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Abstract— In this paper, we study an optimal control problem
arising in plasma transport which is governed by a singularly
perturbed system. Time-scale separation allows us to focus
on an uncoupled parabolic PDE with diffusivity–interior–
boundary actuation. We prove the existence of the optimal
control solution and carry out numerical experiments using
sequential quadratic programming (SQP).

I. I NTRODUCTION

Plasma, typically an ionized gas with free electrons, is
considered to be a distinct state of matter because of its
unique properties. The free electrical charges, without attach-
ment to any atom, make the plasma electrically conductive
so that it responds strongly to electromagnetic fields. Plasma
transport studies the behaviors of physical variables suchas
plasma density, temperature and current (which is related to
the magnetic flux), where multi–scale dynamics are common
phenomena (see, e.g., [1], [2]).

We consider a simplified plasma transport model with 1D
Eulerian geometry. The variations of the plasma temperature
T and magnetic fluxψ are governed by the following system
of coupled partial differential equations (t > 0 and0 < x <

1) (see, e.g., Chapter VI and Chapter VII in [3]):

ε
∂T

∂t
=

∂

∂x

{

D (T, ψ)
∂T

∂x

}

+ Γ(T, ψ) + ST (x, t), (1)

∂ψ

∂t
=

∂

∂x

(

η(T )
∂ψ

∂x

)

+ f(x)v(t), (2)

where ε is a small scale constant.D(T, ψ) is the energy
transport coefficient, the nonlinear functionΓ(T, ψ) repre-
sents Joule heating, andST (x, t) represents any external
heating source, which can be used to shape the temperature
profile. The nonlinear functionη(T ) is the magnetic diffusion
coefficient and is dependent on the temperature profile,f(x)
is the (positive) input function with respect to the interior
control v(t). In this simplified transport model (1)–(2), the
contributions due to electron–ion energy exchange, radiation
and excitation losses have been neglected.

The initial and boundary conditions for the transport model
(1)–(2) are specified by

T (x, 0) = T0(x), ψ(x, 0) = ψ0(x), x ∈ [0, 1],

∂T (0, t)

∂x
=
∂ψ(0, t)

∂x
= 0, T (1, t) = ς,

∂ψ(1, t)

∂x
= w(t),
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whereT0 andψ0 are known positive continuous functions
defined on[0, 1] which are compatible with the boundary
conditions,ς is a small known constant, andw(t) is a bound-
ary control of the system through the right–end Neumann
condition.

For some plasma transport processes in fusion tokamaks, it
is possible to assume that the temperature takes an spatial–
temporal separation form, i.e.,η (x, t) = γ(x)u(t), where
γ(x) is a known spatial function which is identified from
experimental data, andu(t) is a continuous temporal function
which depends on the dynamics of the temperature. Dynamic
systems with two distinct time scales are referred to as
singularly perturbed systems [4]. This is the case for system
(1)-(2), where the scale parameter is very small, i.e.,ε≪ 1.
Therefore, since the dynamics of the temperature is much
faster than that of the magnetic flux, we can consider the
function u(t) as a diffusivity control that could be used to
shape the magnetic flux profile.

Taking into account the multiple scales of the problem,
we can decouple the transport equations (1)–(2) using a
singular perturbation approach. Thus, we define a control
problem for a parabolic PDE (magnetic flux transport) with
diffusivity–interior–boundary actuation. In controlledfusion
experiments, it has been proved very important to achieve
specific magnetic flux profiles to enhance confinement and
steady-state operation. By using physical actuation mecha-
nisms such as external heating sources, non-inductive current
drives (neutral beams or radiofrequency waves), and total
plasma current, we can indeed achieve independent diffusiv-
ity, interior and boundary actuation. This is a novel control
problem arising in the field of plasma physics and controlled
fusion.

In this paper, we consider an optimal control problem for
the decoupled magnetic flux transport dynamics and study
the existence of its solution as well as its numerical compu-
tation. We organize this paper as follows. In Section II, we
present the mathematical model and formulate the optimal
control problem. In Section III, we give the functional setting
and necessary technical lemmas which are used for the
proofs in this paper. In Section IV, we study the solution
bound estimates which are used to show the existence of the
optimal control in Section V. In Section VI, we summarize
the foundation of PDE-based optimization and sequential
quadratic programming (SQP), which is a powerful method
to find the numerical solution for the optimal control problem
proposed in the paper. We carry out numerical experiments
and show the results in Section VII. We close the paper by
stating the conclusions and research issues in Section VIII.



II. STATEMENT OF CONTROL PROBLEM

Taking into account the spatial–temporal separation form
η(x, t) = γ(x)u(t) and the singularity (ε → 0) of the
energy transport equation (1), we rewrite the PDE (2) over
the domainQT = {(x, t)|x ∈ Ω = [0, 1]; 0 ≤ t ≤ T } as























∂ψ

∂t
=

∂

∂x

(

γ(x)u(t)
∂ψ

∂x

)

+ f(x)v(t),

∂ψ

∂x
(0, t) = 0,

∂ψ

∂x
(1, t) = w(t),

ψ(x, 0) = ψ0(x),

(3)

whereψ(x, t) is the state variable, andγ(x), f(x) are posi-
tive geometry parameters. The initial distribution of the state
is denoted byψ0(x). The three control functionsu(t), v(t)
and w(t) represent the diffusivity, interior and (Neumann)
boundary control, respectively, which satisfy the following
constraints:

U = {u(t)|0 < Lu ≤ u(t) ≤ Uu, u ∈ C1[0, T ]}, (4)

V = {v(t)|0 < Lv ≤ v(t) ≤ Uv, v ∈ C1[0, T ]}, (5)

W = {w(t)|0 < Lw ≤ w(t) ≤ Uw, w ∈ C1[0, T ]}, (6)

whereL(·) andU(·) are physical lower and upper bounds,
respectively. The control goal can be stated as the following
optimization problem:

min
u∈U ,v∈V,w∈W

J(u, v, w)

=
1

2

∫ T

0

[

θuu
2(t) + θvv

2(t) + θww
2(t)

]

dt

+
1

2

∫

Ω

θψ
∣

∣ψ(x, T ) − ψd(x)
∣

∣

2
dx,

(7)

where θ(·) are weighting factors andψd(x) is the desired
profile at t = T .

III. F UNCTIONAL SETTINGS AND TECHNICAL LEMMAS

We define the following functional spaces

L2(Ω) =

{

f

∣

∣

∣

∣

∫

Ω

|f |2dx <∞

}

(8)

H2(Ω) = {f |f ∈ L2(Ω) andf ′ ∈ L2(Ω)} (9)

and denote their dual spaces [5] as
(

L2(Ω)
)′

and
(

H2(Ω)
)′

,
respectively. It is known in functional analysis thatL2(Ω)
is self reflexive, i.e.,L2(Ω) =

(

L2(Ω)
)′
. In the definitions

(8)–(9), we can find that for anyf ∈ H2(Ω), it satisfies
f ∈ L2(Ω). Therefore, we have the embedding (inclusion)
relationH2(Ω) ⊂ L2(Ω). The dual representation of this
embedding (inclusion) relation is

(

L2(Ω)
)′

⊂
(

H2(Ω)
)′

.
Then we use the self reflexivity propertyL2(Ω) =

(

L2(Ω)
)′

,
to connect these two inclusions and obtain the famous
Gelfand triple [5]: H2(Ω) →֒ L2(Ω) =

(

L2(Ω)
)′

→֒
(

H2(Ω)
)′
, where the notation֒→ represents embedding (it

roughly means inclusion). All the embeddings in the Gelfand
triple are continuous, dense and compact. We introduce the
functional space

Ξ=

{

ξ ∈ L2(0, T ;H2(Ω));
∂ξ

∂t
∈L2(0, T ;

(

H2(Ω)
)′

)

}

(10)

endowed with the norm

‖ξ‖Ξ = ‖ξ‖L2(0,T ;H2(Ω)) + ‖ξ̇‖L2(0,T ;(H2(Ω))′). (11)

Lemma 1: Ξ is a Banach space. Everyξ ∈ Ξ is continuous
almost everywhere (a.e.) on[0, T ] with values inL2(Ω). The
embeddingΞ →֒ L2(0, T ;L2(Ω)) is compact.

Lemma 2 (Poincare Inequality [6]): For all ξ ∈ C1(Ω),
the following inequality holds for any subset[0, r] = Br ⊂
Ω:

∫

Br

(ξ − ξ)2dx ≤ C

∫

Br

|∇ξ|2dx, (12)

whereC is a positive constant and

ξ =
1

Vol(Br)

∫

Br

ξ(x)dx, (13)

whereVol(Br) represents the volume ofBr.

Lemma 3 (Fatou’s Lemma [6]): If {ξn} is a sequence of
nonnegative measurable functions onΩ, then

∫

Ω

lim inf
n→∞

ξndx ≤ lim inf
n→∞

∫

Ω

ξndx. (14)

Lemma 4 (Cauchy’s inequality [6]): Given functions
f, g ∈ L2(0, 1) and µ > 0, then we have the following
inequality:

∫ 1

0

fgdx ≤
1

2µ

∫ 1

0

f2dx+
µ

2

∫ 1

0

g2dx. (15)

IV. A PRIORI ESTIMATES

We note that the solution of the PDE (3) depends on all
the given control functionsu, v, w and also on the initial
distributionψ0(x). In this section, we will give some bounds
estimates (a priori estimates) for the solution of the PDE
system (3). Noting that the a priori bound estimate problem
is different from a control design problem where the control
functions are to be determined, we assume that the control
functions are given to study the dynamics of the solutions.
We first propose the following homogenization transform,
wherew(t) is given such thatw ∈ W :

Ψ(x, t) = ψ(x, t) −
1

2
x2w(t), (16)

which satisfies the homogeneous boundary conditions:

∂Ψ

∂x
(0, t) =

∂ψ

∂x
(0, t) = 0, (17)

∂Ψ

∂x
(1, t) =

∂ψ

∂x
(1, t) − w(t) = 0. (18)

Then, using (3) and (16)–(18), it is readily to obtain the
following PDE for Ψ:














































∂Ψ

∂t
=

∂

∂x

(

γ(x)u(t)
∂Ψ

∂x

)

−
1

2
x2 dw

dt

+

(

x
dγ(x)

dx
+ γ(x)

)

u(t)w(t) + f(x)v(t),

∂Ψ

∂x
(0, t) =

∂Ψ

∂x
(1, t) = 0,

Ψ(x, 0) = ψ0(x) −
1

2
x2w(0) = Ψ0(x).

(19)



Theorem 5: We assumeγ ∈ C1(Ω) ∩ L2(Ω), and f ∈
L2(Ω), then for anyu ∈ U , v ∈ V andw ∈ W , the solution
Ψ(x, t;u, v, w) of (19) exists and satisfies the bound estimate

∫

QT

(

|Ψ|
2

+

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K1, (20)

whereK1 is constant and independent of the control func-
tions u, v, w.

Proof: Existence and uniqueness of solution can be
proved by following the literature, e.g., [6]. It remains to
us to give a bound estimate.

Step 1. We multiply both sides of the PDE (19) byΨ and
integrate overQt = {(x, τ)|x ∈ Ω = [0, 1]; 0 ≤ τ ≤ t ≤ T },

1

2

∫

Qt

∂Ψ2

∂τ
dxdτ =

1

2

∫

Ω

Ψ2(x, t)dx −
1

2

∫

Ω

Ψ2(x, 0)dx

= −

∫

Qt

γ(x)u(τ)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdτ +

∫

Qt

f(x)v(τ)Ψdxdτ

+

∫

Qt

[(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) −
x2

2

dw

dτ

]

Ψdxdτ.

(21)

We use Cauchy inequality (Lemma 4) for the last two terms
in (21), then we can rewrite (21) as

∫

Ω

Ψ2(x, t)dx + 2

∫

Qt

γ(x)u(τ)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdτ

≤ C0 +
2

µ

∫

Qt

Ψ2dxdτ,

(22)

where

C0 = µ

∫

Qt

∣

∣

∣

∣

(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) −
x2

2

dw

dτ

∣

∣

∣

∣

2

dxdτ

+ µ

∫

Qt

(fv)2dxdτ +

∫

Ω

Ψ2(x, 0)dx.

Defining the average value (|Ω| = length ofΩ)

Ψ =
1

|Ω|T

∫

QT

Ψ(x, t)dxdt, (23)

whereT represents the length of the time interval[0, T ], we
can use Poincare inequality (Lemma 2) to obtain
∫

QT

Ψ2dxdt ≤

∫

QT

∣

∣Ψ − Ψ
∣

∣

2
dxdt+

∫

QT

Ψ
2
dxdt

≤ C1

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+

∫

QT

Ψ
2
dxdt,

(24)

whereC1 is a positive constant.
Step 2. To obtain an estimate for the term

∫

QT

Ψ
2
dxdt,

we integrate the PDE (19) overQt,
∫

Ω

Ψ(x, t)dx−

∫

Ω

Ψ(x, 0)dx = −

∫

Qt

1

2
x2 dw

dτ
dxdτ

+

∫

Qt

[(

x
dγ(x)

dx
+ γ(x)

)

u(τ)w(τ) + f(x)v(τ)

]

dxdt

≤ C2, (25)

where

C2 = max
t

{

w(0) − w(t)

6
, 0

}

+

∣

∣

∣

∣

γ(1) −

∫ 1

0

γ(x)dx

∣

∣

∣

∣

∫ T

0

u(τ)w(τ)dτ

+

∫

Ω

γ(x)dx

∫ T

0

u(τ)w(τ)dτ +

∫

QT

f(x)v(τ)dxdτ.

Then, we integrate
∫

Ω
Ψ(x, t)dx from 0 to t,

∫

Qt

Ψ(x, τ)dxdτ ≤

(

C2 +

∫

Ω

|Ψ0(x)|dx

)

t ≤ C3T, (26)

whereC3 := C2 +
∫

Ω
|Ψ0(x)|dx. Taking into account the

definition of the mean value overQT (23), we can rewrite
(26) to obtain

Ψ =
1

|ΩT |

∫

QT

Ψ(x, τ)dxdτ ≤
C3

|Ω|
, (27)

which makes (24) become
∫

QT

Ψ2dxdt ≤ C1

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+
C2

3T

|Ω|
. (28)

Now we can use (28) to update the bound in (22)
∫

Ω

Ψ2(x, t)dx + 2

∫

QT

γ(x)u(t)

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt

≤ C0 +
2C1

µ

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt+
2C2

3T

µ|Ω|
.

(29)

We note that the continuous coefficientγ(x)u(t) in (29) can
be bounded from below, i.e.,infx,t [γ(x)u(t)] ≤ γ(x)u(t).
Then, (29) becomes

sup
t

∫

Ω

Ψ2(x, t)dx

+ 2 inf
x,t

[

γ(x)u(t) −
C2

µ

]
∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt ≤ C4,

(30)

whereC4 = C0 +
2C2

3
T

µ|Ω| . We can chooseµ large enough in
(22) when using Cauchy’s inequality and make

inf
x,t

[

γ(x)u(t) −
C2

µ

]

≥ 0. (31)

Step 3. We multiply both sides of the PDE (19) by∂Ψ
∂t

,
integrate overQT , and apply Cauchy inequality to obtain
∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

2

∫

QT

γ(x)u(t)
∂

∂t

(

∂Ψ

∂x

)2

dxdt

=

∫

QT

F (x, t)
∂Ψ

∂t
dxdt

≤
µ

2

∫

QT

F 2(x, t)dxdt +
1

2µ

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt

(32)

where

F (x, t) = −
1

2
x2 dw

dt
+

(

x
dγ(x)

dx
+ γ(x)

)

u(t)w(t)+f(x)v(t).



Then (32) becomes

(

2 −
1

µ

)
∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt

+ inf
x,t

[γ(x)u(t)]

∫

Ω

∣

∣

∣

∣

∂Ψ(x, T )

∂x

∣

∣

∣

∣

2

dx ≤ C5,

(33)

where

C5=µ

∫

QT

F 2(x, t)dxdt + inf
x,t

[γ(x)u(t)]

∫

Ω

∣

∣

∣

∣

∂Ψ(x, 0)

∂x

∣

∣

∣

∣

2

dx.

Combining estimates (30) and (33), we can find that‖Ψ‖2,
‖∂Ψ
∂x

‖2 and ‖∂Ψ
∂t

‖2 can be bounded by certain positive
numbers. Therefore, there must exist a positive constantK1

to satisfy the following estimate

∫

QT

(

|Ψ|
2

+

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K1. (34)

Corollary 6: We assumeγ ∈ C1(Ω) ∩ L2(Ω), and f ∈
L2(Ω), then for anyu ∈ U , v ∈ V andw ∈ W , the solution
ψ(x, t;u, v, w) of (3) exists and satisfies the following bound
estimate

∫

QT

(

|ψ|2 +

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ψ

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K2, (35)

whereK2 is a constant.
Proof: Taking into account that

ψ(x, t) = Ψ(x, t) +
1

2
x2w(t), (36)

∂ψ

∂x
(x, t) =

∂Ψ

∂x
(x, t) + xw(t), (37)

∂ψ

∂t
(x, t) =

∂Ψ

∂t
(x, t) +

1

2
x2 dw

dt
(t), (38)

existence and uniqueness of the solution of (19) can ensure
those of the solution of (3). Then, we have

∫

QT

|ψ|2dxdt

=

∫

QT

|Ψ +
1

2
x4w(t)|2dxdt

≤

∫

QT

|Ψ|2dxdt+
1

4

∫

Ω

x2dx

∫ T

0

w2(t)dt

=

∫

QT

|Ψ|2 dxdt+
1

20

∫ T

0

w2(t)dt := C6, (39)

∫

QT

∣

∣

∣

∣

∂ψ

∂x

∣

∣

∣

∣

2

dxdt

≤

∫

QT

∣

∣

∣

∣

∂Ψ

∂x

∣

∣

∣

∣

2

dxdt +

∫

Ω

x2dx

∫ T

0

w2(t)dt

=

∫

QT

|Ψ|
2
dxdt+

1

3

∫ T

0

w2(t)dt := C7, (40)

and
∫

QT

∣

∣

∣

∣

∂ψ

∂t

∣

∣

∣

∣

2

dxdt

≤

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

4

∫

Ω

x4dx

∫ T

0

(

dw

dt

)2

(t)dt

=

∫

QT

∣

∣

∣

∣

∂Ψ

∂t

∣

∣

∣

∣

2

dxdt+
1

20

∫ T

0

(

dw

dt

)2

(t)dt := C8. (41)

Therefore, we can follow the same procedure as in the proof
of Theorem 5 to finish this proof.

V. EXISTENCE OFOPTIMAL CONTROL

Assume three minimizing sequences{un}, {vn} and
{wn}, such that

lim
n→∞

J(un, vn, wn) = inf
u,v,w

J(u, v, w).

Let ψn = ψ(un, vn, wn) be the corresponding solution of
the PDE (3), then by the a priori estimates in Theorem 5
and Corollary 6, we can obtain

∫

QT

(

|ψn|
2 +

∣

∣

∣

∣

∂ψn

∂x

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂ψn

∂t

∣

∣

∣

∣

2
)

dxdt ≤ K2, (42)

where K2 is a constant independent ofn. By the weak
convergence theory [5], we can extract weakly convergent
sequences

∂ψn

∂t
−→

∂ψ

∂t
, weakly inL2(0, T ;

(

H2(Ω)
)′

),

ψn −→ ψ, weakly inL2(0, T ;H2(Ω)),

un −→ u, weakly inL∞(0, T ),

vn −→ v, weakly inL∞(0, T ),

wn −→ w, weakly inL∞(0, T ).

Additionally, we note that the embeddingΞ →֒ L2(L2(Ω))
is compact (Lemma 1), then the sequence{ψn} admits
a subsequence which converges strongly inL2(L2(Ω)).
Therefore, we can show the existence of the optimal controls
(Q := (u, v, w)T ),

J(Q∗) ≤ inf
n

∫

Ω

ψn(x, T )dx+ inf
n

∫ T

0

αu2
n + βv2

n + γw2
ndt

≤ lim inf
n→∞

J(Qn), (43)

where we used Fatou’s lemma (Lemma 3) to change the
order of theinf and lim operations.

VI. PDE-BASED OPTIMIZATION

In this section, we rewrite the PDE–based optimization
problem into a large scale ODE-based optimization problem
and summarize the foundation of the nonlinear programming
using the sequential quadratic programming (SQP) method
(see, e.g., [7]). We discretize the PDE on a given spatial



grid, which generates a large scale ODE–based optimization
problem:

min
y,p

Φ(y, p) (44)

dy

dt
= F (t, y, p), y(0) = y0 (45)

g(t, y(t), p) ≥ 0, (46)

wherep is the parameterization vector of the control func-
tions u, v, w; cost functional (44) is the discrete version of
the cost functional (7); ODE system (45) fory represents
the space discrete version of the PDE system (3) forψ(x, t);
and inequality (46) includes all the constraints in terms of
the optimization problem stated in Section II.

Introducing a new vectorx = (y, p)T , we can rewrite
the ODE-based optimization problem (44)–(46) into the
following standard nonlinear programming formulation:

min
x

F(x) := Φ(y, p) (47)

c1(x) :=
dy

dt
− F (t, y, p) = 0, (48)

c2(x) := g(t, y(t), p) ≥ 0. (49)

The Lagrangian multiplier method [8] can be used to solve
this constrained optimization problem (47)–(49). One can
define the LagrangianL(x, π) := F(x) − πT c(x), where
c(x) = (c1(x), c2(x))

T represents the constraints andπ is
the Lagrangian multiplier. Then, the nonlinear optimization
problem can be reformulated as

min
x

L(x), c1(x) = 0, c2(x) ≥ 0. (50)

The SQP method can be used to solve (50) by generating
a sequence of iteration points(xk, πk) which converge to
a local minimum pair(x∗, π∗). Let (xk, πk) be the current
estimate of(x∗, π∗), then the nonlinear optimization problem
(50) can be linearized around(xk, πk) to obtain the following
quadratic programming (QP) problem:

min
x

L(xk) + ∇L(xk)
T (x − xk)

+
1

2
(x − xk)

T∇2Lk(x − xk) (51)

c1(xk) + ∇cT1 (xk)(x − xk) = 0, (52)

c2(xk) + ∇cT2 (xk)(x − xk) ≥ 0. (53)

The obtained QP problem (51)–(53) can be solved using the
Newton’s method and the current estimation(xk, πk) can
be updated. An initial guess and an error tolerance condition
are necessary to start and stop the SQP iteration, respectively.
For more details on numerical optimization and SQP, please
refer to [9]. Some commercially available software (such as
Matlab [10], SNOPT [7]) can be used to implement the SQP
algorithm.

VII. N UMERICAL EXAMPLES

We consider the following simplified system withγ(x) =
1 andf(x) = sin(πx):























∂ψ

∂t
= u(t)

∂2ψ

∂x2
+ sin(πx)v(t),

∂ψ

∂x
(0, t) = 0,

∂ψ

∂x
(0, t) = w(t),

ψ(x, 0) = 0.1.

(54)

The associated cost functional is given by

min
u∈[1,2],v∈[0.1,10],w∈[0.1,10]

J(u, v, w)

=
1

2

∫ 1

0

[

u2(t) + v2(t) + w2(t)
]

dt

+
30

2

∫ 1

0

|ψ(x, 1) − 1|
2
dx.

(55)

We choose the values of the actuator trajectories at given
equidistant points0, 0.25, 0.5, 0.75, 1.0 (unit: second). We
use spline approximations to represent the control functions
based on the valuesu = u(t) ∈ R

1×5, v = v(t) ∈ R
1×5

and w = w(t) ∈ R
1×5 over t = [0, 0.25, 0.5, 0.75, 1.0].

We discretize the temporal–spatial domain into the following
equidistant grid

0 = x1 < x2 < · · · < ti < · · · < xM = 1, M = 50, (56)

0 = t1 < t2 < · · · < xj < · · · < tN = 1, N = 20. (57)

Then, we can write the discrete version of the cost functional
(55) as

min
u,v,w

Jd(u, v, w) =
30∆x

2

M
∑

i=1

|ψ(xi, 1) − 1|2

+
∆t

2

N
∑

j=1

[

u2(tj) + v2(tj) + w2(tj)
]

.

(58)

We use the Matlab functionfmincon to implement the nu-
merical optimization in terms of the discrete cost functional
(58). The Matlab functionpdepe is used as the computing
engine which is included in running thefmincon com-
mand. An initial guess of the control actuation (u,v and
w) is necessary to start the optimization process which is
carried out by the Matlab functionrand. The optimization
results for the three controls are shown in Fig. 1– 3, while
Fig. 4 shows the dynamic evolution of the PDE system with
computed control functions. Fig. 5 extracts the final profile
at t = T which is close to the targetψd(x) = 1. We use
Fig. 6 to show the change of the cost function value with
respect to the optimization iterations.

VIII. C ONCLUSIONS

In this paper, we prove the existence of optimal controls
of a parabolic PDE arising in plasma transport. For real–time
tracking of the obtained optimal trajectories, we can linearize
the original PDE with multiplicative control (bi-linearity)
around the optimal trajectories to obtain a standard linear
parabolic PDE with both the boundary control and interior
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controls (the diffusivity control is included into the inte-
rior control vector after linearization). Many control design
techniques for linear systems (either distributed parameter
systems or lumped parameter systems) are then available to
obtain feedback laws.
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