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Abstract— A tokamak discharge requires accurate feedback z F8A F9A
control of many of the discharge parameters, including plama FSA 4 mmm || 90291 at 2500 ms
shape. Real-time estimation of the plasma boundary, which N Poloidal field coils
is not directly measurable, is critical for shape control. Qne (F coils)
of the available methods for plasma boundary estimation is F4AI \‘F7A

based on the equilibrium reconstruction. Equilibrium codes

calculate the distributions of flux and toroidal current density F3A I fagpetic pressure
over the plasma and surrounding vacuum region that best fit
the external magnetic measurements in a least square sense, oA
and that simultaneously satisfy the MHD equilibrium equation .F6A
(Grad-Shafranov equation). Although these codes use direc
. . surfaces of

measurements of the currents in the plasma and poloidal F1AI ms

- . . et constant flux
coils, they usually neglect the current induced in the vesse ‘ R
of the tokamak due to the simple fact that they cannot be F1B U
directly measured. Kalman filtering theory is employed in this
work to optimally estimate the current in the tokamak vessel 28 . F6B
The real-time version of the EFIT code is modified to accept S~ Plasma boundary
the estimated vessel currents with the goal of improving the I (separatrix)
equilibrium reconstruction for the DIII-D tokamak. F3B I .

X
. INTRODUCTION a3 B \V.lwﬁ
essel wal

The efficient and safe operation of large fusion devices F5B \ F8B Divertor strike point
relies on accurate knowledge of many of the discharge 9B
parameters. Unfortunately, the values of several diseharg X-point

parameters, such as plasma shape and current density dis- ) ) o
Libtion, ae not icty measurea, However, hese \mluge &, £00slesseton of e DILD e, Tyt
can be reconstructed from magnetic field and flux measurgux surfaces and magnetic axis.
ments. Equilibrium codes, such as EFIT [1], calculate the
distributions of flux and toroidal current density over theProcedure could be followed for the vessel currents if they
plasma and surrounding vacuum region that best fit, in \}ere measurable. Unfortunately, this is not usually the cas
least square sense, the external magnetic measuremehts, arkalman filtering theory is used in this work to opti-
that simultaneously satisfy the MHD equilibrium equatiorma”y estimate the current in the tokamak vessel. With the
(Grad-Shafranov equation) [2]. Once the flux distributiorvltimate goal of improving the equilibrium reconstruction
is known, it is possible to reconstruct the plasma boundaf@r the DIII-D tokamak, the real-time version of the EFIT
for shape control purposes. algorithm [3] is modified to accept the estimated vessel
The most general approach to the fitting problem trea@Urrents. Furthermore, it will be shown that the integmatio
all toroidal current sources as unknown values. Thus, iaf Kalman filter estimation into the equilibrium recon-
addition to the plasma toroidal current, the currents in thgtruction algorithm provides a new way to validate and
external poloidal field (PF) coils (see Fig. 1) can be fre&efine the plasma dynamic model. The important effect of
parameters and, potentially, the induced currents in theessel or structure currents has been recognized in many
vacuum vessel and support structures (see Fig. 1) can B@sma control applications [3]-{6]. Some previous effort
treated this way as well. There are direct measurements ®f incorporating an estimate of the vessel current into
the external PF coil currents, but these measurements h40€ €quilibrium reconstruction algorithm has been done at
uncertainties which can be properly accounted for in thBISTX [7]. Estimated values for the resistances in each one
least squares fitting procedure by solving for the extern&f the vessel segments are used to compute the currents

currents using the measurements as constraints. A simif@ €ach vessel segment, given the measured loop voltages.
However, since the discrete loop voltage sensors do not
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the exactness of the fit, once all the competing physic#t locationsP;’s by means of Green’s functiorG [8],
constraints have been reconciled. N.

This paper is orggpi;ed as follows. Ip Section Il, the imq;ﬂ - Z G(P;, pi)16i+/ G(P;, P)Jy(P,¢™)dP.
portance of the equilibrium reconstruction for plasma shap = aQm
control is discussed. Section Il describes the Kalmae#filt (2)
based optimal estimation approach for the induced vessBhe estimated magnetic measureme@ts generated by
currents. In this section, the linearized dynamic modeheft EFIT, at certain locations where magnetic sensors are
plasma is also introduced. How to integrate the estimatddlaced, are compared with data from those magnetic sen-
vessel currents into the real-time equilibrium recongtamc  SOrs, to obtain the plasma curresf'*! (™) that mini-
algorithm is addressed in Section IV. Section V present¥izes the quadratic error
some initial results. Finally, conclusions and identified f Nopows

2
ture work are presented in Section VI. 2= Z <M) , ()
k=1 Tk
. SHAPE CONTROL WITH EQUILIBRIUM where My, Ck, and o, are the measured values, the
RECONSTRUCTION computed values, and the error associated with the

measurement. The flux function is finally updated solving
The primary objective of equilibrium reconstruction isthe Grad-Shafranov equation (1),
two-fold: (1) substantially improve the accuracy with whic R il s om
the plasma boundary is estimated, thereby improving con- A = —HorJ ™). )
trol, (2) obtain reliable (consistent both with known plegsi  This procedure is not sufficiently fast for real-time ap-
and with available measurements) estimates of interglications, such as feedback shape control. The real-time
parameters, such as the current profile. version of EFIT [3] uses a two-loop scheme. A fast loop
Assuming an axisymmetric plasma (the behavior of thgerforms the least-squares fit (3) using new measured values
plasma is independent of the toroidal angle coordingte from the magnetic sensors in each iteration but using the
in a cylindrical coordinate systenfr, ¢, z}, the equilib- |ast equilibrium flux provided by the solution of (4). The
rium MHD equations (fluid mechanics motion equation 4pjasma current/,, in each iteration is used to compute,
Maxwell's equations) reduce to the Grad-Shafranov equghrough Green’s functions, the magnetic flux values at a
tion predefined set of control points (geometrical points at thic
A%, = —porJy, 1) the poloidal magnetic flux is regulated), yvhich are fgd to
the shape controller. A slow loop, approximately 25 times

which describes the force balance of the tokamak equilittlOWer than the fast loop, solves the equilibrium problem

rium. The elliptic operatoA* is given by (4) to update the magnetic flux. _
In real-time EFIT [3], the diagnostic data presently
) 0% 9 [(10¢y consist of measurements of magnetic flux and field outside
ATy = 922 o (; E) ' the plasma, plasma plus vessel current from a Rogowskii

loop, field internal to the plasma from a Motional Stark
J, is the toroidal component of the current density, andffect diagnostic, and currentin the poloidal field and otimi
Y = 1, + Yert IS the total poloidal flux per radian, i.e., heating coils. One of the main contributions of this work is
¥ = ¥p01/2m, Wherey, is the poloidal flux resulting from the incorporation of estimated induced vessel currents int
the plasma current and,,. is the poloidal flux generated the diagnostic data set. The detailed modifications of the
by current in the sources external to the plasma, like coifal-time EFIT algorithm, to take into account the vessel
and induced current. current estimations as constraints in the fitting procedure

The task of the equilibrium reconstruction is to calculaté® presented in Section IV.
the distributions_in ther, z plane _of the poloidql flux . VESSEL CURRENT ESTIMATION METHOD
v, and the toroidal current densitys, that provide a
least squares best fit to the diagnostic data and whi¢h Plasma Response Model
simultaneously satisfy the Grad-Shafranov equation (1). The system composed of plasma, shaping coils, and
The solution to the equilibrium reconstruction problem igpassive structure can be described using circuit equations
obtained through an iterative algorithm that estimates th#erived from Faraday’s Law, and radial and vertical force
magnetic measuremerit™ ! using the fluxy™ in the balance relations for a particular plasma equilibrium. In
plasma domaif2™ calculated in the previous step. The addition, rigid radial and vertical displacement of the iequ
magnetic measurements usually have two contributions, ofierium current distribution is assumed, and a resistive
due to the external conductor curretifs and the other due plasma circuit equation is specified. The result is a circuit
to the plasma current,. The magnetic measuremeditat a  equation describing the linearized response, around a par-
generic pointP; is obtained from the current sources placedicular plasma equilibrium, of the conductor-plasma syste



to voltages applied to active conductors [9]. The modekhere

equations for poloidal field (PF) coil current, vessel (pass L. Ve
conductor) currents, and plasma current are respectively T = ? y U= VO
Mzl + Rel, + M3 I, + ML, = V. st "
M0, + Ryl + M*.0, + M, I, = 0 (5) The system matrices are
My, Iy + Rply + My Ie + My, I, = Vo A=-M"'R, B=M"!
wherel,., I,, and I, represent currents in PF coils, vessel, C;
and plasma, r_espectivelye_ is the vector of voltages appl_ied C— C]Z . D=0
to the PF coils, and/,, is the effective voltage applied O
P

to drive plasma current by noninductive sourcés. for
a € {c,v,p}, represents the resistance matrix of each on&here

of the circuits. M}, = Mgy, + X, are plasma-modified Mz, Mz, Mg, R. 0 0
mutual inductance, where,b € {c,v,p}. Mq is the N = | M; My, M;, |, R=| 0 R, 0 |,
usual conductor-to-conductor mutual inductance, ahg My, My, My, 0 0 R,

describes a plasma motion-mediated inductance, linehrize
around the plasma equilibrium. The plasma response matfX
X, representing changes in flux due to plasma motion, aft
functions only of the equilibrium current distributign, and
vacuum magnetic field3.,. The X,; matrix is computed
starting with an EFIT equilibrium [1], and added to the

d R is a diagonal matrix. If the estimation of the vessel
rrent is the only objective, a simplified model for the

ynamics of the vessel current can be extracted from (5).
The second equation in (5), combined with (6), can be
rewritten as

mutual inductancéll,;, as part of the model construction Ty = ApTy + Byuy + Gyuwn )
process. y = Cuxy+ Dyuy +wo

In contrast to the dynamic equation (5), the mapping frorﬂ/here
currents to outputs (for example, diagnostic data such as I
flux loops, magnetic probes, Rogowskii loops) is expressed I,
explicitly in terms of current deviations from equilibrium Ty = Lo, Uy = I.
values [10]: fp

oy = Cr,0lc + Cr, 01, + Cy,,, 01, (6)  The new system matrices are

whereéT = T —T.,, for (T € {I., I,, I, y}. The subscript A, = —M* 'R,
“eq” denotes values at the equilibrium from which the v ’
model (5)—(6) are derived. In the rest of the papewill B, = —M;‘[l [ 0 0 M; M, } , G,=B8B,

be omitted for simplicity, but it will be implicitly implied
that the output equation is written in terms of deviation Co=0Cr, Dy= [ Cr. €, 00 ] :
variables. The matrice§',, for I, € I., I,,, I, are defined The outputy may include flux loops, magnetic probes,
as and Rogowskii loops. Process noise or disturbangeand
oy Oy Or, Qy 0z ;
Cr, = , (7) measurement noise; has been added to the model (9).
aIS arc a—[s aZC BIS

) i A ~ The noise covariance matrices are given by
where the first term on the right hand side is the “direct”

response, e.g., given by Green’s function calculations in e{wiw! } = Qn, ef{wowy } = R,
the case of magnetic probes or flux loops. The remaini
terms are responses due to motion of the plasmandz.
denote the radial and vertical positions of the plasma otirre
centroid, i.e., “center of mass” of the current. Itis common & = A,#, + Byu, + K(y — Cyiy — Dytiy), (10)
to include disturbance terms describing the response to o ) ) ) ) ]
variations in kinetic and current profile quantities suchvhereé . is the estimation forz,. Solving the Riccati
as poloidal beta,), and normalized internal inductance&duation

(¢;) [11]. However, disturbance terms are neglected in the — _ A, P+ PAT + G,Q,.GT — PCTR;'C, P,
present study.

" optimally estimate the vessel curreijt we implement
a Kalman filter [12]

, N we can obtain the Kalman gain matrix
B. Kalman Filter Estimations

For Kalman filter design purposes, the linearized plasma K = PCyR,".

response model (5)—(6) is written in state space form Carefully tuningQ,, and R,,, based on the knowledge of

& = Ax+ Bu ) the system, an optimal estimation of the vessel current can
y = Cr+Du be obtained.



flux at the magnetic axis (center of the nested magnetic
flux surfaces, see Fig. 1), ang, is the poloidal flux at
the plasma boundary. The normalized flyx, provides
an adjustable mapping from the small number of fitting
parameters to the large number of grid points on ithe
plane. The discretized plasma current model is written as

DIlI-D Geometry
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I, =0 xQ (14)

Z[m]
o

where there is one row in the matnxfor each grid element
and the column values are the coefficients of elements of
ay and~y from equations (12) and (13). Th&"* row of
the matrix¥ is given by
np 1 dJNi 1/’%?
T

‘I’i:[”“’iwi"“’”%’E-’ i

-0.51

aO5zi]v (15)
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‘ ‘ | where the subindex denotes that the quantities are evalu-

R : s ated at the*" grid point. All terms linearly proportional to

0z are collected intas_ . In addition to the plasma toroidal

current, the currents in the external poloidal field (PF)s;oi

IV. EQUILIBRIUM RECONSTRUCTION WITH 1., have been considered so far as free parameters. The
VESSEL CURRENTS direct measurements of the external PF coil currents have

I . . uncertainties that are properly accounted for in the least

The equilibrium solution consists of values pfand J, squares fitting procedure by solving for the external cusren

on a rectangular grid Whlch_covers the entire area ‘?f t ing the available measurements as constraints. The DIII-
vacuum vessel. The current is modeled as being distribut f

-2k
05

Fig. 2. Cross-section of discretized vessel model.

osition. This reference flux value)f.;) has also been
: . T reated then as a free parameter with the measured value
solution to provide a realistic distribution of the CurrenR/veighted by its uncertainty used as a constraint. In this
dgnsity, including provision for finite current den_sity aet work, we add the vessel current to the set of free parameter.
fllsc_t:jarlge edgtea In t_?e (_Srad-_:hafranov equation (1), trWith this purpose, the vessel structure has been discdetize
oroidal current density’, Is written as into 28 segments as it is shown in Fig. 2. The 28 vessel
g OP  uF OF 1 currents,l,,, are considered as free parameters in the fitting
¢ =T X + an2r2 o) )’ (1) procedure. The optimal vessel current estimations, pealid
) . . by the Kalman filter implementation, are incorporated as
where P is the plasma pressure, and the auxiliary functio, aqgitional constraints after weighting them by their

[ is proportional to the poloidal currerf},,; = 2mF/uo  ncertainties. Thus, the total vector of unknowns for the
flowing in the plasma. Althouglyy is modeled as being fitting problem is now

distributed among a large set of rectangular elements, it is

1000 or more. The large number of grid points allows th

parameterized by only a small number of free parameters. U=[I1,,Q, ¥res]. (16)
Simple polynomial models are used to represéhtand L . L _
FF' Considering the discretization of the toroidal current)(14
ap don 1" and including the discretized vessel currents, (2) can be
e > an [wzv t 5, Z} (12)  rewritten in matrix form as
n=0
C=(xU. a7)

foF OF oy 1"
Am2 Oy Z'V" {wN T, 5Z] (13) " The diagram in Fig. 3 shows the response mariBlocks
n=0 (a) and (b) in the matrix contain the precalculated Green'’s

whereay = [ao, a1, ..., @, ], 73 = [0, 71, -, Tnr |, @NdJz  function coefficients that specify the contribution to the
are the free parameters. The free paraméteallows the magnetic measuremer® by each of the external coil
equilibrium reconstruction to follow the vertical moventen currents and induced vessel currents. Block (c) represents
of the discharge. Of the terms containiag, only those the contribution to the magnetic measureméhtby the
linear in 6z are retained in (12) and (13). We defineplasma current at each grid element. When the magnetic
Q = [aj,73,62] as the set of free parameters in themeasurements are calculated at positions where magnetic
parameterizations aof. The normalized flux is defined as diagnostics are placed, we are interested in finding the
UN = (¥ — ¥m)/(¥s — ), Whered,, is the poloidal vector U that makes these measurements equal to the
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Reference flux 0 0 1 ) ’
@ ®) ©] -1 1.6 16
Relative ﬂuxl 1.4
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) ig. 4. Kalman filter estimation (shot , .5 sec.
Extra constraint 1 o Fig. 4. Kal fil imati hot 118572), 4.04.5
X I
TABLE |
Fig. 3. A schematic of the response matgixhat relatesD to U. X2 COMPARISON FOR SHOTS21858AND 900011
values measured by the sensors, i.e., the diagnostic data . | XQbat 2‘¥|00 flns |
; : shot PF-coil | B-probe ux-loops tota
D. Therefore, (17) is rewritten as 51858 153 3177 T 10518
D=(xU (18) 900011 1.45 17.85 3.73 23.020

Because the number of diagnostic measurements is usually
much larger than the number of fitting parameters, (18) #e output of the Kalman filter matches the diagnostic
not an exact relation. This leads to the requirement th&@ta. Fig 4 shows the results for some of the output
U be obtained in a least squares sense. After multiplyingariables; “PCRLO3" is one of the Rogowskii loops, and
both sides of (18) by a Weight vectd¥/, that has one “PCPSI89NB”, “PCPSI89FB” and “PCPSI7B” are three of
element for each diagnostic signal equal to the inverseeof ttihe magnetic flux loops. The figure compares measured
measurement uncertainty (or estimation uncertainty, & tHblue) and estimated (green) values. Due to the good
case of the vessel currents). The solution that minimizé8atching it is difficult to distinguish both signals from the
(3) is obtained by computing the pseudo-inverse of thégure.
weighted response matrix, i.e., We compare now reconstruction results for physical shot
1 121858, for the time interval 2.0 — 3.0 sec, with and without
U=W-O~ x(W-D) (19) using the vessel current estimates. The reconstructioittses
where the operator-* indicates multiplication of each obtained using the estimates of the vessel currents awedstor
column of the matrix by the vector, and the Operat&r" « in the virtual shot 900011, while those obtained without us-
indicates matrix multiplication. The vector of all the ax-ing the vessel currents estimates are simply labeled 121858
isymmetric current sources,,; = [I., I,,, I, is assembled Table | compares the resulting” at ¢ = 2400 ms for both
from the solution forU. From I,,; the values of flux at shots. The PF coik? contains vessel current errors as well
a predefined set of control points are computed throug}® Coil current errors for 900011. We can appreciate {fat
Green’s functions, and fed into the shape controller. Thi indeed reduced by incorporating the currents of the Vesse
flux is updated by solving (4), which ensures the fulfillmengegments as free parameters. The similarities between the

of the Grad-Shafranov equation. vessel currents estimated by the Kalman filter and the real
time EFIT, shown in Fig. 6, suggest that the fitting error
V. RESULTS is minimized at a physical solution. Thus, the equilibrium

We use a data set from experimental discharges at DIlfeconstruction process has been improved.
D to study the effectiveness of the Kalman filter (10) in The flux surfaces and plasma boundary for both shots are
estimating the induced vessel currents. In all the casesmpared in Fig. 5. We expect this similarity for equilibria
presented in this subsection, we consider that the outpatplasma current flattop, since vessel currents are relgtiv
vector of the system (9) is composed only of magnetic flusmall at those times. The objective is to validate the method
and Rogowskii loops. with these comparisons, then apply the method to situations

We estimate the vessel current for shot 118572 in thehere large and changing vessel currents are expected, such
interval 4.0 — 4.5 sec. By carefully tunin@,, and R,,, as in plasma current rampup or rampdown.



Fig. 5. Discharge shape comparison for shots 121858 andl90f&X®2400

ms.

The proposed Kalman filter solution improves on thel®!
physics model used for the fit by adding free parameters
representing currents flowing in the vessel conductorsie]
This approach also provides additional physics, defined by
the dynamics of the current evolution, that constrain thez,
currents that flow in these conductors. The advantages of
the Kalman filter estimated currents are that they providé®!
current estimates to the reconstruction with substaptiall
reduced noise levels and at the same time are able to tra¢¥{

00011 2400.00
121868 2400.00

VI. CONCLUSIONS

fast changes in vessel currents.

For the inner vessel segments, the currents estimated by
the Kalman filter and the real-time EFIT show considerabl&0]
disagreements. The implementation of the Kalman filter,
in addition to allowing equilibrium reconstruction enhanc [1
ment, gives us the opportunity of improving the dynamic
models. Using the vessel currents estimated by EFIT as the
output of the dynamic model (9), a system identificatiomo] A Gelb, Ed., Applied optimal estimation.
approach can be followed to better estimate the uncertain
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