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Abstract— The tokamak, a viable option for harnessing
nuclear fusion energy, employs strong helical magnetic fields
to confine a plasma (ionized gas) within a toroidal vacuum
chamber. Optimal performance in tokamaks necessitates so-
phisticated control mechanisms to shape the spatial profiles
of specific plasma properties. One such property is the safety
factor q, which measures the pitch of the helical magnetic field
lines. The dynamics of the q profile in tokamaks depends on
the gradient of the poloidal magnetic flux, which is governed
by a nonlinear partial differential equation referred to as the
magnetic diffusion equation. In this work, model predictive
control (MPC) is proposed to regulate the q profile in the EAST
tokamak. The finite-horizon optimal control problem (FHOCP)
associated with the MPC approach is defined with the goal of
minimizing the tracking error between observed and target gra-
dients of the poloidal magnetic flux while satisfying input and
state constraints. To address the optimization problem in real
time, a simplified model is derived from the magnetic diffusion
equation. As a difference from previous efforts in this area,
a self-triggered mechanism is implemented within the MPC
algorithm to prevent redundant computations arising in fixed
sampling-time MPC schemes. Simulation studies show that the
proposed controller has the capability of regulating the q profile
through the manipulation of the plasma current and the heating
and current-drive powers. A comparison with regular fixed-
sampling-time MPC methods demonstrates that the proposed
self-triggered MPC strategy optimizes performance by avoiding
redundant computations and saving computational time.

I. INTRODUCTION

Nuclear fusion has garnered significant attention as a po-
tentially transformative energy source due to its advantages,
such as high energy density, abundant fuel availability, and
negligible contributions to air pollution or climate change.
Furthermore, the radioactive byproducts of fusion reactions
are relatively short-lived compared to fission, minimizing
long-term waste management concerns. To increase the
likelihood of fusion, the fuel gas (a mix of isotopes of
hydrogen) must be heated to extreme temperatures of the
order of 100 million degrees. At these temperatures, the
fuel gas is found in an ionized plasma state, known as
the fourth state of matter. Containing this ionized gas at
such high temperatures demands specialized confinement
mechanisms. Charged particles within the plasma can be
effectively confined through the application of magnetic
fields, capitalizing on the Lorentz force to counterbalance
the plasma’s inherent expansion tendencies. The tokamak,
a toroidally-shaped device, has emerged as a particular
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effective approach to magnetic confinement of the plasma.
However, achieving commercial viability for fusion energy
may require the operation of tokamaks under a unique set of
conditions referred to as Advanced Tokamak (AT) scenarios.
These scenarios are characterized by superior confinement
properties, enhanced magnetohydrodynamic (MHD) stability,
and possible steady-state operation. The effective realization
of AT scenarios is intrinsically linked to the ability of
meticulously controlling the spatial distribution of several
key plasma properties, commonly referred to as “profiles.”
One such profile is the safety factor q, a metric that measures
the spatial variation of the pitch of the helical magnetic field
lines that are responsible for plasma confinement.

The application of non-inductive heating and current
drive techniques is central to achieving optimized plasma
profiles and, by extension, AT scenarios. These methods,
such as neutral beam injection (NBI) and lower hybrid
waves (LHW), serve as actuating mechanisms, facilitating
the active control of plasma profiles. Several recent studies
have delved into the synthesis of Model Predictive Control
(MPC) algorithms for the purpose of q profile regulation [1],
[2], [3], [4]. In recent work [4], an offset-free MPC algorithm
to regulate the q profile using non-inductive heating and
current drives was developed and integrated into the EAST
Plasma Control System (PCS) [5] under the Profile Control
Category (PCC). However, experimental results highlight the
substantial computational costs associated with this MPC
implementation, limiting the length of the prediction horizon.
Excessive computational requirements by the MPC algorithm
would restrict its applicability in scenarios demanding con-
current control of multiple plasma properties using different
controllers. Therefore, improved strategies for computational
resource allocation are needed, both within the PCC and
across the broader PCS landscape.

To overcome these challenges associated with regular
MPC techniques, self-triggered MPC solutions have been
proposed to reduce unnecessary computations. A self-
triggered controller [6] determines the next update time based
on the controller performance, which eliminates the need for
continuous monitoring and updating arising in regular MPC
approaches. The general framework of self-triggered control
systems and a comparison between event-triggered and self-
triggered control systems is provided in [7]. The stability
properties and control performance when the controller op-
erates at variable intervals are studied in [8]. The feasibility
of the feedback controller combined with the triggering
mechanism has been studied for the self-triggered control
of discrete-time linear systems in [9], [10]. Research then
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evolved to include more complex situations involving various
types of constraints and disturbances [11], [12]. Existing
literature on self-triggered MPC confirms its effectiveness
in avoiding extra calculations, making it a strong candidate
for improving the computational efficiency of the q-profile
controller in the EAST tokamak. This work focuses on
developing and implementing a self-triggered model predic-
tive algorithm for q-profile control in the EAST tokamak.
The self-triggering condition is based on the mechanism
presented and theoretically analyzed in [13]. Extensive nu-
merical simulation results illustrate the quantitative reduction
in computational burden when the regular MPC is replaced
by the proposed self-triggered MPC.

This paper is organized as follows. Section II introduces
the control-oriented models for the q profile and other
related plasma properties. Section III summarizes how the
control-oriented model is reduced to a form suitable for
synthesizing a computationally efficient control algorithm.
Section IV formulates the control problem and presents the
self-triggered MPC algorithm. Section V presents simulation
results comparing self-triggered and regular MPC methods.
Conclusions and future work are discussed in Section VI.

II. SAFETY FACTOR PROFILE EVOLUTION MODEL

A. Poloidal Magnetic Flux Dynamics
Details on the tokamak magnetic configuration, variable

definitions, and response models can be found in [4], [14].
The q profile is defined as

q(ρ̂, t) =−Bφ ,0ρ
2
b ρ̂ (∂ψ/∂ ρ̂)−1 , (1)

where ρ̂ is the mean effective minor radius, t is the time,
Bφ ,0 is the vacuum toroidal magnetic field at the major
radius R0, ψ is the poloidal stream function defined as
ψ ≜Ψ/2π , and Ψ is the poloidal magnetic flux. The q profile
can be regulated by controlling the gradient of the stream
function. The magnetic diffusion equation (MDE) governs
the evolution of the stream function and takes the form

∂ψ

∂ t
=

η(Te)

µ0ρ2
b F̂2

1
ρ̂

∂

∂ ρ̂

(
ρ̂Dψ

∂ψ

∂ ρ̂

)
+R0Ĥη(Te)

⟨ j̄NI · B̄⟩
Bφ ,0

, (2)

subject to boundary conditions ∂ψ

∂ ρ̂
|ρ̂=0 = 0 and ∂ψ

∂ ρ̂
|ρ̂=1 =

kIp Ip, where Ip is the plasma current, µ0 is the permeability
in vacuum, η is the plasma resistivity, Te is the electron
temperature, F̂ , Ĝ and Ĥ are geometric factors [15] capturing
the topology of the MHD equilibrium, and ⟨ j̄NI ·B̄⟩

Bφ ,0
is the non-

inductive current drive. The notation
〈
·
〉

is used to denote
the flux-surface average of a quantity. The terms Dψ in and
kIp are defined as Dψ(ρ̂)≜ F̂ĤĜ and kIp ≜− µ0

2π

R0
Ĝ(1)Ĥ(1)

.

B. Electron Heat Transport Equation
As evident from (2), the evolution of ψ depends on the

evolution of the electron temperature Te. When heat diffusion
is the dominant transport mechanism, the evolution of Te can
be modeled using a simplified version of the electron heat
transfer equation (EHTE), which can be expressed as

3
2

∂

∂ t
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with boundary conditions ∂Te
∂ ρ̂

|ρ̂=0 = 0 and Te(1, t) =

Te,bdry(t), where χe(ρ̂, t) denotes the electron thermal con-
ductivity and Te,bdry is the temperature at the plasma edge.
The total electron heating power density is denoted as
Qe(ρ̂, t), which is expressed as Qe(ρ̂, t) = Qohm(ρ̂, t) +
Qaux(ρ̂, t) − Qrad(ρ̂, t), where Qohm is the ohmic power
density, Qrad is the radiation power density, and Qaux is the
auxiliary power density. The auxiliary power density is com-
puted by Qaux ≜ QNBI +QLHW =

∑nnbi
i=1 QNBIi +

∑nlhw
i=1 QLHWi ,

where QNBI and QLHW are natural beam injection and lower
hybrid wave heating profiles, respectively. The evolution of
the electron density ne is modeled as ne(ρ̂, t)= npro f

e (ρ̂)n̄e(t),
where npro f

e is a reference electron density profile and n̄e is
the line average electron density.

C. Plasma Stored Energy Dynamics

Another plasma property that is critical for the MHD
stability of the plasma and is coupled to the evolution of
the safety factor is the plasma stored energy W . A nonlinear
first-order differential equation is used to model the dynamics
of the volume-averaged plasma stored energy density, i.e.

dW
dt

=− W
τE(t)

+Ptot(t)≜ fW , (4)

where τE ∝ Ip(t)0.96Ptot(t)−0.73n̄e(t)0.4 denotes the energy
confinement time, which is computed using the IPB98(y,2)
scaling law [16]. The total injected power Ptot(t) is given by

Ptot = Pohm +Paux −Prad , (5)

where Pohm is the ohmic power, Prad is the radiated
power, and Paux =

∑
Pp is the total auxiliary-heating and

current-drive power (p ∈ {NBIi,LHWl}, i ∈ {1, · · · ,nnbi},
l ∈ {1, · · · ,nlhw}).

III. CONTROL-ORIENTED MODEL FOR MPC

The presented model is reduced in this section to a form
that is suitable for MPC implementation. To simplify the
coupling between ψ (MDE) and Te (EHTE), and therefore
to obtain a simpler model for the q evolution for con-
trol design, a control-oriented model for Te of the form
Te(ρ̂, t) = T pro f

e (ρ̂)Ip(t)α Ptot(t)γ n̄e(t)κ is introduced. In this
model, T pro f

e is a reference electron temperature profile
and α , γ , κ are positive scaling factors [17]. Incorporating
the above simplified model for Te into (2) and taking the
partial derivative on both sides results in a partial differential
equation that governs the evolution of the poloidal flux
gradient θ ≜ ∂ψ/∂ ρ̂:

∂θ

∂ t
=

[
dC f1
dρ̂

θ +

(
C f1 +

dC f2
dρ̂

)
∂θ

∂ ρ̂
+C f2

∂ 2θ

∂ ρ̂2

]
udi f f+∑

i

dC ji
dρ̂

u ji +
dC jbs

dρ̂

1
θ

u jbs −C jbs

1
θ 2

∂θ

∂ ρ̂
u jbs ≜ fθ . (6)

In (6), i ∈ {nbi1, · · · ,nbinnb , lhw1, · · · , lhwnlh}, C f1 ,C f2 ,C ji ,
and C jbs are functions of ρ̂ . It is clear from (1) that con-
trolling θ (see definition) is equivalent to controlling the
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q profile. The virtual control inputs udi f f , u ji and u jbs are
defined in terms of the physical actuators Ip,Ptot , and n̄e as

udi f f (t)≜
√

Ip(t)−3γ Ptot(t)−3ε n̄e(t)−3ζ , (7a)

u ji(t)≜ n̄e(t)(ζ (δ−1.5)−1) (Ip(t)γ Ptot(t)ε)
(δ−1.5) Pi(t), (7b)

u jbs(t)≜ Ip(t)−0.5γ Ptot(t)−0.5ε n̄e(t)1−0.5ζ . (7c)

The values of the coefficients [γ,ε,ζ ] are given by
[0.93,0.31,−0.59] [17]. The boundary conditions take the
form θ(ρ̂ = 0, t) = 0, θ(ρ̂ = 1, t) = kIp Ip(t). Note that (7)
does not depend on Te. However, the evolution between the
q profile and W is still coupled. Typically, the W controller
prescribes the total power Ptot to regulate the total energy.
This, in turn imposes an algebraic constraint on the q-profile
controller via (5). Alternatively, a single controller can be
designed to regulate both the q profile and W simultaneously.
In this work, the latter approach is used.

Combining the models for θ and W , given in (4) and (6),
respectively, and discretizing the augmented model at N +1
spatial nodes ρ̂0, · · · , ρ̂N using the finite-difference method
results in a nonlinear ordinary differential equation that
governs the evolution of x(t) = [θ1, · · · ,θN−1,W ]T ∈ RN×1,
where θi(t) = θ(ρ̂i, t), when driven by the physical inputs

u ≜ [Ip,PNBI1 ,PNBI2 ,PNBI3 ,PNBI4 ,PLHW1 ,PLHW2 ]
T . (8)

This implies nnbi = 4 and nlhw = 2. As shown in [4], using a
first order Taylor series approximation and a zero-order hold
temporal discretization gives a discrete-time linear model

∆x j+1 = A∆x j +B∆u j, (9)

where ∆x j = x j − xre f , ∆u j = u j − ure f , xre f and ure f are
the reference state and inputs vectors used for linearization,
respectively. Given a t j = j ×∆t, note that x j = x(t j) and
u j = u(t j). The state and input matrices, A and B, are time-
invariant. To eliminate the effect of model uncertainties on
the MPC, the offset-free model based on the velocity form
is used. It can be written as

∆x̃ j+1 = A∆x̃ j +B∆ũ j, (10)

where ∆x̃ j+1 = ∆x j+1 −∆x j and ∆ũ j+1 = ∆u j+1 −∆u j.
Owing to intrinsic physical constraints, the system’s input

remains inherently bounded. As a result, the output also
manifests bounded behavior. Thus, it is possible to show that
the discrepancy in the safety-factor profiles predicted by the
original and linearized models is bounded.

IV. SELF-TRIGGERED MPC FOR EAST
The selection of an MPC approach in this work is justified

by its inherent ability to handle system constraints, both on
state variables and control inputs, making it applicable to
both linear and nonlinear systems. The core feature of MPC
is its reliance on a system model for predicting future state
variables. These predictions are used to optimize a cost func-
tion over a defined prediction horizon, all while satisfying
system constraints. The control action is recalculated at each
sampling time, with only the initial element of the optimal
control sequence applied to the system.

A. Control Input Constraints

Before formulating the MPC problem, it is essential to
state the control input constraints. In the subsequent analysis,
4 NBI and 2 LHW drives are assumed to be available for
control. The bounds on u and the rate of change of the plasma
current Ip at time t = t j can be written as

umin ⪯ u j ⪯ umax,

(
dIp

dt

)
min
≤

dIp

dt

∣∣∣∣
j
≤
(

dIp

dt

)
max

, (11)

where umin ∈ R7×1 and umax ∈ R7×1 are lower and upper
bounds of u j, respectively, (dIp/dt)min and (dIp/dt)max are
the minimum and minimum ramp-down/up rates of Ip.

B. Formulation of the MPC Problem

Since the goal is to minimize the tracking error and the
feedback control effort over a horizon, the to-be-minimized
cost function is defined as

J =

j+Np−1∑
n= j

(xJ
n )

T QnxJ
n

2
+(d∆un)

T Rnd∆un, (12)

where Qn and Rn are positive-definite weighting matrices,
Np is the horizon length, and xJ

n = (∆x̃n+1 −∆x̃ tar
n+1). Define

the augmented vector X j as X j ≜ [(d∆u j)
T ,(∆x̃ j+1)

T ]. By
concatenating the augmented vectors X j from the present
time step t = t j to the penultimate prediction time step
t = t j+N p−1 in the horizon, we get a vector X̄ of the form
X̄ ≜ [XT

j ,X
T
j+1, · · · ,XT

j+Np−1]
T . Now, the minimization of the

cost function (12), subject to the state constraints imposed
by the velocity form of the system model (10) and the
constraints on physical actuators, can be written as a linearly
constrained quadratic programming problem as

min
X̄

1
2

X̄T P X̄ + f · X̄ (13)

subject to beq =AeqX̄ , bin ⪰ AinX̄ , (14)

where P is a positive-definite diagonal matrix and f is
a row vector. Note that the equality constraint in (14) is
determined by (10) over the prediction horizon. Also, the
inequality constraint in (14) is a variation of (11) over the
prediction horizon. In the numerical simulations discussed
in the next section, the fast quadratic programming (QP)
solver implemented in [4] is used to find solutions for the
optimization problem (13)-(14). It is worth noting that the
control strategy u∗j implemented in the plant at time t j is
obtained by extracting d∆u j

∗ from the solution X̄∗
j of the

optimization problem discussed above and then using the
formula u∗j = ∆u j−1 +d∆u j

∗+ure f
j .

C. Self-trigger Condition for MPC

In a regular MPC, the optimization problem presented
in the above subsection is solved at every time step t j. To
minimize the necessity of solving the optimization problem
and balance the trade-off between performance and compu-
tational or communication cost, a self-triggered MPC solves
the optimization problem at “trigger time steps”, which are
determined by a specific triggering criteria. Suppose the
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Fig. 1. Comparison of regular and self-triggered MPC tracking results. The first three plots (i.e., (a), (b), and (c)) show the θ evolution at three different
spatial points, and the last plot (d) shows the regulation results for the plasma stored energy.

current trigger time step is tk, then the next trigger time step
tk+1 is given by tk+1 = tk +Γk, where Γk is the self-trigger
interval defined as

Γk ≜ max
{

Ts − ke

∥∥∥xk − x̂k|u∗k−1

∥∥∥ ,Tm

}
. (15)

In the above definition, Ts represents the upper bound on
the sampling interval, Tm serves as the baseline sampling
interval, and ke ∈ R+ is a predefined constant. The term
xk denotes the current measured state. On the other hand,
x̂k|u∗k−1

is the state predicted by the linearized model (10)
given initial condition x̄k−1 and constant input u∗k−1. Thus,
if there is a substantial deviation between the state predicted
by the linearized model and the actual measured state, then
the control algorithm is triggered sooner and vice versa.
Under certain assumptions, the stability and feasibility of the
MPC algorithm equipped with the above defined self-trigger
criteria can be proved using the approach shown in [13].

The self-triggered MPC algorithm, outlined in Algo-
rithm 1, operates in a sequential manner to optimize the

Algorithm 1: Self-Triggered MPC Algorithm
Require: Initial state x(t0)

1: Initialize t0, u∗0
2: for k = 0,1,2, . . . do
3: Sample the state x(tk) at t = tk
4: Compute the self-triggered sampling interval Γk

using (15)
5: Solve the FHOCP (13)-(14) to obtain u∗k
6: Implement control ū∗k into (10) for t ∈ [tk, tk+1)
7: Set tk+1 = tk +Γk and go to next iteration
8: end for

control inputs while minimizing the computational over-
head. Initiated with an initial state x0 = x(t0), the algorithm
progresses through iterative cycles, each commencing with
the sampling of the system state xk = x(tk) at time t =
tk. Following this, the algorithm calculates the self-trigger
interval Γk using (15). The next sampling time tk+1 is deter-
mined by adding the dynamically computed interval Γk to tk.
Subsequently, the Fixed Horizon Optimal Control Problem
(FHOCP) expressed by (13)-(14) is solved to determine the
optimal control input u∗k . This control input is then deployed
into the plant for the time span t ∈ [tk, tk+1). In parallel,
the control input is also used to predict x̂k+1|u∗k−1

, that is
necessary for computing Γk+1 at the next time step tk+1. At
tk+1, the algorithm repeats the above listed steps.

V. SIMULATION AND COMPARISON STUDIES

A. One-dimensional Simulations Using COTSIM

In this work, the Control-Oriented Transport Simulator
(COTSIM) is used as the platform for carrying out the
simulation studies. COTSIM, developed based on MAT-
LAB/Simulink, is a one-dimensional transport code designed
for simulating tokamak plasma discharges. The code is
capable of executing these simulations rapidly, making it
suitable for control design applications. The simulator ac-
cepts input parameters such as plasma current, desired line-
averaged electron density, and auxiliary heating and current
drive powers. These inputs are processed through various
submodules to calculate essential plasma properties like
plasma resistivity, heat deposition, and transport coefficients.
The submodules include neural network-based models that
act as fast approximations to high-fidelity, physics-based
algorithms [18], thus balancing predictive accuracy and com-
putational speed. For thermal conductivity χe in (3), COT-
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Fig. 2. Comparison of the inputs controlled by the regular (column (a)) and self-triggered (column (b)) MPC schemes. Each set of three plots shows the
plasma current, NBI powers, and LHW powers. In addition, each plot compares both FF and FF+FB evolutions with their respective bounds.

SIM allows for the selection of transport and source models
from an existing library, which includes both empirical and
analytical models such as the Bohm/Gyro-Bohm or Coppi-
Tang models.

The COTSIM version used for the simulations relevant to
this work includes solvers for the MDE (2) and EHTE (3).
The electron thermal conductivity is computed using the
Coppi-Tang model. NUBEAMnet [18] is used to model the
NBI sources, while simpler models as those presented in
Section II are used for the LHW sources. A fixed boundary
MHD equilibrium is assumed. The predictive models used
for the simulation studies are significantly more complex
than those used for control synthesis, which represents a test
of robustness for the proposed controllers.

B. Feedback Simulation Test

To evaluate the performance of the proposed self-triggered
MPC scheme, both regular MPC and self-triggered MPC are
implemented and tested within the COTSIM environment.
Initially, a feedforward simulation is run with a specific input
u1 to generate a reference trajectory T f f . A modified input
u2 is then used in another feedforward simulation to create
a feasible target trajectory Ttar for controller validation.
The feedback simulations are then carried out with the
feedforward input u1 to assess the ability of the controllers
to steer the system towards the feasible target trajectory Ttar.

Feedback simulations with varying MPC horizon lengths
are carried out to examine the computational demands of
regular and self-triggered MPC algorithms. The total plasma
discharge, i.e., the simulation duration, is 6 seconds, and

Fig. 3. History of computation periods.

the MPC controller is turned on between 2-6 seconds. The
constant ke in (15) is set as 5, the upper bound of the
sampling interval Ts is set as 0.05 s, and the baseline
sampling interval Tm is set as 0.01 s.

Fig. 1 compares the regular and self-triggered MPC per-
formance in closed-loop simulations when the predictive
horizon is set to 12. As shown in the figure, both regular
and self-triggered MPC regulate the θ profile and W to
their corresponding target values by manipulating actuators
as shown in Fig. 2. The figures indicate no qualitative
difference in terms of control performance between the two
MPC algorithms. Thus, self-triggered MPC achieves control
regulation similar to that of a regular MPC, however, at
a lower computational cost. Fig. 3 shows the self-trigger
intervals Γk when the predictive horizon is 12. In the case
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of regular MPC, the controller is invoked at each time step.
In contrast, the self-triggered MPC initially has a similar
trigger interval as the regular MPC. However, over time,
its triggering interval gradually extends until it reaches the
maximum allowable trigger interval Ts. After 3 seconds, the
trigger interval stays at 0.05 seconds. This corresponds to
the time when the θ and W values (Fig. 1) converge. Thus,
after 3 seconds, the computational burden is significantly
reduced when the self-triggered MPC is used. Consequently,
the EAST PCS could allocate its resources to regulate other
critical plasma properties. Similar patterns of trigger intervals
are observed when the prediction horizon is changed.

Fig. 4. Callback counts and runtime comparisons between the regular and
self-triggered MPC schemes with different prediction horizon lengths.

Fig. 4 (left) shows the number of times the regular and
self-triggered MPCs solve the FHOCP for different horizon
lengths Np. The blue and red lines denote performances by
the regular MPC and the self-triggered MPC, respectively.
As shown in the figure, the number of iterations is reduced
by more than a factor of 4 when self-triggered MPC is
implemented to drive the q profile to its target. Fig. 4 (right)
illustrates the cumulative time consumed by the feedback
control algorithms. Note that these times correspond to the
simulation times in MATLAB and not the actual EAST PCS
times. It is found that the cumulative computation time of
self-triggered MPC (red line) is less than that of regular MPC
(blue line), particularly at longer prediction horizons.

VI. CONCLUSIONS AND FUTURE WORK

This study proposes a self-triggered MPC scheme for
q-profile control in the EAST tokamak, and presents an
analysis of the comparative performance of regular and self-
triggered MPC schemes, utilizing the COTSIM simulation
environment. The simulation results, substantiated by multi-
ple test cases with varying prediction horizons, overwhelm-
ingly illustrate the efficacy of the proposed self-triggered
MPC in terms of computational efficiency. Moreover, despite
the higher computational efficiency, the self-triggered MPC
achieves a control performance that is qualitatively similar to
the regular MPC. Thus, q-profile control using self-triggered
MPC could be advantageous to free computational resources
that could be used by concurrent controllers regulating other

critical plasma properties during experiments. Future work
could focus on experimentally testing the proposed self-
triggered MPC in the EAST PCS and expanding the control
objectives to include other plasma properties.
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