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Abstract

The control of kinetic profiles is among the most impor-
tant problems in fusion reactor research. It is strongly
related to a great number of other problems in fusion
energy generation such as burn control, transport re-
duction, confinement time improvement, MHD instabil-
ity avoidance and high-β or high-confinement operating
modes access.

We consider in this work a set of nonlinear partial differ-
ential equations (PDE’s) describing approximately the
dynamics of the density and energy profiles in a non-
burning plasma. Applying a backstepping design we
control the kinetic profiles by means of thermal and den-
sity actuation at the boundary. Numerical simulations
show that the feedback control law designed using only
one step of backstepping can successfully control the ki-
netic profiles.

1 Introduction

The regulation of the kinetic and current profiles is
essential to achieving optimal fusion performance and
making fusion an economically viable source of energy.
Plasma behavior is critically influenced by the plasma
density, current density and temperature profiles.

Burn control of an ignited or subignited plasma is di-
rectly influenced by the kinetic profiles. A D-T plasma
may be thermally unstable in some regions of opera-
tion and a tight control is required for avoiding thermal
excursion or quenching. Auxiliary heating, fueling and
impurity injection are among the most common actu-
ators used to keep the density and temperature of the
plasma at a desired working point. Among the prob-
lems related to the control of the kinetic variables, the
problem of burn control is the most extensive found in
the literature. This can be explained by the fact that
the problem of controlling the burn instability can be
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approached considering a 0-D (zero-dimensional) model
where spatially averaged quantities are considered. The
availability of conventional control tools that are capable
of dealing with this kind of model, where the dynamics
of the average kinetic variables is described by ODE’s,
encourages the study of the problem. Recently, we have
introduced a new approach where the linearization of the
model is avoided and much higher levels of performance
and robustness are achieved [1, 2]. However, the 0-D
control of the burn instability using modulation of bulk
heating, fueling and impurity density does not take into
account the 1-D (one-dimensional) effect of this modula-
tion on the profiles. The heating, fueling and impurity
density are distributed throughout the plasma volume
affecting the density and temperature profiles which in
turn can change the transport mode, the energy confine-
ment time and the plasma stability.

We need a control technique that can deal with the dis-
tributed and nonlinear nature of those quantities, their
coupling with one another, and their, at times conflict-
ing, control objectives. The work we present here is
inspired by [3, 4, 5] and to some extent by [6, 7]. In all
these mentioned works the 1-D model is represented by a
set of nonlinear PDE’s. The reduction of the distributed
parameter description of the system to a lumped param-
eter description is carried out using different methods.
The resulting set of ODE’s are linearized and conven-
tional linear control methods are applied for the syn-
thesis of the controller. In contrast to these previous
works, the control method presented in this paper is
based on the full nonlinear model. As we showed for
the 0-D case, the plasma dynamics is highly nonlinear
and fundamental information about the system is lost
through the linearization, imposing in this way a limit
on operability. Therefore, the linearization of the model
should be avoided, and this is central to our approach.
We control the system by means of thermal and density
actuation.



The goal of the controller is to make the kinetic profiles
converge to their desired equilibrium profiles. We are
interested in constructing a stabilizing controller that
achieves stability for unstable equilibrium profiles and
increases performance for stable equilibrium profiles. In
order to simplify this initial approach to kinetic profile
control in fusion reactors, we consider a non-burning
plasma whose dynamics is described by a 1-D nonlin-
ear PDE model. This 1-D nonlinear PDE model con-
sists of the diffusion equations of the kinetic variables
in cylindrical geometry where the diffusion coefficients,
on the other hand, are nonlinear functions of these ki-
netic variables. The original set of PDE’s is discretized
in space using a finite difference method which gives a
high order set of coupled nonlinear ODE’s. Applying a
backstepping design we obtain a discretized coordinate
transformation that transforms the original system into
a properly chosen target system that is asymptotically
stable in l2-norm. To achieve such stability for the tar-
get system, convenient boundary conditions are chosen.
Then, using the property that the discretized coordi-
nate transformation is invertible for an arbitrary (finite)
grid choice, we conclude that the discretized version of
the original system is asymptotically stable and obtain
a nonlinear feedback boundary control law for the en-
ergy and density in the original set of coordinates. This
technique has been already applied successfully for other
different physical applications [8, 9].

The paper is organized as follows. In Section 2 a non-
linear one dimensional PDE model that governs the
dynamics of the density and energy profiles in a non-
burning plasma is introduced. The control objective is
stated in Section 3. In Section 4 a nonlinear feedback
control law that achieves asymptotic stabilization is pre-
sented, followed by the proof of stability for the target
system in Section 5. A feedback control law designed
on a coarse grid is shown through a simulation study to
successfully control the kinetic profiles of the plasma in
Section 6. Finally, some conclusions and suggestions are
stated in Section 7.

2 Model

The mathematical model used in this work is basically
the set of transport equations in cylindrical geometry
used in [3]. The energy and density transport equations
are given by
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where n is the density, T is the temperature, E = 3
2nT

is the energy, Paux is the auxiliary heating power (actu-
ator) and S is the fueling rate (actuator). The radiation

loss considered in this model is the bremsstrahlung loss

Pbr = AbZeffn2
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√
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where Zeff = (
∑

i niZ
2
i )/ne, ne is the electron den-

sity and ni is the ion density. Since this model de-
scribes a non-burning plasma the alpha particle den-
sity is neglected. Therefore the quasineutrality con-
dition ne = niZi implies that ne = ni because the
only ion present in the plasma is the deuterium-tritium
ion (Zi = 1). This implies in turn that Zeff = 1.
The electron and ion temperatures are considered to be
equal. In addition, κ = nχ is the heat conduction coef-
ficient, χ = n(0)

n(r)
m2

s is the thermal diffusivity coefficient,
Vp = 1

2
D
T

∂T
∂r is the inward pinch velocity and D is the

diffusion coefficient. With the purpose of simplification,
we take D = 2

3χ, which is an approximation of the diffu-
sion coefficient used in [3]. This approximation is not a
requirement for the control method and its only purpose
is the simplification of this presentation. In this way, we
can reduce equations (1) and (2) to
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We consider the following arbitrary boundary condi-
tions; Er(r = 0) = 0, nr(r = 0) = 0, Er(r = a) =
kEE(a) and nr(r = a) = knn(a).

3 Control Objective

We write E(r, t) = Ē(r) + Ẽ(r, t) and n(r, t) = n̄(r) +
ñ(r, t), where Ē(r) and n̄(r) are the equilibrium pro-
files which in turn are the solutions of the equilibrium
equations
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with boundary conditions Ēr(r = 0) = 0, n̄r(r = 0) = 0,
Ēr(r = a) = kEĒ(a) and n̄r(r = a) = knn̄(a). Proper
selection of the boundary conditions and the equilib-
rium profiles for the auxiliary power P̄aux and fueling
rate S̄ allows us to achieve the desired equilibrium pro-
files for the energy and the density. It is important to
note that in this approach to kinetic profile control we
consider only density and thermal actuation at the edge
of the plasma. Therefore, the fueling rate S = S̄ and
the auxiliary power Paux = P̄aux are used only for the
definition of the equilibrium profiles. The dynamics of
the deviation variables Ẽ(r, t) and ñ(r, t) is given by
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∂Ē

∂r

]
+

1
r
D

∂Ē
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we rewrite the equations for the deviation variables as
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∂ñ

∂t
=

3
2

{
∂

∂r

[
D

∂ñ
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with boundary conditions Ẽr(r = 0) = 0, ñr(r = 0) = 0,
Ẽr(r = a) = kEẼ(a) + ∆Ẽr and ñr(r = a) = knñ(a) +
∆ñr. The objective is to stabilize Ẽ(r, t) and ñ(r, t),
making them converge to zero, by using ∆Ẽr(t) and
∆ñr(t) as actuation at the edge of the plasma.

4 Controller Design

Figure 1 summarizes the essence of the control method.
We dicretize the original set of PDE’s in space us-
ing a finite difference method which gives a high order
set of coupled nonlinear ordinary differential equations
(ODE’s). Applying a backstepping design we obtain
a discretized coordinate transformation that transforms
the original system into a properly chosen target sys-
tem that is asymptotically stable in l2-norm. To achieve
such stability for the target system, convenient bound-
ary conditions are chosen. Then, using the property that
the discretized coordinate transformation is invertible

for an arbitrary (finite) grid choice, we conclude that the
discretized version of the original system is asymptoti-
cally stable and obtain a nonlinear feedback boundary
control law for the energy and density in the original set
of coordinates. The idea is to design controllers using
only a small number of steps of backstepping, or equiva-
lently using only a small number of state measurements.
The measurements are taken from the core of the plasma
and the actuation is applied at the edge of the plasma.

Figure 1: Control Method Scheme

To discretize the problem, let us start by defining h =
1
N , where N is an integer. Then using the notation
xi(t) = x(ih, t), i = 0, 1, ..., N , we write the discretized
version of equations (9)-(10) as
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with boundary conditions (Ẽ1 − Ẽ0)/h = 0, (ñ1 −
ñ0)/h = 0, (ẼN − ẼN−1)/h = kEẼN + ∆Ẽr, (ñN −
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We consider now the asymptotically stable (in L2 norm)
target system
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where CF > 0, Cm > 0 and the boundary conditions are
given by F̃r(r = 0) = 0, m̃r(r = 0) = 0, F̃r(r = a) =
−GF̃ (a) and m̃r(r = a) = −Gm̃(a), with G > 0. We
write the discretized equations for the target system as
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with boundary conditions written as (F̃1 − F̃0)/h = 0,
(m̃1 − m̃0)/h = 0, (F̃N − F̃N−1)/h = −GF̃N , (m̃N −
m̃N−1)/h = −Gm̃N . Finally we look for a backstepping
transformation of the discretized original system into
the discretization of the target system. This coordinate

transformation is sought in the form
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starting with α0 = β0 = 0 and where
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Using the equations for the boundary conditions of the
discretized original system and the discretized target
system, and taking into account the definitions (19)-
(20), we can define the controls as
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These expressions for ∆Ẽr and ∆ñr allows us to finally
write the stabilizing laws for the modulation of the en-
ergy and the density at the edge of the plasma
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5 Asymptotic Stability of the Discretized
Target System

To show stability of the target system (15)-(16), we take
the Lyapunov function candidate
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and we conclude that V̇ ≤ −CV showing that the sys-
tem is asymptotically stable.

The proof that the discretized target system (17)-(18)
is asymptotically stable in l2 norm would be com-
pletely analogous. The discrete Lyapunov function Vd =
1
2

∑N
i=0

(
F̃ 2

i

k2 + m̃2
i

)
would be considered instead and fol-

lowing identical procedure the condition V̇d ≤ −CVd

would be obtained.

6 Simulation Results

The simulation presented in this section is run using
FTCS finite difference method for a time step ∆t =
0.001 sec, a = 2.4 m and Ns = 24 ⇒ hs = 0.1. The
subscript “s” stands for simulation. In this way we dif-
ferentiate the fine grid used for simulation purposes and
the coarse grid used for control design purposes. The
controller is designed using only one step of backstep-
ping, i.e. for N = 2.

For the considered non-burning plasma, quadratic pro-
files S̄ = S0[1 − (r/a)2)] and P̄aux = (Paux)0 ∗ [(1 −
(r/a)2], the equilibrium profiles given by equations (5)-
(6) are stable. However the rate of convergence to
the equilibrium profiles from some initially perturbed
profiles is very slow. Therefore, the main goal of the
controller in this case is the improvement of perfor-
mance. Considering Ẽ(r, 0) = (−1 + 2 ∗ r/a)105 and
ñ(r, 0) = (−1 + 2 ∗ r/a)1019, figure 2 shows the evolu-
tion of the kinetic profiles from these initial perturbed
profiles to their equilibrium values. It is possible to note
from the figures that the settling time is approximately
2 seconds. This represents an improvement of an or-
der of magnitude with respect to the open loop settling
time. Figure 3 show the actuation at the edge of the
plasma that makes this possible.

7 Conclusions and Future Work

A nonlinear feedback controller based on Lyapunov
backstepping design that achieves asymptotic stabiliza-
tion of the equilibrium kinetic profiles in a cylindrical
plasma reactor has been synthesized. The result holds
for any finite discretization in space of the original PDE
model. The simulation study shows that the boundary
controller designed using only one step of backstepping,
i.e. using only one measurement from the interior of the
reactor, can successfully control the kinetic profiles.

The control of the kinetic profiles by boundary control
has been shown to be feasible. However, more study
is necessary to find the way of modulating the kinetic
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Figure 2: Profile evolution in time for E (a) and n (b).

variables at the edge of the plasma through the mod-
ulation of physical properties of the scrape-off layer.
In the future a zero-dimensional model of the tokamak
scrape-off layer will be used as a complement of the one-
dimensional model for the core. This will allow us to
work with more realistic boundary conditions. In this
way, we are going to be able not only to search for phys-
ical ways to achieve the modulation of the kinetic vari-
ables at the edge of the plasma required by our control
method but also to work with kinetic profiles which are
closer to the ones found in real reactors. In case the
necessary modulation of the temperature and density at
the edge of the plasma could not be achieved by physi-
cal means, actuation directly in the core of the plasma
would be considered; approaching in this way a less chal-
lenging problem where the auxiliary power and fueling
rate is used not only for the definition of the equilibrium
profiles but also for the stabilization of such profiles.
In addition, in the future a burning plasma (inherently
thermally unstable) model and more updated correla-
tions for the physical parameters (D, κ, χ, Vp) will be
considered.
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Figure 3: Edge modulation for E (a) and n (b).
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