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Abstract— Generating energy from nuclear fusion in a toka-
mak may highly benefit from precise control of both kinetic
and magnetic spatially-varying properties of the plasma (hot
ionized gas where the fusion reactions take place). The spatial
dependence of a plasma property, from the core to the edge of
the plasma, is referred to as profile. Many control algorithms
being developed require accurate, real-time knowledge of the
plasma space-dependent state. However, many of the diagnostics
used to measure the plasma state provide data that can
be noisy or require significant post-processing. Within this
context, an observer has been developed using an extended
Kalman filtering approach for the electron temperature profile.
The model employed by the observer uses a combination of
analytical components and trained neural networks to generate
as accurate of a prediction as possible while working within
real-time calculation constraints. Such neural networks provide
high accuracies, fast calculation times, and wide applicability. In
addition, with only two diagnostic measurements at different
spatial locations, the observer is able to estimate the entire
electron temperature profile. Simulation results show that the
observer can correctly estimate this profile despite significant
discrepancies in the initial electron temperature profile and
relatively high levels of noise. After its implementation in the
plasma control system of the DIII-D tokamak, this observer
may be able to provide valuable information on the electron
temperature to a variety of present and future controllers.

I. INTRODUCTION

Nuclear fusion is the process by which two or more nuclei
merge to form larger, different nuclei. As this occurs, a small
amount of the nuclei rest mass is converted into energy,
making nuclear fusion a potential mechanism for electricity
generation. In practice, this process is extraordinarily difficult
to control and sustain. An approach currently being studied is
to use a tokamak [1] to contain the reaction fuels (deuterium
and tritium, which are hydrogen isotopes). In order for two
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Fig. 1. Tokamak geometry showing the helical magnetic field B composed
of toroidal field Bφ and poloidal field Bθ . Under certain assumptions, a
single spatial coordinate ρ can be employed to describe the plasma geometry
from the magnetic axis (at R0) to the edge of the plasma (i.e. the last-closed
magnetic-flux surface, at ρb).

nuclei to fuse, they need to have enough kinetic energy
to overcome the Coulombic forces that make them repel
each other. For hydrogen, this means that the particles
need to have a temperature of about 100,000,000 degrees.
Because hydrogen at that temperature is in a plasma state and
responds to magnetic fields, tokamaks use powerful magnets
to confine the plasma in a torus shape. The combination
of toroidal (Bφ) and poloidal (Bθ) magnetic fields shown in
Fig. 1 creates a helical total magnetic field B. The helicity of
the field lines confines both positively and negatively charged
particles (i.e. ions and electrons). This creates a separation
between the edge of the confined plasma and the structure of
the machine, protecting the plasma facing components from
the extreme temperature of the plasma.

Significant efforts are underway to develop plasma scenar-
ios that include fusion relevant core temperature, density, and
confinement time and that remain magnetohydrodynamically
(MHD) stable in steady state [2]. Control schemes that
facilitate the access to and sustainment of these plasmas are
being developed in parallel (e.g. [3]). In particular, profile
control (i.e. the regulation of the spatial shape of plasma
properties between ρ = 0 and ρ = ρb as shown in Fig. 1 [4])
is a problem of high interest within the fusion community [5],
[6] . For example, the shape of the temperature spatial profile
is closely related with the achievement of plasma conditions
conducive to fusion reactions. Sometimes, regions with high
temperature gradients and reduced transport (the so-called
transport barriers) are formed, and can be highly beneficial
to increase the overall plasma confinement. However, it
must be noted that profile control by means of feedback
requires that an estimation of the corresponding profile be



available in real time. For example, magnetic profiles such
as the safety factor, q (a measure of the helicity of B),
can be obtained in real time from equilibrium reconstruction
codes. On the other hand, several methods for measuring
kinetic profiles (e.g. temperature and density) exist, such
as Thomson scattering. Named for measuring laser light
scattered by electrons, Thomson scattering samples electron
density via scattered light amplitude and electron temperature
via scattered light frequency [7]. Measurements are taken at
a finite number of spatial locations or integrated over the
whole spatial domain. In addition, due to the nature of these
diagnostics, the measurement accuracy and precision are
limited by noise, and in some cases are unreliable. Therefore,
the reconstruction of the whole density and temperature
profile from these measurements is computational intensive
and usually performed off-line. While some solutions have
been recently proposed for real-time processing of raw
measurements, these solutions are usually based on data
fitting by assuming a predefined shape of the profile and
not on physics-based models.

In order to address these issues, state estimation techniques
have been used to estimate both kinetic and magnetic profiles
in tokamaks [8], [9]. Non-linear techniques, including ex-
tended Kalman filters and port-Hamiltonian observers, have
been used to estimate a variety of profiles including the
electron temperature, density, and poloidal flux. However,
all of these observers rely on physics-based or empirical
models as opposed to machine learning models. There has
been very little research combining machine learning models
with traditional observer design for plasma profile estimation.
The combination of neural networks and machine learning-
based models with more “traditional”, analytical models
may have several advantages. First, many physics-oriented
models of plasma behavior, particularly kinetic behavior,
are too computationally intensive to be useful in real-time
applications. Because of this, control-oriented models are
often used instead that may only be valid for specific plasma
scenarios due to a limited number of tunable parameters.
When trained of a sufficiently rich dataset, neural network
models combine wider applicability to different plasmas
scenarios with speed and accuracy. As a result, a number
of machine learning models have been trained to replicate
the results of computationally intensive physics-oriented
codes [10]–[13]. In fact, machine learning has been used not
only in fusion research, for example for disruption prediction
(e.g. [14], [15]), but also in estimation applications outside
the fusion community (e.g. [16]).

In this work, an observer is proposed to estimate the
electron temperature (Te) profile in real time. The nonlinear
model used by this observer relies on neural networks to
calculate the effects of neutral beam injection [11], which
is used as a source of heat, current, and torque on the
DIII-D tokamak, and the electron thermal diffusivity [12]. An
extended Kalman filter, which is the nonlinear counterpart of
the well-known Kalman filter for linear systems, is used to
design the observer with the goal of rejecting internal and
measurement noise while also retaining the nonlinearity of

the Te dynamical model. The final objective of this estimator
is to provide accurate, robust real-time state estimations of
Te which can be utilized by an electron temperature profile
controller, as well as by any other controller, predictor, or
supervisor that requires information about Te.

The rest of the paper is organized as follows. In Section II,
a model of the Te profile evolution, including the two
neural networks for the heating source and the electron
thermal diffusivity, is introduced. In Section III, the extended
Kalman filter (EKF) approach is described. Section IV shows
simulation results of the observer. Conclusions and future
work are discussed in Section V.

II. MODEL

The model used in this work takes the standard assumption
of symmetry in the toroidal direction of the plasma. Under
ideal MHD conditions [1], a single spatial coordinate that
indexes flux surfaces (shown in Fig. 1) can be used to
describe the plasma geometry. The 1-dimensional profiles are
functions of time t and the spatial variable ρ (see Fig. 1).
Known as the mean effective minor radius, the spatial vari-
able ρ is defined as ρ =

√
Φ/πBφ,0, where Φ ,

∫
Sφ

~Bφ·d~Sφ
is the toroidal magnetic flux, Bφ,0 is the vacuum toroidal
magnetic field at the geometric major radius R0, and ρb is the
mean effective minor radius of the last closed magnetic flux
surface. Flux surfaces are defined by constant values of the
poloidal stream function ψ , 1

2π

∫
S
~Bθ ·d~S (see Fig. 1). The

surface S has a boundary that is a toroidal ring and is normal
to the z-axis. The normalized mean effective minor radius is
defined as ρ̂ = ρ/ρb. Note the some profiles, including Te,
are not strictly functions of flux and therefore ρ; in these
cases the values of these profiles are flux surface averages.

A. Electron Heat Transport Equation

The evolution of the Te(ρ̂, t) profile in a tokamak can
be described by a partial differential equation known as the
electron heat transport equation,
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where ne(ρ̂, t) is the electron density, χe(ρ̂, t) is the electron
thermal diffusivity, and Qe(ρ̂, t) is the electron heating from
a number of different sources. The quantities F̂ (ρ̂), Ĝ(ρ̂),
and Ĥ(ρ̂) are related to the magnetic configuration of a
particular plasma equilibrium and in this model are assumed
to be constant. The boundary conditions of (1) are given by

∂Te
∂ρ̂

∣∣∣∣
ρ̂=0

= 0 Te|ρ̂ETB = Te,ETB , (2)

where ρ̂ETB characterizes the location of the external trans-
port barrier (ETB), or pedestal, found in H-mode plasmas [1].
Equation (1) gives the dynamics of Te in the region ρ̂ =
[0, ρ̂ETB ]. Equation (1) is rewritten to separate the temporal
and spatial derivatives of Te as

∂Te
∂t

= f1(ρ̂, t)
∂2Te
∂ρ̂2

+ f2(ρ̂, t)
∂Te
∂ρ̂

+ f3(ρ̂, t)Te(ρ̂, t) + f4(ρ̂, t),

(3)
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ĜĤ

ρ2b F̂
χe(ρ̂, t), (4)

f2(ρ̂, t) =
2

3

ĜĤ
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f3(ρ̂, t) =
−1

ne(ρ̂, t)

∂ne
∂t

, f4(ρ̂, t) =
2Qe(ρ̂, t)

3ne(ρ̂, t)
. (6)

The total electron heating is calculated as
Qe(ρ̂, t) = Qohm(ρ̂, t) +Qec(ρ̂, t) +Qnbi(ρ̂, t)

−Qei(ρ̂, t)−Qrad(ρ̂, t),
(7)

where Qohm is the ohmic heating, Qec is the electron
cyclotron heating, Qnbi is the neutral beam heating, Qei
is the heat exchange between electrons and ions through
collisions, and Qrad is the radiative heat loss. Models for
ne, Qohm, Qec, Qei, and Qrad are given in Section II-B.
Models for Qnbi and χe are given in Section II-C.

B. Electron Density and Heating using Analytical Models

The electron density profile is assumed to have a constant
shape given by a reference profile nprofe (ρ̂). The line-
averaged electron density n̄e(t) is assumed to be a known
quantity. The electron density is then calculated as ne(ρ̂, t) =
nprofe (ρ̂)n̄e(t).

As given by (7), the electron heating is a combination of
five different components: ohmic heating, electron cyclotron
radiofrequency heating, neutral beam heating, collisions be-
tween ions and electrons, and radiative heat loss. Ohmic
heating is calculated as

Qohm(ρ̂, t) = η(ρ̂, t)jtor(ρ̂, t)
2, (8)

where the resistivity is calculated by the Spitzer model as
η(ρ̂, t) =

ksp(ρ̂)Zeff
Te(ρ̂,t)3/2

. The profile ksp is a constant profile
of the model, and Zeff is the mean effective charge of
the plasma ions. The toroidal current density is calculated
as jtor(ρ̂, t) = − 1

µ0ρ2bR0Ĥ
1
ρ̂
∂
∂ρ̂

(
ρ̂ĜĤ ∂ψ

∂ρ̂

)
, where µ0 is the

vacuum permeability. The value of ψ is assumed to be
known from diagnostics and/or equilibrium reconstruction
techniques. A common method of injecting auxiliary power
into a tokamak plasma is using radiofrequency waves that
resonate with some specific plasma frequency. In the DIII-D
tokamak, this is done using electron cyclotron resonance
heating [17]. The electron cyclotron heating is calculated as

Qec(ρ̂, t) = Qprofec (ρ̂)Pec(t), (9)

where the reference profile Qprofec (ρ̂) is a constant of the
model and the electron cyclotron power Pec(t) is assumed
to be known. Heating of the electrons through collisions with
ions is calculated as

Qei(ρ̂, t) = νe(ρ̂, t)ne(ρ̂, t)(Te(ρ̂, t)− Ti(ρ̂, t)), (10)

where the electron-ion collisionality is calculated as νe =
0.041Te(ρ̂,t)

−3/2ne(ρ̂,t)
Aeff

. For low impurity deuterium plasmas,
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Fig. 2. Multi-layer perceptron neural network structure [12]. The network
shown here has 3 inputs (x1, x2, and x3), one hidden layer containing 5
neurons (in green), and 2 outputs (f1 and f2). The weights connecting each
neuron in one layer to each neuron in the next layer, shown by the arrows,
are learned through the training process.

the effective plasma mass Aeff is assumed to always be
equal to 2. The ion temperature Ti used in Equation 10 is
assumed to be a scalar multiple of Te. For the radiation heat
loss, only Bremsstrahlung [18] radiation is considered, so

Qrad(ρ̂, t) = kbZeffne(ρ̂, t)
2
√
Te(ρ̂, t), (11)

where the Bremsstrahlung constant kb = 5.5× 10−37 Wm3
√
keV

.

C. Neural Networks

Two neural networks were developed in previous
work [11], [12], and are used for the design of the Te profile
observer in this work. Both of them were trained to replicate
the results of more complicated physics-oriented simulation
codes that do not run fast enough to be used in real-time
calculations. NubeamNet [11] was trained to replicate the
Monte Carlo code NUBEAM [19], which predicts the effects
of neutral beam injection on the plasma. Neutral beam
injection involves injecting very fast atoms into the plasma
which then ionize and transfer their energy to other particles
through collisions, and is used as a source of heat, current,
fuel, and torque. MMMnet [12] was trained to replicate the
Multi-Mode Model (MMM) [20], which estimates turbulent
diffusitivities, including the electron thermal diffusivity χe.
Because electron heat transport is often dominated by tur-
bulence in plasma scenarios of interest, χe as calculated
by turbulent models like MMMnet plays a key role. Both
neural networks use a simple multi-layer perceptron (MLP)
structure (see Fig. 2), which only takes scalar inputs and
outputs. Many of the inputs needed and outputs produced
by these networks are 1-dimensional profiles. In order to be
able to use an MLP, these profiles are reduced to a set of
scalars using the principal component analysis technique.

D. Discretization using Finite Differences

1) In Space: The partial differential equation (3) is
reduced to a system of ODEs using second order finite
difference approximations for the spatial derivatives. The
spatial grid is defined as ∆ρ̂ = 1

n , ρ̂i = (i− 1)∆ρ̂, i ∈
{1, ..., n}, over the range ρ̂ ∈ [0, ρ̂ETB ] where n is the
number of spatial points, ∆ρ̂ is the distance between spatial
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Fig. 3. Block diagram showing the prediction (x̃j ) and correction (x̂j )
steps of the observer with K calculated by the extended Kalman filter.

points, and ρ̂i represents the location of the ith spatial
point. The notation Te,i is used to represent Te(ρ̂i, t). For
i ∈ [2, n− 1], the system of ODEs is written as

Ṫe,i = f1(ρ̂i, t)

(
Te,i+1 + Te,i−1 − 2Te,i

∆ρ̂2

)
(12)

+f2(ρ̂i, t)

(
Te,i+1 − Te,i−1

2∆ρ̂

)
+ f3(ρ̂i, t)Te,i + f4(ρ̂i, t).

The state variable is initially defined as x ,[
Te,2 Te,3 . . . Te,n−1

]T
, and the input is defined

as u ,
[
n̄e Pec Pnbi1 . . . Pnbi8 Ip

]T
where

Pnbi1−8 represent the powers from the eight neutral beams
and Ip is the plasma current. Using these definitions of x
and u, (12) can be written as

ẋ = g(x, u), (13)

where g is a function defined by the right-hand side of (12).
2) In Time: The temporal grid is defined as tj =

j∆t, j ∈ {0, 1, ...}. The notation T je,i is used to represent
Te(ρ̂i, t

j). A hybrid finite difference approach is used, with
the functions f1, f2, f3, and f4 being evaluated at tj and the
Te terms (other than the temporal derivative) being evaluated
at tj+1. This method preserves the unconditional stability of
an implicit approach while keeping the calculation relatively
simple and limiting the computation time. Equation (12) is
then rewritten as
T j+1
e,i − T

j
e,i

∆t
= f1(ρ̂i, t

j)

(
T j+1
e,i+1 + T j+1

e,i−1 − 2T j+1
e,i

∆ρ̂2

)

+ f2(ρ̂i, t
j)

(
T j+1
e,i+1 − T

j+1
e,i−1

2∆ρ̂

)
(14)

+ f3(ρ̂i, t
j)T j+1

e,i + f4(ρ̂i, t
j).

The state is now expanded to include the boundaries, so x ,[
Te,1 Te,2 . . . Te,n

]T
. The boundary condition at ρ̂1 =

0 from Eq. 2 is given by 4T je,2 − T
j
e,3 − 3T je,1 = 0. Instead

of imposing a value of Te,ETB , the boundary condition at
ρ̂n is assumed to be quasi-static, leading to T j+1

e,n = T je,n.
Isolating the T j+1

e terms, Equation (14) and the boundary
conditions can be expressed as

xj+1 = G(xj , uj). (15)

III. OBSERVER DESIGN

The model used by the observer is obtained from (15) as

xj+1 = G(xj , uj) + wj (16)

yj = Cxj + vj . (17)

The state equation (16) is equal to (15) with added inter-
nal noise wj . In (17), C is a matrix of ones and zeros
such that, when the added measurement noise vj = 0,
yj = [Te(ρ̂meas,1, t

j) Te(ρ̂meas,2, t
j)]T , where ρ̂meas,1 and

ρ̂meas,2 are any two spatial locations where Te is measured.
The reason for using two measurements in this design is that
this is the minimum value required for linear observability, as
explained in Section IV-A. Internal and measurement noise
are assumed to be uncorrelated Gaussian signals with zero
mean and covariance matrices Qj and Rj , respectively. The
observer structure shown in Fig. 3 is used with the observer
gain K calculated using an extended Kalman filter [21]. The
prediction step of the extended Kalman filter is given by

x̃j = G(x̂j−1, uj−1) (18)

ỹj = Cx̃j (19)

P̃ j = F j−1P̂ j−1F j−1
T

+Qj−1, (20)

where x̃, ỹ, and P̃ represent the values of the state, outputs,
and covariance of the state after the prediction step and x̂
and P̂ represent the values of the state and covariance of the
state after the correction step. The matrix F is defined as the
Jacobian of G, and in this work is calculated numerically
using a first order finite difference formula. The correction
step is given by

ej = yj − ỹj (21)

Kj = P̃ jHjT (HjP̃ jHjT +Rj)−1, Kj ∈ Rn×m (22)

x̂j = x̃j +Kjej (23)

P̂ j = (I −KjHj)P̃ j , (24)

where e is the error and K is the observer gain. In an EKF,
H is defined as the Jacobian of the output equation (19); in
this case, because the output equation is linear, the Jacobian
H is simply equal to C.

IV. SIMULATION RESULTS

The observer has been tested in simulation to estimate Te
using simulated data from the Control Oriented Transport
Simulator (COTSIM) code [5]. COTSIM evolves a number of
1D transport equations, including the electron heat transport
equation (1) for Te, as well as equations that describe the
evolution of the safety factor and the rotation. COTSIM
allows the user to choose from among a library of models,
including neural network models, to calculate values such
as the diffusivities and heat depositions. For this simulation,
COTSIM is run using the experimental initial condition T 0

e

and inputs u from DIII-D shot 147634. This generates data
that does not contain any noise; the noise vectors wj and
vj are generated in the following manner and added to the
COTSIM data at each time step. For the state noise, a matrix
Nint is defined as

Nint =

n 0 . . . 0
0 n− 1 . . . 0
0 0 . . . 1

×Nint,mag (25)
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Fig. 4. Simulation of observer with added internal noise and measurement noise (Nint,mag = 0.02, Nmeas,mag = 0.05), and a 10% over-prediction
of the initial condition compared to COTSIM outputs plotted as a function of time.
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Fig. 5. Simulation of observer with added internal and measurement noise (Nint,mag = 0.02, Nmeas,mag = 0.05), and a 10% over-prediction of the
initial condition compared to COTSIM outputs plotted as a function of ρ̂.

where Nint,mag is a constant. The noise vector wj added
to the state for each time step of the COTSIM simulation
is calculated as Nint multiplied by a vector of Gaussian
white noise. In the simulations shown in this section and
in most plasmas of interest, the temperature profile has a
much higher magnitude at the center (ρ̂ = 0) than at the
edge (ρ̂ = ρ̂ETB). Therefore, the structure of Nint in (25)
was chosen to ensure that the magnitude of the added noise
increases with the magnitude of the state at each spatial
location. For the measurement noise, a matrix Nmeas is

defined as

Nmeas =

[
n 0
0 1

]
×Nmeas,mag (26)

where Nmeas,mag is a constant. The noise vector vj is
calculated as Nmeas multiplied by a vector of Gaussian
white noise. The observer then assumes that the internal and
measurement noise in the data have the following covariance
matrices. The internal noise is assumed to have covariance
matrix Q defined as Q = NT

intNint. The measurement
noise is assumed to have covariance matrix R defined as
R = NT

measNmeas.



A. Observability Analysis

While the state equation (16) is nonlinear, the use
of the Jacobian F in the extended Kalman filter ef-
fectively linearizes the system at each time step. Be-
cause of this, the linear observability can be checked at
each time step by calculating the observability matrix as[
H HF HF 2 . . . HFn−1

]T
. Based on the simula-

tions run, the output needs to include values of Te measured
at two different spatial locations in order for the system to
be observable at every time step. Multiple different combi-
nations of spatial locations can be used while maintaining
linear observability.

B. Analysis of Simulation Results

Taking y as the Te data simulated by COTSIM with
the addition of the noise wjsys and vjsys, and u as the
experimental inputs from DIII-D shot 147634, the observer
was run to test its capabilities to estimate Te while rejecting
noise. The estimation case shown here begins at t = 0.9s
and assumes that ρ̂ETB = 0.9. The spatial locations ρ̂meas,1
and ρ̂meas,2 are chosen as 0 and 0.9, respectively, so y =
[T je,1 T

j
e,n]T . The simulation has a relatively high level of

internal noise and a lower level of measurement noise added
to the COTSIM data (Nint,mag = 0.02, Nmeas,mag =
0.001). In addition, the observer in this simulation is given an
initial condition that is 10% higher that the COTSIM data at
that time. Figs. 4 and 5 show Te as estimated by the observer
for this simulation. Because the observer expects the level
of noise that is seen in the data, it is able to reject noise
at spatial locations across the whole Te profile, as seen in
Fig. 4. This figure also shows that the observer is able to
correct the over-prediction arising from the different initial
condition very quickly. This can also be seen in Fig. 5, where
the initial condition given at 0.9s is clearly higher than the
COTSIM data. The observer has almost entirely corrected
this issue by 1s, and a nearly perfect match is seen at 2s.

V. CONCLUSIONS

A state observer has been developed to estimate the Te
profile in a tokamak. The nonlinear model is based on the
electron heat transport equation, and includes a variety of
control-oriented model components as well as two neural
network versions of more computationally intensive physics-
oriented codes. The model is fully observable with only
two measured outputs, which reduces the need for real
time processing of diagnostic data. The observer follows an
extended Kalman filter approach, and has been shown to
reject both errors in the initial condition and internal and
measurement noise in simulation.

In order to obtain estimations across the whole range
from ρ̂ = 0 to ρ̂ = 1, a pedestal model could be added
to the observer model in future work. This may alter the
observability requirements of the estimator. In addition, the
observer validated on simulation data will be compared to
real experimental data in the DIII-D tokamak both offline
and in real time during experiments, and the two-point
observability condition will be confirmed. Once the observer

is validated in real time, the outputs can be used by a
variety of controllers to aid in many different plasma control
objectives.

REFERENCES

[1] J. Wesson, Tokamaks. Oxford, UK: Clarendon Press, 1984.
[2] R. Buttery, B. Covele, J. Ferron et al., “DIII-D research to prepare

for steady state advanced tokamak power plants,” Journal of Fusion
Energy, vol. 38, pp. 72–111, 2019.

[3] W. Wehner, M. Lauret, E. Schuster et al., “Predictive control of the
tokamak q profile to facilitate reproducibility of high-qmin steady-
state scenarios at DIII-D,” in 2016 IEEE Conference on Control
Applications (CCA), 2016, pp. 629–634.

[4] M. L. Walker, P. De Vries, F. Felici, and E. Schuster, “Introduction
to tokamak plasma control,” in 2020 American Control Conference
(ACC), 2020, pp. 2901–2918.

[5] A. Pajares and E. Schuster, “Current profile and normalized beta
control via feedback linearization and Lyapunov techniques,” Nuclear
Fusion, vol. 61, no. 3, p. 036006, jan 2021.

[6] M. Boyer, K. Erickson, B. Grierson et al., “Feedback control of stored
energy and rotation with variables beam energy and perveance on
DIII-D,” Nuclear Fusion, vol. 59, 2019.

[7] K. Middaugh, B. Bray, C. Hsieh, B. McHarg, and B. Penaflor, “DIII-D
Thomson scattering diagnostic data acquisition, processing, and anal-
ysis software,” in 1999 IEEE Conference on Real-Time Computer
Applications in Nuclear Particle and Plasma Physics. 11th IEEE NPSS
Real Time Conference. Conference Record (Cat. No.99EX295), 1999,
pp. 342–345.

[8] T. Blanken, F. Felici, C. Rapson, M. de Baar, and W. Heemels,
“Control-oriented modeling of the plasma particle density in tokamaks
and application to real-time density profile reconstruction,” Fusion
Engineering and Design, vol. 126, pp. 87–103, 2018.

[9] H. Wang, J. E. Barton, and E. Schuster, “Poloidal flux profile
reconstruction from pointwise measurements via extended Kalman
filtering in the DIII-D tokamak,” in 2015 IEEE Conference on Control
Applications (CCA), 2015, pp. 1309–1314.

[10] M. Boyer, S. Kaye, and K. Erickson, “Real-time capable modeling of
neutral beam injection on NSTX-U using neural networks,” Nuclear
Fusion, vol. 59, no. 056008, 2019.

[11] S. M. Morosohk, M. D. Boyer, and E. Schuster, “Accelerated version
of NUBEAM capabilities in DIII-D using neural networks,” Fusion
Engineering and Design, vol. 163, p. 112125, 2021.

[12] S. M. Morosohk, A. Pajares, T. Rafiq, and E. Schuster, “Neural
network model of the multi-mode anomalous transport module for
accelerated transport simulations,” Nuclear Fusion, vol. 61, p. 106040,
2021, in press.

[13] O. Meneghini, S. Smith, P. Snyder et al., “Self-consistent core-pedestal
transport simulations with neural network accelerated models,” Nu-
clear Fusion, vol. 57, no. 086034, 2017.

[14] C. Rea, K. J. Montes, K. G. Erickson, R. S. Granetz, and R. A.
Tinguely, “A real-time machine learning-based disruption predictor in
DIII-D,” Nuclear Fusion, vol. 59, no. 9, p. 096016, 2019.

[15] Y. Fu, D. Eldon, K. Erickson et al., “Machine learning control for
disruption and tearing mode avoidance,” Physics of Plasmas, vol. 27,
p. 022501, 2020.

[16] A. Lakhal, A. Tlili, N. Braiek et al., “Neural network observer for
nonlinear systems application to induction motors 1,” International
Journal of Control and Automation, vol. 3, 04 2010.

[17] E. Ott, B. Hui, and K. Chu, “Theory of electron cyclotron resonance
heating of tokamak plasmas,” Physics of Fluids, vol. 23, p. 1031, 1980.

[18] D. Post, J. Abdallah, R. Clark, and N. Putninskaya, “Calculations of
energy losses due to atomic processes in tokamaks with applications to
the international thermonuclear experimental reactor divertor,” Physics
of Plasmas, vol. 2, p. 2328, 1995.

[19] R. Goldston, D. McCune, H. Towner, S. Davis, R. Hawryluk, and
G. Schmidt, “New techniques for calculating heat and particle source
rates due to neutral beam injection in axisymmetric tokamaks,” Journal
of Computational Physics, vol. 43, pp. 61–78, 1981.

[20] T. Rafiq, A. Kritz, J.Weiland, A. Pankin, and L. Luo, “Physics basis
of multi-model anomalous transport module,” Physics of Plasmas,
vol. 20, p. 032506, 2013.

[21] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.


