4], Bezerra and Menezes prove the
approximate controllability of a semilinear heat equation,
when the nonlinear term is globally Lipschitz and depends
on both the statex and its spatial gradient∇x. In [5], Lin
and his colleagues discuss the controllability of a nonlinear
degenerate parabolic systems with bilinear control. Based
on the shrinking property of the solutions, they prove that
the system is not globally approximately controllable, give



an approximate null controllability result, and finally prove
that the system is not globally exactly null controllable. The
requirements of our problem imply that the system must
be completely controllable. Formally, a system is said to
be completely controllable [6] if it can be driven from any
initial statex0 to an arbitrary finite terminal statex f with an
admissible control.

This paper is organized as follows. In Section II, an
infinite-dimensional dynamic model for the evolution of the
poloidal magnetic flux is introduced. The control problem is
stated in Section III. In Section IV, we provide the functional
setting and necessary technical lemmas that will be used
in this paper. In Section V, we study the controllability of
a class of systems. The results are used in Section VI to
demonstrate that the current profile system is not completely
controllable and to show the existence of an unreachable
region. In Section VII, an estimate of the unreachable region
is provided based on data from the DIII-D tokamak. Finally,
we close the paper by stating the conclusions and future
research issues in Section VIII.

II. CURRENT PROFILE EVOLUTION MODEL

Let ρ be an arbitrary coordinate indexing the magnetic
surface. Any quantity constant on each magnetic surface
could be chosen as the variableρ . We choose the mean
geometric radius of the magnetic surface as the variableρ ,
i.e., πBφ ,oρ2 = Φ, whereΦ is the toroidal magnetic flux and
Bφ ,o is the reference toroidal magnetic field atRo (Ro can
be the geometric center of the plasmaRgeo). The evolution
of the poloidal flux in normalized cylindrical coordinates is
given by the magnetic diffusion equation [7],

∂ψ
∂ t

=
η(Te)

µoρ2
b F̂2ρ̂

∂
∂ ρ̂

(

F̂ĜĤ
∂ψ
∂ρ̂

)

−RoĤη(Te)
< j̄NI · B̄>

Bφ ,o
, (1)

whereη(Te) denotes the plasma resistivity,Te is the electron
temperature,µo = 4π × 10−7 ( H

m) represents the vacuum
permeability,ρ̂ = ρ

ρb denotes the normalized space coordinate

(ρb is the radius of last closed flux surface),F̂,Ĝ,Ĥ are ρ̂-
dependent geometric factors [7],̄B is the toroidal magnetic
field, j̄NI denotes the non-inductive source of current density
(neutral beam, electron cyclotron, etc.), and<> represents
the average value on a magnetic surface.

We consider ¯n(t), I(t), andPtot(t) as the physical actuators
of the system, whereI(t), n̄(t) and Ptot(t) represent the
total plasma current, the line average density and the total
power of the non-inductive current drives, respectively. The
boundary conditions of (1) are given by

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=0
= 0,

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=1
=

µo

2π
Ro

Ĝ
∣

∣

ρ̂=1 Ĥ
∣

∣

ρ̂=1

I(t). (2)

During “Phase I” (see Fig. 2), mainly governed by the
ramp-up phase, the plasma current is mostly driven by
induction. In this case, it is possible to decouple the equation
for the evolution of the poloidal flux from the evolution equa-
tions for the temperatureTe(ρ̂,t) and the densityne(ρ̂ ,t).
Highly simplified models for the temperature and non-
inductive toroidal current density are chosen for this phase.
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Fig. 2. The control problem focuses on phase I that includes the ramp-
up phase and the first part of the flat-top phase. The control goal is to
drive during the ramp-up phase the magnetic flux profile from some initial
arbitrary condition to a predefined target profile at some time T between
the time window[T1,T2].

The profiles are assumed to remain fixed. The responses to
the actuators are simply scalar multiples of the reference
profiles. These reference profiles are taken from a DIII-D
tokamak discharge [7].

The temperatureTe is assumed proportional toI(t)
√

Ptot
n̄(t) ,

and can be written as

Te(ρ̂ ,t) = kTeT pro f ile
e (ρ̂)

I(t)
√

Ptot

n̄(t)
, (3)

whereT pro f ile
e has been identified from DIII-D and is given

in [7], and kTe = 1.7295·1010 m−3A−1W−1/2.
The non-inductive toroidal current density< j̄NI ·B̄>

Bφ ,o
is as-

sumed proportional toI(t)
1/2Ptot(t)5/4

n̄(t)3/2 , and can be written as

< j̄NI · B̄ >

Bφ ,o
=kNIpar jpro f ile

NIpar (ρ̂)
I(t)1/2Ptot(t)5/4

n̄(t)3/2
, (4)

where jpro f ile
NIpar has been identified from DIII-D and is given

in [7], and kNIpar = 1.2139·1018 m−9/2A−1/2W−5/4.
The resistivityη scales with the temperatureTe as

η(ρ̂ ,t) =
ke f f Ze f f

T 3/2
e (ρ̂ ,t)

, (5)

whereZe f f = 1.5, andke f f = 4.2702·10−8 Ωm(keV)3/2.

III. CONTROL PROBLEM DESCRIPTION

The safety factorq profile depends on the current profile
(and vice versa). Thus, many physicists speak interchange-
ably of the current profile and theq-profile. Another quantity
related toq is its inverse, known as the rotational transform
ι(ψ) = 1/q(ψ). It can be shown thatι(ψ) is proportional
to the total current inside the flux surface represented by the
poloidal flux valueψ . The safety factorq and the rotational
transformι are related and defined as

ι(ρ ,t) =
1

q(ρ ,t)
=

∂ψ(ρ ,t)
∂Φ

. (6)



The constant relationship betweenΦ andρ , ρ =
√

Φ
πBφ ,o

, and

the definition of the normalized radius allow us to rewrite (6)
as

ι(ρ̂ ,t) =
∂ψ
∂ρ̂

1

Bφ ,oρ2
b ρ̂

. (7)

The control objective, as well as the dynamic models
for current profile evolution, depend on the phases of the
discharge (Fig. 2). During “Phase I,” which is the focus of
this work, the control goal is to drive the current profile
from any arbitrary initial condition to a prescribed target
or desirable profile at some timeT ∈ (T1,T2) in the flat-
top phase of the total currentI(t) evolution. “Phase I” can
be divided into two parts, the ramp-up phase and the early
stage of flattop phase. During “Phase I”, the three actuators
I(t), n̄(t) andPtot(t) are assumed available for current profile
control. The physical ranges forI(t), n̄(t) and Ptot(t) are
given by

{

0 ≤ I(t) ≤ Imax

|dI(t)/dt| ≤ dImax,
(8)

I(MA) ≤ n̄(t)×10−13 ≤ 5I(MA), (9)

0 < Pmin ≤ Ptot(t) ≤ Pmax. (10)

The lower and upper limits for the line average density in (9)
are set to prevent density instabilities and disruptions. The
upper limit is approximately half of the Greenwald limit [8].
To accurately reproduce experimental discharges, we must
add constraints forI(t) at the initial time of “Phase I”, i.e.,

I(t = 0s) = I0. (11)

It is worth to note that we can rewrite the equation for the
evolution of the poloidal flux (1) as

∂ψ
∂ t

= f1(ρ̂)w(t)
∂

∂ ρ̂

(

f4(ρ̂)
∂ψ
∂ρ̂

)

+ f2(ρ̂)u(t) (12)

with boundary conditions

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=0
= 0,

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=1
= v(t), (13)

and initial condition

ψ(ρ̂ ,0) = ψ0(ρ̂), (14)

where

f1(ρ̂) =
ke f f Ze f f

k3/2
Te µoρ2

b ρ̂
1

F̂2(ρ̂)(T pro f ile
e (ρ̂))3/2

, (15)

w(t) =

(

n̄(t)

I(t)
√

Ptot

)3/2

, (16)

f2(ρ̂) = −RoĤµoρ2
b F̂2(ρ̂)kNIpar jpro f ile

NIpar (ρ̂) f1(ρ̂),(17)

u(t) =

√

Ptot(t)

I(t)
, (18)

k3 =
µo

2π
Ro

Ĝ
∣

∣

ρ̂=1 Ĥ
∣

∣

ρ̂=1

, (19)

v(t) = k3I(t), (20)

f4(ρ̂) = F̂ĜĤ. (21)

In the PDE system (12)-(13),u(t) is the interior control,v(t)
is the boundary control andw(t) is the diffusivity control,
which satisfy the following constraints,

U = {u(t) | 0 < umin ≤ u(t) ≤ umax, u ∈C1[0,T ]},
V = {v(t) | 0 < vmin ≤ v(t) ≤ vmax, v ∈C1[0,T ]},
W = {w(t) | 0 < wmin ≤ w(t) ≤ wmax, w ∈C1[0,T ]}.

(22)

IV. PRELIMINARIES

We define the following functional space

L2(Ω) =

{

f (x)

∣

∣

∣

∣

∫

Ω
f 2(x)dx < ∞

}

. (23)

Lemma 1 (Young’s inequality): Given functions f̄ , ḡ ∈
L2(0,1) and µ > 0 (µ ∈ R), then we have the following
inequality,

∫ 1

0
f̄ ḡdx ≤ 1

2µ

∫ 1

0
f̄ 2dx +

µ
2

∫ 1

0
ḡ2dx. (24)

Lemma 2 (Dirichlet Poincare’ inequality): Let U be a
bounded, connected, open subset ofR

n, and f̃ be a C1

function, with f̃ = 0 on the boundary∂U . Then, there exists
a positive constantC, depending only onn andU , such that

∫

U
f̃ 2dx ≤C

∫

U
(∇ f̃ )2dx. (25)

We present in the appendix a proof of this lemma.

Lemma 3 (Green’ formulas [9]): Let U = (0,1). Given
functions f̂ , ĝ ∈C2[0,1],

∫ 1

0
f̂

d2ĝ
dx2 dx = −

∫ 1

0

d f̂
dx

dĝ
dx

dx + f̂
dĝ
dx

∣

∣

∣

∣

1

0
. (26)

V. A PRIORI THEOREM

Before tackling the controllability properties of the current
profile control problem, we first study a more general class
of control problems. Consider a 1-D parabolic PDE over

ΩT = {(x,t)|x ∈ Ω = [0,1]; 0≤ t ≤ T},
which is governed by

∂φ
∂ t

= f1(x)w(t)
∂
∂x

(

f4(x)
∂φ
∂x

)

+

3
∑

i=1

gi(x)ui(t), (27)

with boundary conditions

∂φ
∂x

∣

∣

∣

∣

x=0
= 0,

∂φ
∂x

∣

∣

∣

∣

x=1
= 0, (28)

and initial condition

φ0(x) = φ(x,0), (29)

where f1(x) > 0, f4(x) > 0 andgi(x)∈ L2(Ω) (i = 1,2,3) are
coefficients, dependent on the spatial coordinatex but not on
the time coordinatet, that satisfy

{

0 < f1min ≤ f1(x)
0 < f4min ≤ f4(x),

(30)



and
∫ 1

0
g2

i (x)dx = Gi, i = 1,2,3. (31)

The control inputsw(t) andui(t) > 0 are constrained to the
spacesW andU respectively, i.e.,

w(t) ∈ W , ui(t) ∈ U , i = 1,2,3. (32)

Let us define

θ (x,t) =
√

f4(x)
∂φ
∂x

. (33)

The control objective is to driveθ (x,t) from an arbitrary
initial condition θ (x,0) to a desired profileθ des, using
feasible control inputsw(t) andui(t) (i = 1,2,3).

Theorem 4: Assume θ (x,0) ∈ C0(Ω) ∩ L2(Ω), then the
system defined by (27)-(33) is not completely controllable
in ΩT .

Proof: First, we consider a positive-definite quadratic form
V (θ ) defined as

V (θ ) =
1
2
||θ (x,t)||2 =

1
2

∫ 1

0

(

√

f4(x)
∂φ
∂x

)2

dx. (34)

Then, we compute the time derivative ofV ,

V̇ (θ ) =

∫ 1

0
f4(x)

∂φ
∂x

∂ 2φ
∂x∂ t

dx. (35)

By defining f̂ = f4(x)
∂φ
∂x and ĝ =

∫ ∂φ
∂ t dx, we can apply

Lemma 3 (Green’ formulas) to (35) to obtain

V̇ (θ ) =−
∫ 1

0

∂
∂x

(

f4(x)
∂φ
∂x

)

∂φ
∂ t

dx + f4(x)
∂φ
∂ t

∂φ
∂x

∣

∣

∣

∣

1

0

=−
∫ 1

0

∂
∂x

(

f4(x)
∂φ
∂x

)

∂φ
∂ t

dx.

(36)

Taking into account (27), we can write

V̇ (θ ) =−w(t)
∫ 1

0
f1(x)

(

∂
∂x

(

f4(x)
∂φ
∂x

))2

dx

−
3
∑

i=1

ui(t)
∫ 1

0
gi(x)

∂
∂x

(

f4(x)
∂φ
∂x

)

dx

≤−w(t) f1min

∫ 1

0

(

∂
∂x

(

f4(x)
∂φ
∂x

))2

dx

−
3
∑

i=1

ui(t)
∫ 1

0
gi(x)

∂
∂x

(

f4(x)
∂φ
∂x

)

dx.

(37)

Next, we definef̄ = gi(x) and ḡ = ∂
∂x

(

f4(x)
∂φ
∂x

)

, and apply
Lemma 1 (Young’ inequality) to (37) in order to obtain

V̇ (θ ) ≤−wmin f1min

∫ 1

0

(

∂
∂x

(

f4(x)
∂φ
∂x

))2

dx

+
3
∑

i=1

uimax

(

1
2µi

∫ 1

0
g2

i (x)dx +
µi

2

∫ 1

0

(

∂
∂x

(

f4(x)
∂φ
∂x

))2

dx

)

,

θV(  (x,t))c

θ

unreachable region

V =V(  (x,0))m θ

θθ
.

V(  )<0
.

V(  )<0 θ

Fig. 3. Diagram of Lyapunov surface whenV (θc(x,t)) < V (θ (x,0)).

whereuimax = max(ui(t)), (i = 1,2,3), and we chooseµi =
wmin f1min

3uimax
to attain

V̇ (θ ) ≤− wmin f1min

2

∫ 1

0

(

∂
∂x

(

f4(x)
∂φ
∂x

))2

dx

+
3

2wmin f1min

3
∑

i=1

u2
imax

∫ 1

0
g2

i (x)dx.

(38)

By defining f̃ = f4(x)
∂φ
∂x , we use Lemma 2 (Dirichlet

Poincare’ inequality) to write

V̇ (θ ) ≤− wmin f1min

2C

∫ 1

0
f4(x)θ 2(x,t)dx

+
3

2wmin f1min

3
∑

i=1

u2
imax

∫ 1

0
g2

i (x)dx.

(39)

There exists a sufficient largeθc(x,t), such that
∫ 1

0
θ 2

c (x,t)dx =
3C

w2
min f 2

1min f4min

3
∑

i=1

u2
imaxGi, (40)

makingV̇ (θ ) ≤ 0.
Let Vm = max{V (θc(x,t)),V (θ (x,0))}. As shown in Fig.

3, for all θ (x,t) outside the Lyapunov surfaceV (θc(x,t)),
we haveV̇ (θ (x,t)) < 0. This implies that thoseθ (x,t) that
are outside the Lyapunov surfaceVm are not reachable
(Note thatVm is a function of the initial conditionθ (x,0)).
Consequently, the system is not completely controllable with
bounded control inputs.

Corollary 1: Assumeθ (x,0) ∈ C0(Ω)∩ L2(Ω), then the
solutionθ (x,t) of the system defined by (27)-(33) satisfies

V (θ ) =
1
2

∫ 1

0
θ 2(x,t)dx ≤Vm (41)

Proof: This is a direct consequence of the fact that
V̇ (θ (x,t)) < 0 outside the Lyapunov surface defined by
V (θ (x,t)) = Vm andV (θ (x,0))≤Vm (note definition ofVm).

VI. CONTROLLABILITY OF THE CURRENT
PROFILE CONTROL PROBLEM

The poloidal flux system stated in equations (1)-(2) can
be written in terms of equations (27)-(32). To simplify the
notation, we replacêρ by x hereafter. We propose first the
following homogenization transform,

φ(x,t) = ψ(x,t)− 1
2

x2v(t), (42)



which satisfies the homogeneous boundary conditions

∂φ
∂x

(0,t) =
∂ψ
∂x

(0,t) = 0

∂φ
∂x

(1,t) =
∂ψ
∂x

(1,t)− v(t) = 0.

(43)

Then, using (12)-(13) and (42)-(43), it is possible to obtain
the following PDE system forφ ,















































∂φ
∂ t

= f1(x)w(t)
∂
∂x

(

f4(x)
∂φ
∂x

)

− 1
2

x2 dv
dt

+ f1(x)
d(x f4(x))

dx
w(t)v(t)+ f2(x)u(t),

∂φ
∂x

(0,t) =
∂φ
∂x

(1,t) = 0,

φ(x,0) = ψ0(x)−
1
2

x2v(0) ≡ φ0(x).

(44)

By making

g1(x) =−1
2

x2, g2(x) = f1(x)
d(x f4(x))

dx
, g3(x) = f2(x), (45)

and

u1(t) = dv/dt, u2(t) = w(t)v(t), u3(x) = u(t), (46)

we recover (27)-(29).
Taking into account the definition of the rotational trans-

form ι(x,t) in (7), which indeed defines the objective of the
current profile control problem, we can use definitions (33)
and (42) to write

θ (x,t) =
√

f4(x)
(

Bφ ,oρ2
b xι(x,t)− xv(t)

)

. (47)

Letting α = Bφ ,oρ2
b and h(x) = αx

√

f4(x), we can rewrite
(47) as

θ (x,t) = h(x)

(

ι(x,t)− 1
α

v(t)

)

. (48)

Using Corollary 1, we can write
∫ 1

0
h2(x)

(

ι(x,t)− 1
α

v(t)

)2

dx ≤ 2Vm. (49)

Taking into account (30) this equation becomes

α2 f4min

∫ 1

0

(

xι(x,t)− x
α

v(t)
)2

dx ≤ 2Vm. (50)

We divide both sides of (50) byα2 f4min to obtain
∫ 1

0

(

xι(x,t)− x
α

v(t)
)2

dx ≤ 2Vm

α2 f4min
. (51)

Then, usingLemma 1 (Young’ inequality) with µ = 2, we
can write
∫ 1

0

(

xι(x,t)− x
α

v(t)
)2

dx

≥
∫ 1

0
x2ι2(x,t)dx− 1

2

∫ 1

0
x2ι2(x,t)dx− 2

3α2 v2(t)+
1

3α2 v2(t)

=
1
2

∫ 1

0
x2ι2(x,t)dx− 1

3α2 v2(t).

Substituting this into (51) results in

1
2

∫ 1

0
x2ι2(x,t)dx ≤ 2Vm

α2 f4min
+

v2
max

3α2 . (52)

By defining

V (ι) =
1
2

∫ 1

0
x2ι2(x,t)dx, (53)

and

Vl =
2Vm

α2 f4min
+

v2
max

3α2 , (54)

the reachable region of the rotational transformι(x,t) is
bounded by the condition

V (ι) ≤Vl. (55)

Given a desiredι∗(x,t) profile, if V (ι∗) is larger thanVl , we
can conclude that such desired profile is unreachable. The
region outside the Lyapunov surface defined by(V (ι(x,t)) =
Vl) cannot be reached by the system. Therefore, the current
profile control problem with bounded actuators is not com-
pletely controllable.

VII. UNREACHABLE ZONE STUDY

In order to prevent a waste of time and resources in present
tokamaks, given initial conditions and actuator limitations,
it is of great interest to have the capability of determining
the unreachable region for the current profile evolution not
only experimentally but also theoretically. Equations (53)-
(55) actually can be used to estimate the unreachable region
of the system.

In this section, we illustrate the approach through an
example that uses data from the DIII-D tokamak. The con-
straints for the actuators, total plasma currentI(t), average
densityn̄(t) and total non-inductive powerPtot(t), are given
as follows







0.5×106 (A) ≤ I(t) ≤ 1.19141×106 (A)
|dI(t)/dt| ≤ 2×106 (A/s)

I(t = 0) = 0.7092×106 (A),
(56)

I×1019 (A) ≤ n̄(t) ≤ 5I×1019 (A), (57)

1×106 (W) ≤ Ptot(t) ≤ 20×106 (W). (58)

Using (16)-(20) andk3 = 1.0996×10−7, we have

wmin = 1.778×1023, wmax = 1.18×1025,
vmin = 5.498×10−2, vmax = 1.31×10−1,
umin = 8.40×10−4, umax = 6.3×10−3.

(59)

Using this result together with equations (31), (46), and (45),
we can obtain

u1min = 2.19×10−1, G1 = 5×10−2,

u2min = 1.46×1024, G2 = 8.9×10−39,

u3min = 6.3×10−3, G3 = 20.4112.

(60)

According to equations (15), (21) and (71), we can write

f1min = 6.7×10−18, f4min = 1.8, C = 1. (61)
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By inserting these values in (40) we obtain

V (θc(x,t)) = 0.0224. (62)

Let us consider an initial flux profileψ(x,0) extracted
from experimental shot 119556 in DIII-D and shown in
Fig. 4. Let us also consider the desiredι profile shown in
Fig. 5. Taking into account thatv(t = 0) = 0.0779, we use
equations (33) and (44) to obtainθ (x,0), and then

V (θ (x,0)) = 0.0229. (63)

SinceV (θc(x,t)) < V (θ (x,0)), we adoptVm = V (θ (x,0)).
Taking into account thatα = 1.1546, we use (54) to finally
achieve

Vl = 0.0234. (64)

We compute (53) for the desiredι profile to obtain

V (ιdes) = 0.0288. (65)

SinceVl < V (ιdes), we can conclude that the desired profile
ιdes is not reachable for the given initial condition and
actuator constraints.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper represents the first attempt to study the control-
lability of the current profile system in tokamak plasmas. The
poloidal flux profile evolution is modeled by a parabolic PDE
system with bounded actuators. We prove that the system is
not completely controllable and we provide an estimate for
the unreachable region.

This just initiated research effort is far from being finished.
The results presented in this paper provide only an estimate
for the unreachable region, which is in addition quite conser-
vative. The definition of a reachable region, although more
challenging, is probably of more interest. To achieve this goal
the controllability analysis will need to be carried out over
a finite-time horizon, since the reachable region in this case
may be much smaller than in the infinite-time horizon case.
Future work will also focus on reducing the conservatism
in the reachable region estimate. For instance, the effect on
controllability of the spatial distribution of the controlaction
(given by thegi(x)’s terms) needs to be better accounted for.
Two control inputs with the same power but different spatial
distributions can impact the size and shape of the reachable
zone in very different ways.

This work aims at preventing fusion experimentalists from
wasting enormous amounts of effort and time attempting

to achieve current profiles that are indeed unreachable for
the given initial conditions and actuator constraints. Rec-
ommendations in terms of the control action distribution,
i.e. actuator design, arising from the controllability analysis
may be of enormous importance for the upgrade of present
tokamaks and the construction of new ones.

APPENDIX

Since the problem is 1-D, we will prove Lemma 2 for
the casen = 1. Let U : [a,b], r = b− a and f ′ = d f

dx . The
statement becomes

∫ b

a
f 2dx ≤ kr2

∫ b

a
( f ′)2dx, (66)

where f is aC1 function satisfyingf (a) = f (b) = 0. By the
Fundamental Theorem of Calculus we know that

f (s) = f (s)− f (a) =

∫ s

a
f ′(x)dx (67)

Therefore,

| f (s)| ≤
∫ s

a
| f ′(x)|dx. (68)

We apply the Cauchy-Schwarz inequality
∫

hgdx ≤
(
∫

h2dx

)1/2(∫

g2dx

)1/2

, (69)

with h = 1, g = | f ′| to obtain

| f (s)| ≤
√

∫ s

a
( f ′)2dx

√
s−a ≤

√

∫ b

a
( f ′)2dx

√
b−a.

Squaring both sides gives

| f (s)|2 ≤ r
∫ b

a
( f ′(s))2ds. (70)

We finally integrate over[a,b] to obtain
∫ b

a
f 2(s)ds ≤ r2

∫ b

a
( f ′(s))2ds, (71)

as required (k = 1).
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