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Abstract— Tokamaks are torus-shaped devices whose goal is
to produce energy by means of thermonuclear fusion reactions.
This is achieved by using helical magnetic fields to confine
a plasma, i.e., a very hot ionized gas, so that the necessary
conditions for fusion (i.e., high pressure and confinement time)
are achieved. The safety factor is a measure of the pitch of
the magnetic-field lines, and plays an important role in the
magnetohydrodynamic stability and confinement properties of
the plasma. In particular, the minimum value of the safety
factor across the plasma spatial domain is often closely related
to the maximum achievable plasma pressure. In this work,
a robust, nonlinear, model-based controller for the regulation
of the minimum safety factor is presented. The controller is
synthesized via Lyapunov theory, and robustified against model
uncertainties by means of Lyapunov redesign techniques. The
controller is tested, together with a controller for the plasma
thermal energy, in one-dimensional simulations using COTSIM
(Control Oriented Transport SIMulator) for a DIII-D scenario.

I. INTRODUCTION

In a tokamak [1], a gas composed of hydrogen isotopes
(normally deuterium, sometimes a mix of deuterium and
tritium) is injected and heated up to temperatures on the
order of tens of millions of degrees. This high temperature
turns the gas into a plasma, i.e., its ions and electrons are
dissociated. These charged particles, composing the plasma,
are responsive to magnetic fields. Such property is the basis
of the tokamak design, which employs helical magnetic fields
to confine the plasma. When the appropriate confinement
conditions are achieved, i.e., high enough pressure and
confinement time, nuclear-fusion reactions happen within the
plasma, releasing energy in the process. This nuclear-fusion
energy can be employed to produce electricity while avoiding
some of the inconveniences associated with fossil energy
(like greenhouse-gas emissions), nuclear-fission energy (like
long-lived radioactive waste), and renewable (solar or wind)
energy (like relatively low power density and intermittency).

The safety factor, q, is a measure of the pitch of the
magnetic-field lines within a tokamak. It varies in space from
the magnetic axis (i.e., approximately the geometric axis of
the tokamak torus) till the plasma edge (as depicted in Fig. 1
and 2). Therefore, q is in fact a space-dependent variable
whose spatial shape is referred to as “profile.” The q profile
is closely related to the macroscopic stability of the plasma,
also known as magnetohydrodynamic (MHD) stability [1],
as well as to the microscopic behavior of the plasma,
which determines the overall plasma-confinement levels in
the absence of MHD instabilities. An example of MHD
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instability is the neoclassical tearing mode (NTM), which
limits the achievable plasma pressure and, in some cases,
can terminate the confined plasma. The NTMs are found
at rational surfaces, i.e., surfaces defined by points with
q = m/n, where the integers m and n are the poloidal and
toroidal mode numbers, respectively. Increasing q removes
low-order (i.e., low m) rational surfaces from the plasma and,
therefore, avoids the development of the associated NTMs.
On the other hand, a reduction of the microscopic plasma
turbulence, with an associated confinement improvement,
is found when internal transport barriers (ITBs) form in
tokamaks. The ITB formation is sometimes triggered when
the spatial derivative of q becomes low or negative in the
central region of the plasma, i.e., near the magnetic axis (see
Fig. 1). This implies that the minimum of the q profile across
the plasma spatial domain is found somewhere between the
magnetic axis and the plasma edge (see Fig. 2). As a result,
active control of the minimum (in space) of the safety factor,
qmin, may be highly beneficial to avoid MHD instabilities
and maximize plasma confinement in tokamaks.

Extensive research has been carried out to develop algo-
rithms for the regulation of the q profile (examples can be
found in [2], [3], [4], [5]), sometimes in conjunction with
βN (see, for example, [6], [7], [8]). However, not much
work can be found for the regulation of qmin. In [9], a
proportional controller was designed for the regulation of
qmin, and tested in the DIII-D tokamak. The controller makes
use of the neutral beam injectors (NBIs) to regulate qmin by
modifying the plasma resistivity, η. The control model does
not account for qmin variations due to localized NBI current
drive. Other pieces of work, like [10] or [11], consider
regulation of the central safety factor, q0, which corresponds
to the value of q at the magnetic axis. In plasmas where
the q profile is monotonically increasing from the magnetic
axis till the plasma edge, it is found that q0 ≡ qmin, so
the algorithms proposed in [10], [11] would in fact regulate
qmin (see Fig. 2). However, in general, these algorithms do
not ensure qmin regulation because q0 6= qmin is often found
in tokamak-plasma scenarios of interest.
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Fig. 1. Helical magnetic fields confine a plasma in tokamaks. This results in
toroidally-nested magnetic-flux surfaces in the absence of MHD instabilities.
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In this work, a novel controller for the regulation of qmin
is presented. The lack of previous work on qmin regulation
responds to the challenges associated with its time-varying
location, i.e. the location of qmin in space, denoted by ρ̂qmin
in this work, varies in time as qmin is regulated. Lyapunov
theory [12] has been employed to achieve a nonlinear-control
design that retains as much information about the q-profile
dynamics model as possible. In addition, Lyapunov-redesign
techniques [12] have been utilized to robustify the design
against model uncertainties. The particular design of this
qmin controller allows for its integration with other con-
trollers for the simultaneous regulation of different plasma
properties [13]. A procedure to integrate the qmin controller
with a controller for the thermal energy, W , is illustrated in
this paper. The overall scheme has been tested for a DIII-
D scenario in simulations using COTSIM (Control-Oriented
Transport SIMulator), which employs plasma models that are
one-dimensional (1D) in space. These simulation models are
significantly more complex than those employed for control
synthesis. This represents a significant test for the robustness
of the controller against unknown dynamics. The actuators
considered are the NBIs (which, in the DIII-D case, can
drive localized current on the magnetic axis or off-axis) and
electron-cyclotron heating and current drive (ECH&CD).

The paper is organized as follows. The control-synthesis
model is described in Section II. The control synthesis is
presented in Section III. A 1D-simulation study in a DIII-D
scenario is included in Section IV. Finally, conclusions and
possible future work are stated in Section V.

II. MINIMUM SAFETY-FACTOR DYNAMICS

A magnetic-flux surface is defined by points with the same
value of poloidal magnetic flux, Ψ. The poloidal magnetic
flux at a point P is defined as Ψ ,

∫
S
~Bθ · d~S, where ~Bθ is

the poloidal magnetic field, and S is the surface normal to the
z axis whose boundary is the toroidal ring passing through
P , as depicted in Fig. 1. Similarly, the toroidal magnetic flux,
Φ, is defined as Φ ,

∫
Sφ

~Bφ · d~Sφ, where ~Bφ is the toroidal
magnetic field, and Sφ is the surface normal to the φ axis
whose boundary is the magnetic-flux surface containing P .
Under ideal MHD equilibrium conditions [1], the magnetic-
flux surfaces are toroidally nested around the magnetic axis
(see Fig. 1). The magnetic-flux surfaces can be labeled by a
single coordinate within the r-z plane, like Ψ, Φ, or a related
variable. This fact and the assumption of toroidal symmetry
reduce the 3D problem in space to a 1D problem.

The spatial coordinate employed in this work is the mean
effective minor radius, ρ ,

√
Φ/(Bφ,0π), where Bφ,0 is the

vacuum toroidal magnetic field at the major radius, R0. A
normalized version of ρ is given by ρ̂ , ρ/ρb, where ρb is the
mean effective minor radius of the last-closed magnetic-flux
surface. The safety factor, q, is defined as

q , −dΦ

dΨ
= −Bφ,0ρ

2
b ρ̂

∂ψ/∂ρ̂
, (1)

where ψ = Ψ/(2π) is the poloidal stream function. The

Magnetic axis
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(⍴ = ⍴b, "# = 1)
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Fig. 2. Examples of typical q-profile shapes in tokamak plasmas. In
monotonically increasing q profiles (solid red), qmin is found at the
magnetic axis, so ρ̂qmin = 0 and qmin ≡ q0. In reverse-shear q profiles
(dashed blue), qmin is found at an off-axis location, ρ̂qmin 6= 0.

minimum safety factor, qmin, is defined as

qmin , q(ρ̂qmin), (2)

where ρ̂qmin is the value of ρ̂ where the minimum safety
factor is located (see Fig. 2). The dynamics of qmin can
be characterized through ψ, which is given by the magnetic
diffusion equation (MDE) [14],

∂ψ

∂t
=

η

µ0ρ2b F̂
2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥηjni, (3)

[∂ψ/∂ρ̂]ρ̂=0 = 0, [∂ψ/∂ρ̂]ρ̂=1 = −kIpIp, (4)

where η is the plasma resistivity, jni is the non-inductive
current, F̂ (ρ̂), Ĝ(ρ̂), Ĥ(ρ̂), Dψ , F̂ ĜĤ , and kIp are profiles
and scalars corresponding to a particular plasma equilibrium,
µ0 is the vacuum permeability, and Ip is the plasma current.

The model described by (1)-(4) is a nonlinear model whose
state equation (3) is a partial differential equation with state
ψ(ρ̂, t) and boundary conditions given by (4), and an output
equation defined by (1)-(2). The parameters and profiles
Bφ,0, ρb, R0, F̂ , Ĝ, and Ĥ are assumed to be known exactly,
whereas the control-oriented models employed for η and
jni [15] are assumed to contain some level of uncertainty.

The model for η is given by

η = gη(ρ̂)
(
Ip
√
Ptotn̄

−1
e

)−3/2
+ δη, (5)

where gη is a profile characterizing the spatial distribution of
the plasma resistivity, Ptot is the total injected power, Ptot =∑NNB
i=1 PNB,i + PEC (where PNB,i denotes the power of

the i-th NBI, for i = 1, ..., NNB , NNB is the total number
of NBI’s, and PEC is the EC power), n̄e is the line-average
electron density, and δη is an uncertainty. In this work, PNB,i
and PEC are considered controllable inputs (Ip and n̄e are
considered non-controllable inputs).

The model for jni is given by

ηjni =

i=NNB∑
i=1

gNB,i(ρ̂)

Ip
√
Ptot

PNB,i +
gEC(ρ̂)

(Ip
√
Ptotn̄e)1/2

PEC

+ (∂ψ/∂ρ̂)−1gBS(ρ̂)(Ip
√
Ptotn̄

−1
e )−1/2n̄e + δjni , (6)

where gNB,i, gEC , and gBS are model profiles related to
the NBI, EC, and bootstrap current depositions, respectively,
and δjni is an uncertainty.
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Using (5) and (6), and taking derivative with respect to ρ̂
(see Appendix I for details), (3) can be rewritten as

∂θ

∂t
=

(
hη,1

∂2θ

∂ρ̂2
+ hη,2

∂θ

∂ρ̂
+ hη,3θ

)
uη+

NNB∑
i=1

hNB,iuNB,i

+ hECuEC +

(
hBS,1
θ
− hBS,2

θ2
∂θ

∂ρ̂

)
uBS + δθ, (7)

where θ(ρ̂, t) , ∂ψ(ρ̂, t)/∂ρ̂ is the poloidal-flux gradient,
h(·) are spatial functions that depend only on ρ̂, δθ is a term
that depends on the uncertainties δη and δjni , and u(·) are
the virtual inputs to the system, i.e., they are functions of the
physical inputs, namely, Ip, PNB,i (i = 1, ..., NNB), PEC ,
and n̄e, as given by

uη ,
(
Ip
√
Ptotn̄

−1
e

)− 3
2

, uNB,i ,
PNB,i

Ip
√
Ptot

, (8)

uEC ,
PEC(

Ip
√
Ptotn̄e

) 1
2

, uBS ,
(
Ip
√
Ptotn̄

−1
e

)− 1
2

n̄e. (9)

To simplify the notation, the following variables are defined

θqmin , −Bφ,0ρ
2
b ρ̂qmin

qmin
, (10)

θ′qmin , [∂θ/∂ρ̂]ρ̂qmin
, θ′′qmin ,

[
∂2θ/∂ρ̂2

]
ρ̂qmin

, (11)

Particularizing (7) at ρ̂qmin yields

dθqmin
dt

=
[
hminη,1 θ

′′
qmin + hminη,2 θ

′
qmin + hminη,3 θqmin

]
uη

+

NNB∑
i=1

hminNB,iuNB,i + hminEC uEC

+

(
hminBS,1

1

θqmin
− hminBS,2

θ′qmin
θ2qmin

)
uBS + δqminθ , (12)

where hminη,j , hη,j(ρ̂qmin) (j = 1, 2, 3), hminNB,i ,
hNB,i(ρ̂qmin) (i = 1, ..., NNB), hminEC , hEC(ρ̂qmin),
hminBS,k , hBS,k(ρ̂qmin) (k = 1, 2), and δqminθ , δθ(ρ̂qmin). It
must be noted that ρ̂qmin is a function of time, so hmin(·) also
change with time and (12) is a non-autonomous system.

III. CONTROL SYNTHESIS

For control-synthesis purposes, it is considered that real-
time estimates or measurements for ρ̂qmin and θ are available
(e.g., from a real-time equilibrium reconstruction, as is the
case in many tokamaks and in DIII-D [16] in particular).
This allows for treating ρ̂qmin as a known variable (i.e., as a
measurable but not directly controllable input), so that (12)
can be updated in real time.

Moreover, from (10), it can be noted that regulating qmin
becomes equivalent to regulating θqmin as long as ρ̂qmin is
known. As a result, the control objective can be stated as
driving θqmin towards a real-time-varying target, θ̄qmin , so
that qmin is driven towards a desired target value q̄min that
is prescribed off-line. Using the definition (10), the value of
θ̄qmin can be calculated in real time as

θ̄qmin = −Bφ,0ρ
2
b ρ̂qmin

q̄min
. (13)

It must be noted, from the definition of qmin (1)-(2) and the
ψ dynamics (3)-(4), that the dynamics of qmin and ρ̂qmin
are not only highly coupled but also dependent on both ψ
and q. In the effort of regulating qmin, the whole q profile,
and ρ̂qmin , can therefore change in response to the actuation
of the controllable inputs. In this work, ρ̂qmin is treated as
a measurable input rather than modeling its response to the
controllable inputs. As a consequence, (12) is updated as
ρ̂qmin evolves. This approach demands that the update of (13)
in real-time implementations be faster than the dynamics of
ρ̂qmin , which guarantees a calculation of θ̄qmin that actually
makes qmin converge toward q̄min.

After these initial considerations, the control-synthesis
process for the qmin controller has two steps. First, a nominal
control law for the nominal system dynamics (i.e., (12) with
δqminθ = 0) is obtained using Lyapunov theory. Second, a ro-
bust control law for the uncertain system dynamics (i.e., (12)
with δqminθ 6= 0) is designed based on the nominal control law
and Lyapunov redesign techniques. After the qmin controller
is synthesized, the W controller is briefly introduced, and the
overall control scheme for simultaneously regulating qmin
and W is presented.

A. Nominal Control Law for qmin
By setting dθqmin/dt in (12) with δqminθ ≡ 0 as

dθqmin
dt

, −KP θ̃qmin −KI

∫ t

t0

θ̃qmindt+
dθ̄qmin
dt

, (14)

where KP > 0, KI > 0 are design parameters, and θ̃qmin ,
θqmin − θ̄qmin is the deviation variable, the nominal system
dynamics (i.e., (12) with δqminθ ≡ 0) can be rewritten as

ẋ1 = −KPx1 −KIx2, ẋ2 = x1, (15)

where x = [x1, x2]T , [θ̃qmin ,
∫ t
0
θ̃qmindt]

T is the state
vector, and ˙(·) , d(·)/dt. In order to demonstrate the
asymptotical stability of the nominal system dynamics (15),
a Lyapunov function [12] given by V = 1

2x
2
1+ 1

2ax
2
2+bx1x2

is employed, where a and b are constant coefficients that are
determined next. First, in order to have V > 0 for all x1 6= 0,
x2 6= 0, the following inequality must be satisfied

a− b2 > 0. (16)

Second, the time derivative of V is given by

V̇ = −(KP − b)x21−KIbx
2
2− (KP b+KI − a)x1x2. (17)

In order to make W , (KP −b)x21 +KIbx
2
2 +(KP b+KI−

a)x1x2 > 0 (∀x 6= 0), the inequalities

KP −b > 0, (KP −b)KIb−
1

4
(KP b+KI−a)2 > 0, (18)

must be fulfilled. The constants a and b must be chosen
so that (16) and (18) are fulfilled. Taking a = KI , the
inequalities in (16) and (18) can be expressed as

b <
√
KI , b < KP , b

(
KPKI − (KI +

K2
P

4
)b

)
> 0,
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where b must fulfill b > 0 and b < KPKI/(KI +
1
4K

2
P ) simultaneously. Therefore, a = KI and 0 < b <

min
(√
KI ,KP ,KPKI/(KI + 1

4K
2
P )
)

can be used to prove
the asymptotical stability of the nominal system dynamics
(15) [12]. Although linear techniques could also have been
used, the search of V are motivated by the fact that a non-
linear, robust-control design can be attained using Lyapunov
redesign, as shown in Section III-B.

The nominal control law is obtained by equating the right-
hand sides of (12) and (14), i.e.,

[
hminη,1 θ

′′
qmin+ hminη,2 θ

′
qmin+ hminη,3 θqmin

]
uη+

NNB∑
i=1

hminNB,iuNB,i

+ hminEC uEC +

(
hminBS,1

1

θqmin
− hminBS,2

θ′qmin
θ2qmin

)
uBS =

= −KP θ̃qmin −KI

∫ t

t0

θ̃qmindt+
dθ̄qmin
dt

. (19)

and solving this nonlinear equation (19) for PNB,i (i =
1, ..., NNB) and PEC . It can be noted that (19) depends
on PNB,i and PEC through uη , uNB,i, uEC , and uBS ,
as specified by (8)-(9). Because, in general, the number of
unknowns, NNB+1, is greater than 1, equation (19) by itself
does not provide a unique solution for PNB,i and PEC . This
issue is addressed in Section III-C.

B. Robust Control Law for qmin
In order to robustify the nominal control law by means of

Lyapunov redesign techniques [12], a design term v is added
to the right-hand side of equation (19),

[
hminη,1 θ

′′
qmin+ hminη,2 θ

′
qmin+ hminη,3 θqmin

]
uη+

NNB∑
i=1

hminNB,iuNB,i

+ hminEC uEC +

(
hminBS,1

1

θqmin
− hminBS,2

θ′qmin
θ2qmin

)
uBS =

= −KP θ̃qmin −KI

∫ t

t0

θ̃qmindt+
dθ̄qmin
dt

+ v. (20)

where uη , uNB,i, uEC , and uBS are given by (8)-(9). Under
the robust control law (20), the uncertain dynamics (i.e., (12)
with δqminθ 6= 0) can be rewritten as

ẋ1 = −KPx1 −KIx2 + v + δqminθ , ẋ2 = x1. (21)

Using the Lyapunov function V from Section III-A with a =
KI and 0 < b < min

(√
KI ,KP ,KPKI/(KI + 1

4K
2
P )
)
, its

time derivative V̇ can be bounded as

V̇ = −W + (x1 + bx2)(v + δqminθ ) ≤
≤ −W + (x1 + bx2)v + |x1 + bx2|δmaxθ , (22)

and if v is chosen as

v = −δmaxθ sign(x1 + bx2), (23)

where δmaxθ is the maximum value attainable for δqminθ ,
which is assumed to be known, then V̇ ≤ −W . Using the
same arguments as in Section III-A, it can be concluded that
the uncertain system (21) is asymptotically stable.

The control law (20) with v given by (23) is discontinuous
and undefined at ‖x‖2 → 0. Thus, v is modified as follows.
First, the region |x1 + bx2| ≥ ε/δmaxθ is considered, where
ε > 0 is a design parameter. In such region, v = sign(x1 +
bx2) is always defined, and V̇ ≤ −W . When |x1 + bx2| <
ε/δmaxθ , taking v = −(x1 + bx2)(δmaxθ )2/ε yields

V̇ ≤ −W − (x1 + bx2)2(δmaxθ )2/ε+ |x1 + bx2|δmaxθ . (24)

It can be noted that the two last terms on the right-hand
side of (24) can be written as f(w) = −w

2

ε + w, with
w = δmaxθ |x1 + bx2|. A maximum at wmax = ε/2 if found
for f(w), at which f(wmax) = ε/4. Therefore, (24) can
be rewritten as V̇ ≤ −W + ε/4, which, because ε > 0,
is fulfilled not only when |x1 + bx2| < ε/δmaxθ , but also
when |x1 + bx2| ≥ ε/δmaxθ . This allows for concluding that
x is ultimately bounded as ‖x‖2 ≤ gB(ε) [12], where gB
is a class K function1. To have a bound that is as tight as
possible, it is necessary to set ε small (ε→ 0).

The robust control law is obtained from by solving (20)
for PNB,i (i = 1, ..., NNB) and PEC , with v given by

v=−δmaxθ sign(x1 + bx2), if |x1 + bx2| ≥ ε/δmaxθ , (25)

v=−(δmaxθ )2(x1 + bx2)/ε, if |x1 + bx2| < ε/δmaxθ . (26)

As in the nominal case, the number of unknowns, NNB + 1,
is in general greater than 1, so equation (20) by itself does
not provide a unique solution for PNB,i and PEC . This issue
is addressed in Section III-C.

C. Integration of the qmin and W Control Laws
As introduced at the end of Sections III-A and III-B, the

qmin control law does not univocally determine the vector
of controllable inputs P = [PNB,1, ..., PNB,NNB , PEC ]T .
This makes the qmin controller suitable for integration with
other controllers. In particular, it is often desired to regulate
the plasma thermal energy, W , which is proportional to the
plasma pressure. Although the details are not shown in this
work, a nonlinear robust control law for W that follows the
derivation in [13] is employed. This controller determines
the total injected power, P reqtot , required for W regulation.
P reqtot , which is calculated at each time step from W and its
target W̄ , must at all time satisfy∑

i

PNB,i + PEC = P reqtot . (27)

It is, therefore, considered in this work that P reqtot is a known
variable that is computed in real time by the W controller.

The components of P = [PNB,1, ..., PNB,NNB , PEC ]T ∈
RNNB+1 are determined by solving a real-time optimization
problem,

min
P

PTQP (28)

subject to (20), (27), and saturation limits on P , (29)

where Q > 0 is a diagonal matrix whose terms are chosen
by design, so the control effort PTQP is minimized. The
problem (28)-(29) is solved using a sequential quadratic-
programming algorithm [17].

1f(x) is class K iff: (1) f(0) = 0, (2) it is strictly increasing with x.
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Fig. 3. Simulation results using COTSIM in FF-only (magenta dashed-dotted) and FF + FB (blue solid) simulations, together with the targets (red dashed).
The system outputs (q0, W ) and controllable inputs (PNB,ON , PNB,OFF , and PEC ) are plotted together with the q profile at t = 1.5 s and t = 5.5 s.

IV. SIMULATION STUDY

In this section, the control algorithm previously introduced
is tested in 1D simulations for the DIII-D tokamak. Two
types of NBIs are used (i.e., NNB = 2): on-axis NBIs and
off-axis NBIs, whose powers are denoted by PNB,ON and
PNB,OFF , respectively. The saturation limits are PNB,(·) ∈
[0, 3] MW and PEC ∈ [0, 4] MW. The simulation study
is carried out by means of COTSIM, which is a 1D code
for control testing and simulation that evolves ψ using the
MDE (3) together with the electron heat-transport equation
for the electron temperature, Te, as given by

∂( 3
2neTe)

∂t
=

1

ρ2b ρ̂Ĥ

∂

∂ρ̂

(
ρ̂
ĜĤ2

F̂
χene

∂Te
∂ρ̂

)
+Qe, (30)

where χe is the electron heat diffusivity and Qe is the
electron-heat deposition. Control-oriented models are used
for ne, jni, and Qe, and a Spitzer-like model is used for η,
i.e., η ∝ T−3/2e . A Bohm/Gyro-Bohm model [18] is used for
χe. Then, the MDE and electron heat-transport are coupled
by means of the diffusive terms (η and χe) and source terms
(jni and Qe). Analytical models are used to estimate the
pedestal evolution [19], so the core and pedestal transport are
coupled. The use in simulations of (30) with a Bohm/Gyro-
Bohm model in combination with an analytical pedestal
model represents a significant increase in model complexity
when compared with those models used for control synthesis
in Section II, where the dynamics of Te is neglected.

The objective of this section is to assess the performance
of the qmin + W control scheme in the presence of unknown

plasma dynamics while simultaneously driving both W and
qmin toward their respective targets, W̄ and q̄min. First, a
feedforward-only simulation is run with the experimental
inputs from shot 172538. The evolutions of qmin and W in
such simulation are denoted by qexpmin and W exp, respectively.
These are employed to generate the targets for a FF + FB
simulation. The targets are set as q̄min = qexpmin + 0.2 and
W̄ = 1.05W exp. Then, a FF + FB simulation is executed,
and the FB controller is activated at t = 0.7 s.

Fig. 3 shows the time evolutions of qmin, W , q̄min and
W̄ , together with the q profile at t = 1.5 s and t = 5.5 s,
as well as the controllable inputs, PNB,ON , PNB,OFF , and
PEC , during the FF and FF + FB simulations. It can be
seen that good performance is achieved when regulating
qmin and W , which converge toward q̄min and W̄ ( (see
Fig. 3(a)) and Fig. 3(b), respectively). To achieve so, the W
controller increases P reqtot = PNB,ON + PNB,OFF + PEC ,
and the qmin controller initially increases PNB,OFF (see
Fig. 3(e)), moderately increases PEC (see Fig. 3(f)), and
decreases PNB,ON (see Fig. 3(d)), so that qmin is increased.
Later during the simulation, at t ≈ 3 s, PNB,ON is also
increased to drive W toward W̄ . It can be observed that
the overall q-profile shape and ρ̂qmin change (see Fig. 3(c))
by regulating qmin and W . There is an increase in the q
profile in the central plasma region. Also, a more negative
magnetic shear is attained in the FF + FB simulation than
in the FF simulation, as a result of achieving a higher
ρ̂qmin . The negative magnetic shear may improve the plasma
confinement [1], facilitating the regulation of W around W̄ .
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V. CONCLUSION AND POSSIBLE FUTURE WORK

A nonlinear-robust controller for qmin in tokamaks has
been presented. Its synthesis process is based on the use of
Lyapunov theory and redesign techniques. It also assumes
that an estimate for the location of qmin is available, which
is a standard capability in present tokamaks. Moreover, as
the qmin controller works by specifying a constraint for
the controllable inputs, rather than computing the inputs
directly, it can be easily integrated with other controllers. In
conjunction with a W controller, the qmin controller shows
good performance and robustness in the presence of unknown
dynamics in simulations using COTSIM. Future work may
include experimental testing of the controller in DIII-D.

APPENDIX I

Using the definition of the poloidal-flux gradient, θ ,
∂ψ/∂ρ̂, and applying the chain rule, (7) is rewritten as

∂ψ

∂t
=

η

µ0ρ2b F̂
2

[
Dψθ

′ +

(
Dψ

ρ̂
+D′ψ

)
θ

]
+R0Ĥηjni,

where (·)′ , ∂(·)/∂ρ̂, and taking time derivative yields

∂θ

∂t
=

(
η

µ0ρ2b F̂
2

)′ [
Dψθ

′ +

(
Dψ

ρ̂
+D′ψ

)
θ

]
+

η

µ0ρ2b F̂
2

[
Dψθ

′′ +

(
Dψ

ρ̂
+ 2D′ψ

)
θ′ +

(
D′ψρ̂−Dψ

ρ̂2

)
θ

]
+
(
R0Ĥηjni

)′
. (31)

Using (5), reorganizing the terms in (31) yields

∂θ

∂t
=

1

µ0ρ2b

{[(
gη

F̂ 2

)′(
Dψ

ρ̂
+D′ψ

)
+
gη

F̂ 2

(
D′ψρ̂−Dψ

ρ̂2

)]
θ

+

[(
gη

F̂ 2

)′
Dψ +

gη

F̂ 2

(
Dψ

ρ̂
+ 2D′ψ

)]
θ′

+
gη

F̂ 2
Dψθ

′′
}

(Ip
√
Ptotn̄

−1
e )−

3
2 +

(
R0Ĥηjni

)′
+

(
δη

µ0ρ2b F̂
2

[
Dψθ

′ +

(
Dψ

ρ̂
+D′ψ

)
θ

])′
uη. (32)

The term
(
R0Ĥηjni

)′
in equation (32) can be rewritten,

using (6) and applying the chain rule, as(
R0Ĥηjni

)′
= R0

∑
i

(ĤgNB,i)
′(Ip
√
Ptot)

−1PNB,i

+R0(ĤgEC)′(Ip
√
Ptotn̄

−1
e )(−1/2)n̄−1e PEC

+R0(ĤgBS)′(Ip
√
Ptotn̄

−1
e )−1/2n̄e +R0(Ĥδjni)

′.

By defining the following model profiles,

hη,1 ,
1

µ0ρ2b

gη

F̂ 2
Dψ, (33)

hη,2 ,
1

µ0ρ2b

[(
gη

F̂ 2

)′
Dψ +

gη

F̂ 2

(
Dψ

ρ̂
+ 2D′ψ

)]
, (34)

hη,3 ,
1

µ0ρ2b

[(
gη

F̂ 2

)′(
Dψ

ρ̂
+D′ψ

)
+
gη

F̂ 2

(
D′ψρ̂−Dψ

ρ̂2

)]
,

hNB,i , R0(ĤgNB,i)
′, hEC , R0(ĤgEC)′,

hBS,1 , R0(ĤgBS)′, hBS,2 , R0ĤgBS ,

the virtual inputs in (8)-(9), and the uncertainty

δθ,

(
δη

µ0ρ2b F̂
2

[
Dψθ

′ +

(
Dψ

ρ̂
+D′ψ

)
θ

])′
uη+R0(Ĥδjni)

′,

equation (32) becomes

∂θ

∂t
=

(
hη,1

∂2θ

∂ρ̂2
+ hη,2

∂θ

∂ρ̂
+ hη,3θ

)
uη+

NNB∑
i=1

hNB,iuNB,i

+ hECuEC +

(
hBS,1

1

θ
− hBS,2

∂θ/∂ρ̂

θ2

)
uBS + δθ.
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