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Abstract— In this paper, we study an optimal control problem  where T and ), are known positive continuous functions
arising in plasma transport which is governed by a singula’y  defined on[0, 1] which are compatible with the boundary
perturbed system. Time-scale separation allows us to focus conditions is a small known constant, and{¢) is a bound-

on an uncoupled parabolic PDE with diffusivity—interior— .
boundary actuation. We prove the existence of the optimal ary control of the system through the right-end Neumann

control solution and carry out numerical experiments using condition. _ _ _
sequential quadratic programming (SQP). For some plasma transport processes in fusion tokamaks, it

l. INTRODUCTION is possible to assume that the temperature takes an spatial—
) o ) temporal separation form, i.eq(z,t) = v(z)u(t), where
Plasma, typically an ionized gas with free electrons, '_Z(x) is a known spatial function which is identified from
Xperimental data, andt) is a continuous temporal function

considered to be a distinct state of matter because of i
unigue properties. The free electrical charges, withdatcht which depends on the dynamics of the temperature. Dynamic

ment to_ any atom, make the plasma eIectri<_:aII_y CondUCtivﬁ/stems with two distinct time scales are referred to as
so that it responds strongly to electromagnetic fields.riéas singularly perturbed systems [4]. This is the case for syste
transport studies the behaviors of physical variables sisch 1)-(2), where the scale parameter is very small, ke 1
plasma density, temperature and current (which is related herefore, since the dynamics of the temperature is much

the magnetic flux), where multi-scale dynamics are COMMQQgier than that of the magnetic flux, we can consider the

phenomeng (see, €.g., [1]' [21). ) function u(t) as a diffusivity control that could be used to
We consider a simplified plasma transport model with 1 hape the magnetic flux profile

?ulegan geometfrly. The varlatlonsdotl: thﬁ pllaﬁmgtempeeatur Taking into account the multiple scales of the problem,
and magnetic flux) are governed by the following SYSteM e can decouple the transport equations (1)—(2) using a

of coupled partial differential equations % O and0 <z < singular perturbation approach. Thus, we define a control
1) (see, e.g., Chapter VI and Chapter VIl in [3]): problem for a parabolic PDE (magnetic flux transport) with
or 9 or diffusivity—interior—boundary actuation. In controllédsion
ot oz {D (T ¥) 8_x} T 9) + Selet), (1) experiments, it has been proved very important to achieve
o 0 o specific magnetic flux profiles to enhance confinement and
ot ox ( (T)a_x) + f(2) (D), @) steady-state operation. By using physical actuation mecha
wheree is a small scale constanD(T, ) is the energy nisms such as external heating sources, non-inductiverurr
transport coefficient, the nonlinear fur;cticmT ) repre- drives (neutral beams or radmfrequengy waves), anql tot_al
' ' | plasma current, we can indeed achieve independent diffusiv
iLtj¥éinterior and boundary actuation. This is a novel cohtro

sents Joule heating, anfir(z,t) represents any externa
heatting source, which can be used to shape the temperatproblem arising in the field of plasma physics and controlled
fusion.

profile. The nonlinear function(7') is the magnetic diffusion
In this paper, we consider an optimal control problem for

coefficient and is dependent on the temperature prdfile)
the decoupled magnetic flux transport dynamics and study

is the (positive) input function with respect to the interio
control v(¢). In this simplified transport model (1)—(2), the : . : . .
N . 2 “the existence of its solution as well as its numerical compu-
contributions due to electron—ion energy exchange, radiat ,__. . . .
tation. We organize this paper as follows. In Section I, we
e;?resent the mathematical model and formulate the optimal

and excitation losses have been neglected.
The initial and boundary conditions for the transport mod Zontrol problem. In Section I1I, we give the functional gt
and necessary technical lemmas which are used for the

(1)—(2) are specified by

T(x,0) =To(x), ¥(z,0) =vo(z), =x€][0,1], proofs in this paper. In Section IV, we study the solution
aT(0,t)  ov(0,t) o(1,t) bound estimates which are used to show the existence of the
9z or 0, T(Lt) =x, or w(?), optimal control in Section V. In Section VI, we summarize

. _ the foundation of PDE-based optimization and sequential
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Il. STATEMENT OF CONTROL PROBLEM

Taking into account the spatial-temporal separation form

n(z,t) = ~(x)u(t) and the singularity { — 0) of the

energy transport equation (1), we rewrite the PDE (2) over Lemma 1:

the domainQr = {(z,t)|lzr € =[0,1;0 <t < T} as

o = o ((@u05E ) + e,
31/) oY

e (0,t) =0, %(l,t) = w(t),
dj( ) )—ZZJO(:C)’

where(z,t) is the state variable, and(z), f(x) are posi-
tive geometry parameters. The initial distribution of tha&te
is denoted by (x). The three control functions(t), v(¢)

and w(t) represent the diffusivity, interior and (Neumann)

boundary control, respectively, which satisfy the follagi
constraints:

U = {u(t)|0 < L, <u(t) <U,, ue C0,T]}, (4)
V= {vt)0 < L, <v(t) <U,, veC0,T]}, (5)
W = {w(t)|0 < L, < w(t) < Uy, w € C0,T]}, (6)

where L) and U, are physical lower and upper bounds
respectively. The control goal can be stated as the follgwi

optimization problem:
min
ueU,veV, weWw
1

T
- /0 [0,02() + 0,02(t) + b (D] dt ()

1
43 [0 o) - v

where 0. are weighting factors ang?(z) is the desired
profile att = T.

J(u, v, w)

IIl. FUNCTIONAL SETTINGS AND TECHNICAL LEMMAS
We define the following functional spaces

@ ={s|[ 170 <0} ®)
Q
H*(Q) = {f|f € L*(?) and f" € L*(Q)}  (9)
and denote their dual spaces [5]@(02))" and (H(2))’,
respectively. It is known in functional analysis that((2)

is self reflexive, i.e.L2(Q2) = (L2(2)) . In the definitions
(8)—(9), we can find that for any € H?(Q), it satisfies

f € L%(2). Therefore, we have the embedding (inclusion)
relation H2(Q2) C L?*(Q). The dual representation of this

embedding (inclusion) relation i$22(2))" ¢ (H?(2))".
Then we use the self reflexivity properiy () = (L2(Q2))’,

to connect these two inclusions and obtain the famous

Gelfand triple [S]: H2(Q) — L*(Q) = (L3(Q)’
(H2(2)",

—

functional space

E:{g € L*(0,T; H*(Q)); %ELQ(O T; (HQ(Q))’)} (10)

where the notatiorn— represents embedding (it
roughly means inclusion). All the embeddings in the Gelfand
triple are continuous, dense and compact. We introduce the

endowed with the norm

1€ll= = (11)

1€l 20,1512 (02)) + |\f||L2(0,T;(H2(Q))’)-

= is a Banach space. Evefye = is continuous
almost everywhere (a.e.) do, 7] with values inL?(2). The
embeddingz — L%(0,T; L*(Q2)) is compact.

Lemma 2 (Poincare Inequality [6]): For all ¢ € C1(Q),

the following inequality holds for any subsft r] = B, C
Q:
[ -orarzc [ vepan a2
r B’V‘
whereC' is a positive constant and
= o] /. €@ (13)

whereVol(B,) represents the volume d@,.

Lemma 3 (Fatou's Lemma [6]): If {&,} is a sequence of
nonnegative measurable functions @nthen

/ liminf &,dx < liminf | &,dx. (14)
Lemma 4 (Cauchy’'s inequality [6]): Given functions

nf g € L*0,1) and > 0, then we have the following

inequality:

1 1 " 1
/ fgdzx < —/ fdx + —/ g*dzx.
0 21 Jo 2 Jo

IV. A PRIORI ESTIMATES

We note that the solution of the PDE (3) depends on all
the given control functions:,v,w and also on the initial
distributionio (). In this section, we will give some bounds
estimates (a priori estimates) for the solution of the PDE
system (3). Noting that the a priori bound estimate problem
is different from a control design problem where the control
functions are to be determined, we assume that the control
functions are given to study the dynamics of the solutions.
We first propose the following homogenization transform,
wherew(t) is given such thatv € W:

(15)

Wi, 1) = (1)~ Lau(?), (16)
which satisfies the homogeneous boundary conditions:
ov 6#}
8\11 o B
a—xu,t) 5 (L1) —w(t) = 0. (18)

Then, using (3) and (16)—(18), it is readily to obtain the
following PDE for W:

3\113( 1 5dw

ov
o = 2 (v 5y) - 325

:Cdpy—(x) X u w XU
a+< 5 #4le)) wowl®) + R0,
LG LG
5z "0 = g (b1 =0,

W(,0) = () — 5a*w(0) = Wo(r).



Theorem 5: We assumey € C'(Q) N L?(Q2), and f €
L?(Q), then for anyu € U,v € V andw € W, the solution

where

w(0) — w(t
U(z,t;u,v,w) of (19) exists and satisfies the bound estimate’2 = max {¥7 0}

2+6_\I/
ot

/'<wf+99
Qr or

2
) dedt < K1,  (20)

where K is constant and independent of the control func-

tions u, v, w.

+ ‘7(1) - /Ol'y(:z:)da: /OT u(r)w(r)dr

T
—|—/Qv(:c)d:c/0 u(T)w(T)dr + (x)v(r)dxdr.

Qr

Proof: Existence and uniqueness of solution can bghen we integratef,, ¥ (x, t)dz from 0 to ¢,
proved by following the literature, e.g., [6]. It remains to @

us to give a bound estimate.
Step 1. We multiply both sides of the PDE (19) tiyand
integrate over); = {(x,7)|lx € 2 =10,1];0 < 7 <t < T},

2
1 aidxmzl/ xlﬂ(x,t)d:c—l/ U2(x,0)dx
87' 2 [¢) 2 Q

2 Jq.

_ / ) ‘Z_‘i’ " dwdr + | Sl vdsr

+/t dezi—f) +'y(:17)> u(ryw(r) - %QZ—I:] Wdzdr.
(21)

We use Cauchy inequality (Lemma 4) for the last two terms

in (21), then we can rewrite (21) as
2

/ U2 (x,t)dx + 2/ ~y(z)u(r) ov dxdr
Q 8(17
) * (22)
< Cpy+ —/ U2dxdr,
HJQ,
where
2 2
Co = H/Qt (deix) +’y(:1:)> u(T)w(r) — %(Zl—:l_} dzdr
+ u/ (fv)’dadr —|—/ U2 (z,0)dx.
t Q
Defining the average valué(l| = length of2)
— 1 /
U=—— U (x,t)dxdt, (23)
|Q|T QT

whereT represents the length of the time inter{@&IT], we
can use Poincare inequality (Lemma 2) to obtain

/ \I/Qd:cdtg/ |\If—$|2d;cdt+/ T dudt
Qr Qr Qr

50 |2 L, (24)
< Cl/ — dmdt—i—/ U dzxdt,
Qr Ox Qr

where(C] is a positive constant.

Step 2. To obtain an estimate for the terfy) U’ dadt,
we integrate the PDE (19) ové},,

/Q\I/(:v,t)dx—/Q\IJ(x,O)d:v: —/Qt %ﬁé—fdwdT
—i—/ [(wdzl—f) —1—7(:10)) u(T)w(r) + f(x)U(T)] dxdt
<oy, (25)

/ U (z, 7)dzdr < (C’g + |\I/0(a:)|d:c) t < C3T, (26)
t Q

where Cs := Cs + [, |Wo(z)|dz. Taking into account the
definition of the mean value oveépr (23), we can rewrite
(26) to obtain

! U (z, 7)dadr < G

U= , (27)
|QT| QT |Q|
which makes (24) become
2 2
/ U2dzdt < Cy / ov dxdt + %. (28)
Qr Qr O |Q|

Now we can use (28) to update the bound in (22)

ov

2 _

/Q\I/ (a:,t)d:c-i—Z/T'y(:z:)u(t) ‘ 5
2

dzdt +

2
dxdt

20, (29)

2
<Ch+— (9_\11 203T.
1o Jop | O i)
We note that the continuous coefficiey(tc)u(t) in (29) can
be bounded from below, i.einf, ; [y(z)u(t)] < v(x)u(t).
Then, (29) becomes

sup/ U2 (x, t)dx
t JQ

2 (30)

ov dxdt < C4,

o o] | |2

Sl

2 .
whereCy = Cy + % We can choosg large enough in

(22) when using Cauchy’s inequality and make

Cs

it [+t - 2| >0

Step 3. We multiply both sides of the PDE (19) By,
integrate ove)r, and apply Cauchy inequality to obtain

ov |2 1 o (00?2

ov
ot

(31)

dzdt

I
S

F(z,t)

T

1
/ F?(x,t)dzdt + —/
Qr 21 JQr

(w dzlf) + 7(:10)) u(®)w(t)+f(x)v(t).

(32)

2

\\J
4 dxdt

ot

IN
W=

where

_led_w_i_
2 dt

F(xz,t) =



Then (32) becomes and

2

2 0
(2_ l)/ 6_\11 drxdt / a—w dxdt
K QT ot Qr t
ov(z,T)|? (52) ow | 1 [, (T (dw\?
; i ol Bl < —| dxdt + - d — t)dt
+inf (o] | | e < 0, —/QT | et g [ e | (dt> ©)
v |? 1 (T (dw\®
where = —| dzxdt+ — — t)dt := Cs. (41
/T at | +200<dt)() Cs. (41)
) , oY (x,0)? _
Cs=p o F= (2, t)dadt + inf [y(z)u(t)] N dx.  Therefore, we can follow the same procedure as in the proof

of Theorem 5 to finish this proof. [ ]

Combining estimates (30) and (33), we can find thét|2,
[2Z)? and ||ZE||> can be bounded by certain positive V. EXISTENCE OFOPTIMAL CONTROL
numbers. Therefore, there must exist a positive congtant
to satisfy the following estimate

ov
|+ |5
Qr al’
Let ¥, = ¥(un,vn,w,) be the corresponding solution of
Corollary 6: We assumey € C(Q) N L2(), and f € thed PCDE |$3)’ tgen by the ba}[ priori estimates in Theorem 5
L3(Q), then for anyu € U,v € V andw € W, the solution and Loroflary 5, we can obtain

Assume three minimizing sequencés,}, {v,} and
{wy}, such that
2+ oV
ot

n— o0 UV, W

2
)dxdtg K. (34) lim J(un, vn, wy) = inf J(u, v, w).

Y(x, t;u, v, w) of (3) exists and satisfies the following bound o 2 o 2
estimate / [thn|? + ‘_” + ‘_" dzdt < Ko, (42)
Qr aCC 3t
2 |ow), |0u ] _ _
W™ + 2| Tlag| | dwdt < Ko, (35) where K, is a constant independent of By the weak
Qr convergence theory [5], we can extract weakly convergent
where K, is a constant. sequences
Proof: Taking into account that
% . %_f, weakly in L2(0, T; (H2(2))),
1
Y(x,t) = V(x,t) + §x2w(t), (36) Un — 1, weakly in L2(0, T; H*(Q2)),

9 1) = 2% (2, 0) + 2w(t), (37) tn — u, weakly in L*=(0, ),

Ox Ox v, — v, weakly in L°(0,T),

a_w( t) = a—‘l’( 7s)+l 2d—“’(t) (38) weakly in L>=(0,T

at Y T o Tt g\ Wn 1 y 0,7).
existence and uniqueness of the solution of (19) can ensuAdditionally, we note that the embeddig— L?(L*(%))
those of the solution of (3). Then, we have is compact (Lemma 1), then the sequenfag,} admits

a subsequence which converges strongly fit( L?(12)).
2 Therefore, we can show the existence of the optimal controls
|| dadt ,
T (Q = (U,’U,’LU) )'

1
:/ |U + —aw(t)|*dedt T
Qr 2 J(Q) < inf/ U (z, T)dx + inf/ au? + B2 + yw2dt
mJa mJo

1 T
g/ |\IJ|2d:Cdt+—/x2dx/ w?(t)dt < liminf J(Qn), (43)
Qr 4 Q 0 n— o0
:/ |\IJ|2 dudt & 1 Tw2(t)dt — g, (39) where we gsed Fat.ou’s Iemma (Lemma 3) to change the
Or 20 J, order of theinf andlim operations.
|
e dxdt V1. PDE-BASED OPTIMIZATION
Qr | 0T

2
(Z—\IJ dxdt+/:c2d:c
T

Q

T 0 In this section, we rewrite the PDE—based optimization
/0 w”(t)dt problem into a large scale ODE-based optimization problem

<),
or 1T and summarize the foundation of the nonlinear programming
:/ |\I/|2 dxdt + —/ w?(t)dt := C, (40) using the sequential quadratic programming (SQP) method
Qr 0 (see, e.g., [7]). We discretize the PDE on a given spatial

w



grid, which generates a large scale ODE—based optimization VII. NUMERICAL EXAMPLES

problem: We consider the following simplified system witf{z) =
1 and f(z) = sin(rz):
min - (y, p) (44) o) 92
d ’ — = u(t)—2 + sin(mwz)v(t),
S =F(typ), y0) = (45) or o
dt YY,P), Y Yo aw 81/1 (54)
g(t,y(t),p) >0, (46) e 0 =0 500 =wl)
Y(x,0) =0.1.
wherep is the parameterization vector of the control func-The associated cost functional is given by
tions u, v, w; cost functional (44) is the discrete version of )
the cost functional (7); ODE system (45) fgrrepresents u€[1,2],vG[OI.Ill,llI%J],we[O.l,lo] J(u, v, w)
the space discrete version of the PDE system (3)/far, t); 1
and inequality (46) includes all the constraints in terms of :5/ [u?(t) + v*(t) + w?(t)] dt (55)
0

the optimization problem stated in Section 1.

Introducing a new vectox = (y,p)’, we can rewrite
the ODE-based optimization problem (44)—(46) into the
following standard nonlinear programming formulation:

30 [*
+5 [ W 17 d.
2 0

We choose the values of the actuator trajectories at given
equidistant point9),0.25,0.5,0.75,1.0 (unit: second). We

min  F(x) := ®(y,p) (47) use spline approximations to represent the control funstio
* p based on the values = u(t) € R5, v = v(t) € R'*5
ca(x) = d_i — F(t,y,p) =0, (48) andw = w(t) € RS overt = [0,0.25,0.5,0.75, 1.0].
We discretize the temporal—spatial domain into the follayvi
The Lagrangian multiplier method [8] can be used to solve? = %1 < %2 <+ <t; <--- <ay =1, M =50, (56)
this constrained optimization problem (47)—(49). One can 0 =t <ta <--- <ux; <--- <ty =1, N =20. (57)

define the Lagrangiaif(x, ) := F(x) — 7l c(x), where

: Then, we can write the discrete version of the cost functiona
c(x) = (c1(z),c2(z))T represents the constraints ands

the Lagrangian multiplier. Then, the nonlinear optimiaati (55) as
problem can be reformulated as min g, w) = 302A:c i (i 1) — 1
min £(x),  e1(x) =0, ex(x) > 0. (50) o =1 (58)
_ +%Z [u?(t;) +v2(t;) +w?(t;)] -
The SQP method can be used to solve (50) by generating j=1

a sequence of iteration points, ;) which converge t0 \yg yse the Matlab functiohni ncon to implement the nu-
a local minimum pair(x*, 7). Let (x;, m) be the current yarical optimization in terms of the discrete cost funcaibn
estimate o(x_ ST ) then the nonlmearoptlr_nlzauon proplem(58)_ The Matlab functiorpdepe is used as the computing
(50) can be linearized arourig;,, 71 ) to obtain the following engine which is included in running theni ncon com-

guadratic programming (QP) problem:

min L(xk) + VL) (x — x)
1

mand. An initial guess of the control actuation, ¢ and
w) IS necessary to start the optimization process which is
carried out by the Matlab functionand. The optimization
results for the three controls are shown in Fig. 1— 3, while

+5x— xk) V2L (x — x) (51)  Fig. 4 shows the dynamic evolution of the PDE system with
vl _ —0, 52 computed control functions. Fig. 5 extracts the final profile

c1(xk) + c;(xk)(x ) (52) att = T which is close to the targep?(x) = 1. We use
c2(x) + Ve (k) (x = xp) 2 0. (53) Fig. 6 to show the change of the cost function value with

respect to the optimization iterations.
The obtained QP problem (51)—(53) can be solved using the
Newton’s method and the current estimatitwy,, 7,) can VIIl. CONCLUSIONS
be updated. An initial guess and an error tolerance comditio In this paper, we prove the existence of optimal controls
are necessary to start and stop the SQP iteration, resplgctiv of a parabolic PDE arising in plasma transport. For realetim
For more details on numerical optimization and SQP, pleaseacking of the obtained optimal trajectories, we can liiea
refer to [9]. Some commercially available software (such athe original PDE with multiplicative control (bi-lineayit
Matlab [10], SNOPT [7]) can be used to implement the SQBround the optimal trajectories to obtain a standard linear
algorithm. parabolic PDE with both the boundary control and interior
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controls (the diffusivity control is included into the inte
rior control vector after linearization). Many control i@s
techniques for linear systems (either distributed paramet
systems or lumped parameter systems) are then available to
obtain feedback laws.
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