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Abstract— Tokamaks are toroidal devices that confine a very
hot plasma (hydrogenic ionized gas) by using strong magnetic
fields. When the kinetic energy is high, positively charged nuclei
in the plasma can overcome the Coulombic forces of repulsion
and fuse to form a heavier nucleus. A tremendous amount of en-
ergy is released during this reaction. The pitch of the magnetic
field in a tokamak, measured by the safety factor profile q, plays
a crucial role in ensuring the magnetohydrodynamic (MHD)
stability of the tokamak plasma. MHD instabilities like the
Neoclassical Tearing Mode (NTM), which can deteriorate or
even terminate plasma confinement, can appear at regions in
the tokamak where the safety factor profile assumes a rational
value. Since the safety factor profile is a continuous function of
location in the tokamak, rational values at specific locations
are inevitable. Controlling the gradient of the safety factor
profile at these locations can prevent or mitigate the effect
of MHD instabilities. In this work, a one-dimensional model
that approximates the safety factor gradient dynamics at one
of the locations where the safety factor q achieves a rational
value is developed. A controller based on feedback linearization
of this model is designed to track a target gradient value in
the steady-state scenario. The effectiveness of this controller is
demonstrated in nonlinear numerical simulations powered by
the Control Oriented Transport SIMulator (COTSIM) for a
DIII-D tokamak scenario.

I. INTRODUCTION
Nuclear fusion is a reaction in which two or more nuclei

combine to form larger nuclei and subatomic particles. The
difference in mass between reactants and products is released
in the form of energy. However, sustained nuclear fusion for
energy production is challenging to achieve and is still an
active research area. Tokamaks are torus-shaped devices that
use powerful magnetic fields to confine a plasma (hot ionized
gas) consisting of charged ions and electrons. They are
considered one of the most promising devices for realizing
nuclear fusion. The confined plasma in a tokamak can reach
temperatures as high as ten times the temperature of the sun’s
core. At such high temperatures, the ions in the plasma have
sufficient kinetic energy to overcome the Coulombic forces
of repulsion and achieve nuclear fusion [1].

The safety factor q, a measure of the pitch of the helical
magnetic field lines in a tokamak, characterizes the magne-
tohydrodynamic (MHD) stability, confinement quality, and
steadiness of the plasma. Note that the safety factor is a
function of position and time since the magnetic field lines
are not uniform and continuously evolve with time. The
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variation of the safety factor from the magnetic axis to the
plasma edge is referred to as the safety factor profile (refer
to Figures 1). Studies have shown that MHD instabilities like
the neoclassical tearing modes (NTMs) appear at locations
where the safety factor is a rational number [1]. In particular,
the lower order modes of NTMs corresponding to q =
1.5 and q = 2 are highly disruptive. By controlling the
gradient of the safety factor profile at rational values of the
safety factor, the effect of some MHD instabilities could be
eliminated or at least mitigated.

The evolution of the safety factor profile is governed
by a nonlinear partial differential equation (PDE) referred
to as magnetic diffusion equation. Moreover, due to both
the limited number of actuators and the limited control
authority of each actuator, the controllability of the system
is a key constraint during the control synthesis process.
Active control of the safety factor profile has been an area
of active research for more than one decade. The high
dimensionality, nonlinearity, and limited controllability of the
system, as well as the sensitivity of the control solution to
each tokamak’s specific characteristics (geometry, actuators,
diagnostics, etc.) make the problem extremely difficult and
rich. Most of the previous work in the field has focused
either on minimizing the spatial integral of the squared
tracking error or on controlling the safety factor values
at fixed locations. The number of locations at which the
safety factor can be independently controlled depends on the
number of actuators available for control [2]. For instance,
the algorithms proposed in [3], [4] control the safety factor
value at just one location, namely, the magnetic axis (refer
to Figure 1). On the other hand, controllers such as those
developed in [2], [5] focus on controlling the safety factor
values at a fixed number of pre-determined locations, while
controllers such as those presented in [6], [7] focus on mini-
mizing the squared error between actual and desired profiles
integrated over the whole spatial domain. Different control
techniques have been employed to address these problems
based on a spatial discretization of the PDE model, including
robust [7], [8], optimal [9], [6], and model predictive [10],
[11] control. Alternatively, infinite-dimensional controllers
(without spatially discretizing the dynamical model) have
been developed in [12] under certain assumptions.

The common denominator of the previous work cited
above is that the location where the safety factor is controlled
is fixed in space. This is true regardless of whether one point,
several points, or the spatial integral (over a fixed grid) of
the profile are controlled. However, as mentioned before, the
safety factor profile is continuously evolving over time. As
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a result, the locations of certain properties of the profile that
may need to be controlled are also continuously changing
with time. For instance, not only the value but also the
location of the minimum of the safety factor profile change
as the profile evolves. Moreover, the locations at which the
safety factor profile achieves a particular value, for instance
q = 1.5 or q = 2, continuously vary as the safety factor
profile evolves over time. Modeling the dynamics of such
profile properties for control design require nonautonomous
differential equations, where the explicit time dependence
arises from the time varying locations of these properties.
Furthermore, controlling these properties as their spatial
locations move can be inherently more challenging from a
controllability perspective. This is because the location of
the controlled profile property may drift to regions with
lower actuation capability in certain scenarios. Control of
spatially varying profile properties is a relatively new topic of
research. Recent work in [13], [14] addresses the problem of
controlling the spatial minimum of the safety factor profile.
The problem of locally controlling the safety factor profile
around a location associated with a specific rational value of
the safety factor has not received much attention yet.

In this work, a control approach is proposed to regulate
the gradient of the safety factor profile at the spatially
moving location associated with a given rational value of the
profile. The derivation of a model governing the evolution
of the gradient of the safety factor profile is difficult, if not
impossible. A bulk of the prior work cited above rely on a
model for the gradient of the poloidal magnetic flux (formally
defined in the following section), which is inversely related
to the safety factor. Following a similar approach, a control
model is proposed in this work for the evolution of the slope
of the poloidal flux gradient. The target value for the safety
factor gradient is translated into a target value for the slope of
the poloidal flux gradient by using a central finite-difference
approximation. Feedback linearization is later used to design
a control algorithm to regulate the slope of the poloidal flux
gradient at a location that evolves over time. Simulation re-
sults are presented to illustrate the capability of the designed
controller to track a given constant slope target. The control-
solution presented in this work should be interpreted as a
crucial initial step towards developing advanced local profile
controllers that could eventually handle more complex targets
as the actuation capability is increased (for instance, spatially
moving actuators could enhance the controllers’ capabilities).
These advanced local controllers could play a critical role
in keeping the system within MHD stability boundaries by
shaping the profile at critical rational surfaces.

This paper is organized as follows. The control-oriented
model derivation is introduced in Section II. In this model,
the dynamics is governed by a nonautonomous ordinary
differential equation. The controller synthesis is discussed in
Section III. The results of numerical simulations performed
to test the effectiveness of the controller are presented in Sec-
tion IV. Finally, conclusions from this study and a discussion
of potential future work are presented in Section V.
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Fig. 1: Magnetic field lines inside a tokamak. The terms Ψ,
B̄, B̄θ, B̄φ and R0 in the figure are the poloidal magnetic
flux, total magnetic field, poloidal magnetic field, toroidal
magnetic field and major radius of the tokamak, respectively.

II. CONTROL ORIENTED MODEL

A. Magnetic Diffusion Equation

The total magnetic field B̄ is composed by the poloidal
magnetic field B̄θ and toroidal magnetic field B̄φ, respec-
tively (see Figure 1). The poloidal magnetic flux at a point
P in the tokamak is given by Ψ :=

∫
S̄
B̄θ · dS̄. In this

equation, the term S̄ denotes the surface perpendicular to
the z direction and enclosed by the toroidal ring passing
through the point P , as shown in Figure 1. The poloidal
stream function ψ is defined as the poloidal magnetic flux
per unit radian, that is, ψ = Ψ/2π. A magnetic flux surface
is a region in the tokamak where the poloidal magnetic flux
is constant. Under ideal MHD conditions, the magnetic flux
surfaces are concentric, as shown in Figure 1. Magnetic flux
surfaces are crucial since several plasma parameters like the
safety factor q and the plasma pressure remain constant on
any given surface under ideal MHD conditions. Combining
this with the fact that tokamaks are toroidally axisymmetric
by design, it is sufficient to consider one spatial dimension
instead of three dimensions for the plasma evolution model
used for control design. The normalized mean effective
minor radius ρ̂ ∈ [0, 1] is used in this work as the one-
dimensional spatial variable indexing the nested magnetic
flux surfaces. The mean effective minor radius ρ is defined
as ρ :=

√
Bφ,0π/Φ, where Bφ,0 is the magnitude of the

vacuum toroidal magnetic field at the major radius R0, and Φ
is the toroidal magnetic flux. The normalized mean effective
minor radius is defined as ρ̂ := ρ/ρb, where ρb is the mean
effective minor radius at the last closed magnetic surface.

The magnetic diffusion equation (MDE) is used as the
primary governing model for the evolution of the poloidal
stream function ψ [15]. It is given by

∂ψ

∂t
=

η

µ0ρ2
b F̂

2

1

ρ̂

∂

∂ρ̂

(
ρ̂Dψ

∂ψ

∂ρ̂

)
+R0Ĥηjni (1)

subject to the boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0,
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= − µ0

2π

R0

Ĝρ̂=1Ĥρ̂=1︸ ︷︷ ︸
kIp

Ip, (2)
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where η is the plasma resistivity, jni is the non-inductive
current, µ0 is the vacuum permeability, Ip is the plasma
current, F̂ , Ĝ, Ĥ are functions of ρ̂ and are geometric factors
pertaining to the magnetic configuration of a particular MHD
equilibrium, and Dψ := F̂ ĜĤ . The plasma resistivity η and
the non-inductive current jni are modeled in this work using
the relations developed in [16] with emphasis on control
design. Readers can refer to the cited reference for a detailed
explanation of the models and how they were generated. The
control-oriented models for η and jni are given by

η ≈ gη × (IγpP
ε
totn̄

ζ
e)−3/2, (3)

ηjni ≈
NNBI∑
i=1

gNBI,i × (IγpP
ε
totn̄

ζ
e)(−3/2+εNBI )n̄−1

e PNBI,i

+ gEC × (IγpP
ε
totn̄

ζ
e)(−3/2+εEC)n̄−1

e PEC

+ (∂ψ/∂ρ̂)−1gBS × (IγpP
ε
totn̄

ζ
e)−1/2n̄e. (4)

In the above equations, the functions gη : ρ̂→ gη(ρ̂), gBS :
ρ̂ → gBS(ρ̂) account for the spatial variation of the plasma
resistivity and bootstrap current deposition. The term Ptot
is the total injected power, n̄e is the line-average electron
density, and γ, ε and ζ are scaling constants.

A neutral beam injector (NBI) injects a beam of high-
energy neutral particles to drive current and heat the plasma.
Alternatively, an electron cyclotron current drive (ECCD)
projects electromagnetic waves whose frequency matches
the electron cyclotron frequency. This results in electron
cyclotron resonance which then heats the plasma and drives
current. In this paper, it is assumed that there are NNBI
individual NBIs and 1 ECCD group available for control. In
other words, the NBI powers PNBI,i, for i = 1, . . . , NNBI ,
and the ECCD power PEC in (4) are the controllable
inputs. This configuration aligns with the DIII-D tokamak
configuration [17]. Nevertheless, the controller synthesized in
the following section can be extended to other tokamaks also.
In (4), the functions gNBI,i : ρ̂→ gNBI,i(ρ̂) and gEC : ρ̂→
gEC(ρ̂) represent the NBI and EC current deposition profiles,
respectively. The terms εNBI , εEC account for the efficiency
of the NBI, EC actuators, respectively. The plasma current
Ip, the line-average electron density n̄e and the total power
Ptot are assumed to be regulated by other controllers around
prescribed values. For instance, the plasma β (ratio of the
plasma kinetic pressure to the magnetic pressure) controller
prescribes the total power Ptot [2]. Note that the Ptot can
also be expressed using the relation

Ptot =

NNBI∑
i=1

PNBI,i + PEC . (5)

Since PNBI,i, PEC are controllable inputs and Ptot is
a prescribed input, the controller must satisfy the above
constraint at all times.

B. Safety Factor Profile

The safety factor profile q : (ρ̂, t) 7→ q(ρ̂, t) is defined
using the relation

q(ρ̂, t) := −
(
Bφ,0ρ

2
b ρ̂
)
/θ(ρ̂, t), (6)

Fig. 2: q-profile gradient approximation at rational surface.

where θ := ∂ψ
∂ρ̂ is the poloidal flux gradient. The terms Bφ,0

and ρb are defined above. The goal of this paper is to control
the q profile gradient q′ at a pre-defined safety factor value.
The notation (·)′ represents the derivative with respect to
the spatial variable ρ̂. Suppose that the gradient has to be
controlled at the location of the rational safety factor value
q̄ ∈ Q+, where Q+ is the set of positive rational numbers.
Let ρ̂q̄ : t 7→ ρ̂q̄(t) represent the function that gives the ρ̂
value at which the q profile attains q̄ at a given time t. That
is, q(ρ̂q̄(t), t) = q̄. It is possible that the q profile achieves
q̄ at multiple locations. In such cases, one of the multiple
locations is selected a priori as the control point ρ̂q̄(t). In
the following analysis, the notation (t) is dropped.

To simplify control design, the gradient of the q profile is
approximated using a central finite difference scheme, i.e.

q′(ρ̂q̄) ≈ (q(ρ̂q̄ + h)− q(ρ̂q̄ − h)) /2h, (7)

where h ∈ R. Since the term h is a constant, the gradient of
the q profile can be controlled by controlling the difference
q(ρ̂q̄ + h)− q(ρ̂q̄ − h). In the following analysis, the terms
q(ρ̂q̄ + h), q(ρ̂q̄ − h) are represented as qR and qL, respec-
tively. Also, the locations of these points are represented
using the notation ρ̂R and ρ̂L, respectively. Note that the
terms qR, qL, ρ̂R and ρ̂L are functions of time and can vary
with the evolution of the q profile.

C. Plasma model for gradient control

Equation (6) shows us that the safety factor is related to
the poloidal flux gradient θ. However, the MDE, given in (1),
defines the plasma dynamics in terms of the poloidal stream
function ψ. From a control design perspective, it is more
convenient to work with a model that defines the evolution
of θ(ρ̂, t). To obtain such a model, (3) and (4) are substituted
into (1) and the spatial derivative of the MDE is taken on
both sides. This results in

θ̇ = (hη,1θ
′′ + hη,2θ

′ + hη,3θ)uη +

NNBI∑
i=1

hNBI,iuNBI,i

+ hECuEC +

(
hBS,1

1

θ
− hBS,2

θ′

θ2

)
uBS , (8)

subject to the boundary conditions

θ(0, t) = 0, θ(1, t) = −kIpIp, (9)

where
˙(·) :=

∂

∂t
(·), (·)′ :=

∂

∂ρ̂
(·), hη,1 :=

1

µ0ρ2b

gη

F̂ 2
Dψ ,
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hη,2 :=
1

µ0ρ2b

[(
gη

F̂ 2

)′
Dψ +

gη

F̂ 2

(
Dψ

ρ̂
+ 2D′ψ

)]
,

hη,3 :=
1

µ0ρ2b

[(
gη

F̂ 2

)′ (Dψ
ρ̂

+D′ψ

)
+
gη

F̂ 2

(
D′ψ ρ̂−Dψ

ρ̂2

)]
,

hNBI,i := R0 × (Ĥ × gNBI,i)
′, hEC := R0 × (Ĥ × gEC)′,

(10)

hBS,1 := R0 × (Ĥ × gBS)′, hBS,2 := R0 × Ĥ × gBS ,

uη := (IγpP
ε
totn̄

ζ
e)−3/2, uBS := (IγpP

ε
totn̄

ζ
e)−1/2n̄e,

uNBI,i := (IγpP
ε
totn̄

ζ
e)(−3/2+ζNBI )n̄−1

e PNBI,i,

uEC := (IγpP
ε
totn̄

ζ
e)(−3/2+ζEC)n̄−1

e PEC .

The detailed steps involved in the derivation of the above
equation are given in [2]. In the above equations, the terms
hη,1, hη,2, hη,3, hNBI,i, hEC , hBS,1 and hBS,2 are functions
of the spatial variable ρ̂. Alternatively, the terms uη , uNBI,i,
uEC and uBS are functions of time and can be considered
as virtual inputs.

The above PDE defines the evolution of the whole θ
profile. However, it is sufficient to consider the dynamics
at ρ̂L and ρ̂R. To simplify the PDE, define θL = θ(ρ̂L(·), ·),
θ′L = θ′(ρ̂L(·), ·), θ′′L = θ′′(ρ̂L(·), ·), hL(·) = h(·) ◦ ρ̂L. Define
the terms θR, θ′R, θ′′R and hR(·) similarly. After evaluating the
spatial term at ρ̂L and ρ̂R, the autonomous partial differential
equation considered above simplifies into two coupled non-
autonomous ordinary differential equations of the form

θ̇L = ĥTLû+ ĉL, θ̇R = ĥTRû+ ĉR, (11)

where, for i ∈ {L,R},

ĥi =
[
hiNBI,1, · · · , hiNBI,NNBI

, hiEC

]T
,

û =
[
uNBI,1, · · · , uNBI,NNBI

, uEC
]T
,

ĉi =
(
hiη,1θ

′′
i + hiη,2θ

′
i + hiη,3θi

)
uη +

(
hiBS,1

1

θi
− hiBS,2

θ′i
θ2i

)
uBS .

Now, define the difference θD of the poloidal flux gradients
at ρ̂R and ρ̂L as θD := θR − θL. Thus, the evolution of the
difference in poloidal flux gradients θD is given by

θ̇D = θ̇R − θ̇L. (12)

Before proceeding to the controller synthesis, note that the
goal of the controller is to track a target safety factor gradi-
ent q̄′ where the safety factor profile achieves a value of q̄.
However, the control-oriented model is defined in terms of
the poloidal flux gradient difference θD. Thus, it is important
to reformulate the target in terms of the poloidal flux gradient
difference. In the following analysis, it is assumed that the
location ρ̂q̄ at which the safety factor profile achieves the
value q̄ is known at all time t. During tokamak operation,
real-time equilibrium reconstruction techniques are used to
determine the safety factor profile [18]. Thus, at any given
time instant, it is possible to determine the point ρ̂q̄ at which
the profile is equal to the rational value q̄. The first step in
redefining the target in terms of θD involves approximating
the target gradient q̄′ using the central difference scheme as

q̄′ ≈ (q̄R − q̄L) /2h, (13)

where q̄R := q̄(ρ̂R), q̄L := q̄(ρ̂L), and the term h ∈ R is the
constant used in (7). Since h is fixed a priori and ρ̂q̄ is known

at each time instant, the location of the two control points
ρ̂R and ρ̂L can be determined using the relations ρ̂R :=
ρ̂q̄ + h and ρ̂L := ρ̂q̄ − h. Even if the target profile q̄ is not
prescribed, the values q̄R and q̄L can be determined using the
assumption that the target safety factor profile is such that a
straight line connects q̄R and q̄L at ρ̂R and ρ̂L, respectively.
This assumption is inherent in the central difference scheme
used to approximate the gradient. Figure 2 demonstrates the
assumption for a generate safety factor profile q. Now, the
redefined target θ̄D can be computed using the relation θ̄D =
θ̄R − θ̄L, where θ̄L and θ̄R are given by the equation

θ̄i(t) = −
(
Bφ,0ρ

2
b ρ̂i(t)

)
/q̄i(t), for i ∈ {L,R}. (14)

As the closed loop system evolves, the location ρ̂ at which
the rational safety factor value q̄ is achieved varies with time.
This in turn implies that the terms ρ̂L and ρ̂R also vary with
time. Thus, strictly speaking, the target θD is a function of
time t even if a constant safety factor gradient target q̄′ is
initially chosen. In certain operation scenarios, the change in
ρ̂L and ρ̂R over time is minimal. In such cases, a constant
q̄′ can be reformulated as a fixed target θ̄D.

III. CONTROLLER DESIGN

A. Feedback Linearization

In this work, feedback linearization is used to first linearize
the system and then design a controller with proportional and
integral action. Since the controller can only influence the
actuator power values u = [PNBI,1, . . . , PNBI,NNBI

, PEC ],
define hL and hR such that ĥTLû = hTLu and ĥTRû = hTRu
hold. Also, assume that there is a feedforward component in
the inputs. That is, u = uff + ufb, where uff and ufb are
the feedforward and the feedback components, respectively.
With the introduction of the new definitions, the governing
equations take the form

θ̇D = hTDufb + čD, (15)

where uk =
[
PNBI,k,1, · · · , PNBI,k,NNBI

, PEC,k
]T

for k = ff, fb, čD = čR− čL, či = ĉi+h
T
i uff for i = L,R,

hD = hR−hL. Define the state error θ̃D as θ̃D := θD− θ̄D,
where θ̄D is the target. To feedback linearize the system, the
inputs ufb are chosen such the equation

˙̃
θD = −Kpθ̃D −KI

∫ t

0

θ̃Ddt (16)

holds for all time t. This is equivalent to

hTDufb + cD = 0, (17)

where cD = čD + Kpθ̃D + KI

∫ t
0
θ̃Ddt. To analyze the

stability of (16), define x := [θ̃D,
∫ t

0
θ̃Ddτ ]T and consider

the Lyapunov function V given by V = 1
2x

T

[
1 b
b KI

]
x.

Here, the constant b is assumed to satisfy the inequality
0 < b < min(

√
KI ,Kp,KpKI/(KI + 1

4K
2
p)). Taking the

derivative of V with respect to time t results in the equation

V̇ = −(Kp − b)θ̃2
D −KIb

(∫ t

0

θ̃Ddτ

)
−Kpbθ̃D

∫ t

0

θ̃Ddτ,
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which is negative definite. Thus, using Lyapunov theorem
[19], we conclude that the origin is asymptotically stable.
In the presence of uncertainties, the state trajectory can be
shown to converge to a neighborhood of the origin.

B. Optimization

Since there are NNBI + 1 actuators and 2 equality con-
straints (5) and (17), infinite combinations of the input values
may achieve the required feedback linearization at a given
time instant. To select a unique set of optimal feedback
inputs, an optimization problem is solved at each time t. The
goal of the optimization problem is to minimize the feedback
“control effort” f defined as

f(ufb) = uTfbQufb, (18)

with respect to the feedback input power ufb subject to the
constraints [

hTD
1 · · · 1

]
ufb =

[
−cD
Ptot,fb

]
, (19)

and the actuator saturation limits at each time t. Note
that the term Ptot,fb is defined as Ptot,fb = Ptot −(∑NNBI

i=1 PNBI,ff,i + PEC,ff

)
and Q is a symmetric pos-

itive definite matrix. Ignoring the actuator saturation limits,
the above optimization problem has a closed-form solution.
To derive this, define the constraint functions g1, and g2 as

g1(ufb) = hTDufb + cD, g2(ufb) = 1Tufb + cp, (20)

where cp = −Ptot,fb, and 1 = [1, . . . , 1]T ∈ RNNBI+1.
Now, the Lagrangian can be defined as

L(ufb, λ1, λ2) = f(ufb)− λ1g1(ufb)− λ2g2(ufb). (21)

Lagrange multipliers theorem states that if u∗fb is an ex-
tremum, then there exist λ∗1 and λ∗2 such that the condition
∇L(u∗fb, λ

∗
1, λ
∗
2) = 0 holds. Solving this equation gives an

expression for inputs u∗fb of the form

u∗fb =
1

2
Q−1

[
hD 1

]
A−1c, (22)

where

A =

[
hTDQ

−1hD hTDQ
−11

1Q−1hD 1Q−11

]
, c =

[
−2cD
−2cp

]
. (23)

Incorporating actuator constraints introduces inequality con-
straints into the optimization problem. Readers can refer to
the iterative algorithm introduced in [14] to calculate the
optimal solution with the actuator constraints satisfied.

IV. NUMERICAL VALIDATION OF CONTROLLER

This section discusses the results of simulations carried
out using the Control Oriented Transport SIMulator (COT-
SIM), which uses the 1D magnetic diffusion equation (1)-
(2) in combination with a heat transport equation based on
the Bohm/Gyro-Bohm transport model for simulating the
tokamak plasma dynamics [20]. The simulations used the
configuration of the DIII-D tokamak, and the inputs from
DIII-D shot 147634. The feedforward input uff was selected

as uff = 0.9u147634, where u147634 is the corresponding
vector of actuator powers used in DIII-D shot 147634.
During a typical DIII-D discharge of around 6 seconds,
the spatial location associated with a given rational safety
factor value (for example, ρ̂q̄ corresponding to q̄ = 1.5) can
vary significantly. In this case, there is a possibility for ρ̂q̄
to move to locations with lower actuator authority (regions
corresponding to low noninductive current depositions). In
order to decouple the assessment of the controller’s per-
formance from a varying actuator authority, the simulation
study was carried out in this case by extending the length
of the discharge (beyond DIII-D’s practical limits) and by
activating the controller once the temporal evolution of the
safety factor profile is negligible. Linear extrapolation was
used in this simulation study to generate the feedforward
input data beyond 6 seconds. The cost function matrix Q
used in the simulation was selected as Q = diag(1,1,1),
implying that all the noninductive current drives are given
equal importance. Furthermore, the controller gains were
selected as KP = 5 × 10−3 and KI = 1 × 10−4. The
actuator powers PNBI,1, PNBI,2 and PEC were allowed to
take values in the closed intervals [0, 12], [0, 6] and [0, 3.5],
respectively.

Figure 3 denotes the evolution of θD in the feedforward-
only and the feedforward+feedback cases. Since the safety
factor profile variation is negligible once the controller is
activated, the term θD remains constant in the feedforward-
only case. It is clear from the figure that the closed-loop
system achieves the desired target within 5 seconds. Figure 3
also shows where the q profile achieves its minimum and
the target q̄ = 1.5, denoted by ρ̂qmin and ρ̂q̄ , respectively.
Since ρ̂q̄ is away from ρ̂qmin

, the central difference scheme
given in (7) is a reasonably good approximation for the
safety factor profile gradient for h = 0.1. The left and
right control points, denoted by ρ̂L and ρ̂R, respectively, are
also shown in the figure. It is clear that ρ̂qmin , ρ̂L and ρ̂R
vary (although minimally in this case) once the controller is
activated. Figure 4 shows the open-loop (feedforward only)
and the closed-loop (feedforward + feedback) simulation
inputs. The grey background in Figures 3 and 4 denote the
time when the controller is active.

V. CONCLUSION AND FUTURE WORK

A model-based nonlinear control algorithm has been pro-
posed for the first time to locally regulate the gradient of the
safety-factor profile at the location of a given rational safety-
factor value in tokamak plasmas. The model used for control
synthesis accounts for the inherent variation over time of
the spatial location associated with the rational safety factor
value of interest. A controller based on the feedback lin-
earization of this model has been synthesized to regulate the
gradient of the safety factor profile around a desired value.
Closed-loop simulations based on the COTSIM code shows
that the proposed controller can track selected targets in
DIII-D scenarios. The simulations in this work assume con-
stant targets, which simplifies the controller implementation
and facilitates the development of an initial understanding of
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the controller’s capabilities. Future extensions of this work
may focus on considering time-varying targets, using moving
ECCD sources as spatially varying actuators, and integrating
an optimal reference governor in order to keep the plasma
operating point within MHD stability boundaries.
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