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Abstract— Tokamaks are reactors that produce energy from
the fusion, or merging, of atomic particles. A suitable reaction
rate is achieved by heating a gas of charged particles (free
ions and electrons), or plasma, to extreme temperatures. From
the fusion of deuterium and tritium ions, a burning plasma
produces alpha particles that contribute to the heating of the
plasma. Burning plasmas are highly nonlinear systems that
require careful regulation of temperature and density, or burn
control, to reach desirable operating points. Once constructed,
ITER will be the first tokamak designed for burning plasmas.
In this work, a Lyapunov-based burn controller is developed
using a full zero-dimensional nonlinear model. An adaptive
estimator manages the presence of uncertain model parameters.
The control objective is to stabilize equilibria despite model
nonlinearity and uncertainty. Density is regulated through the
injection of fuel pellets. For ITER, the temperature of the ions
may differ significantly from that of the electrons in the plasma
core. Therefore, the proposed controller considers separate
response models for ion and electron energies. For energy
control, the controller commands two virtual control efforts:
the external ion heating and the external electron heating.
To satisfy these two virtual control efforts, ITER will have
access to ion cyclotron heating, electron cyclotron heating and
two neutral beam injectors. With more actuators than virtual
control efforts, the two-temperature plasma system is over-
actuated. Actuator redundancy is resolved by constructing an
optimal control allocator that considers actuator saturation and
rate limits. A simulation study demonstrates the capability of
the adaptive control and control allocation algorithms.

I. INTRODUCTION

The fusion of deuterium (D) and tritium (T) fuel ions
creates an energetic alpha particle and a neutron. A toroidal
device, known as a tokamak [1], produces energy by mag-
netically confining an ionized gas, or plasma, at extreme
temperatures where the DT ions can overcome their mutual
Coulomb repulsion and fuse. Under the magnetic confine-
ment, the charged alpha particles are trapped and their kinetic
energies are absorbed by the plasma, providing the desirable
self-heating quality of burning plasmas. The neutrons escape
the confinement, and their energy is converted to electricity.
ITER, the prospective first burning-plasma tokamak, will
have access to ion cyclotron (IC), electron cyclotron (EC)
and neutral beam (NB) heating systems [2] . Pellet injectors
will provide fuel replenishment. To achieve high fusion to
auxiliary power ratios, burn controllers will be employed to
determine the external heating and fueling requirements.

Previous work [3], [4] on nonlinear burn control algo-
rithms used approximated one-temperature models. More
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recently, the authors proposed a nonlinear control based on a
two-temperature model to better represent the plasma condi-
tions anticipated in ITER [5]. Transport codes predict that for
ITER the electron temperature will be generally 20% higher
than the ion temperature in the plasma core [6]. Fusion alpha
particles are one of the primary causes of the temperature
difference. Only a small percentage of alpha particle power
is delivered to the ions. With the rest deposited into the
electrons, the electron temperature will typically be higher
than the ion temperature. The large ion-to-electron mass ratio
makes collisional energy exchange between the two species
inefficient, slowing ion-electron thermal relaxation [7].

As a first approach to the problem, the model considered
in [5] made the simplifying assumption that the ratio of
ion and electron energies was constant. After applying this
assumption to the total plasma energy response model,
the control design derived one virtual control law for the
total external heating. While the ion energy was directly
controlled, the electron energy evolved passively due to the
fixed proportionality constant. In contrast, the controller de-
signed in this work avoids both the one-temperature and the
fixed energy ratio assumptions by considering separate ion
and electron response models. The proposed control design
independently regulates ion and electron energies with the
use of separate virtual control laws for external ion heating
and external electron heating. Lyapunov techniques [8] were
applied to formulate the stabilizing control laws. Adaptive
estimation is used to account for uncertain model parameters.

The controller’s commanded virtual control efforts for ion
and electron heating need to be met using the available
heating systems. With more heating systems (IC, EC, NB)
than commanded virtual control efforts, the system is over-
actuated. This actuator redundancy is resolved using a control
allocation (CA) module that optimally maps the commanded
efforts to the control inputs. The CA module is separate from
the high level plasma control algorithm. There are benefits
to using this modular scheme over an optimal controller that
determines the control inputs directly. Actuator constraints
can be better handled and actuator reconfigurations do not
require alteration of the virtual control laws [9]. The pro-
posed CA module solves a convex quadratic program that
considers actuator saturation and rate limits.

This paper is divided as follows. The plasma model is
covered in Section II. In Section III, control objectives are
drawn. The adaptive controller is designed in Section IV.
The CA module is presented in Section V. In Section VI,
the controller and CA module are studied with simulations.
Conclusions and future work are stated in Section VII.



II. THE TWO-TEMPERATURE PLASMA MODEL

In this volume-averaged model, the particle densities of
deuterium, tritium, alpha particles and impurities are nα, nD,
nT and nI , respectively. Expressing each term in units of
m−3s−1, the density response models for each species are

ṅD = −nD
τD
− Sα + SD, ṅα = −nα

τα
+ Sα, (1)

ṅT = −nT
τT
− Sα + ST , ṅI = −nI

τI
+ SspI . (2)

The controlled injection rates of deuterium and tritium are
SD and ST , respectively. Transport out of the plasma is
modeled using particle confinement times τα, τD, τT and
τI . The fusion reaction rate density, Sα, can be expressed in
terms of the DT reactivity, 〈σν〉, such that Sα = nDnT 〈σν〉.
Quasi-neutrality, which demands equal numbers of electrons
and protons in the plasma, defines the electron density as
ne = nH + 2nα + ZInI where nH = nD+nT and ZI is the
average atomic number of the impurity ions. The total plasma
density and the tritium fraction are defined, respectively, as

n = nH + nα + nI + ne, γ = nT /nH . (3)

Erosion of the vessel walls results in the absorption of
impurity ions into the plasma. The impurity sputtering source
is expressed as SspI = fspI (n/τI + ṅ), where fspI is the sput-
tering fraction. Although models in previous work [4], [5]
included DT recycling due to plasma-wall interactions, this
work omits it for brevity. The control algorithm developed in
Section IV can easily be extended to a model with recycling.

The plasma ions and electrons have unique temperatures
Ti and Te, respectively. The total plasma energy, E, is the
sum of the ion energy, Ei, and the electron energy, Ee.
Therefore, E =Ei + Ee = 3

2 (nH + nα + nI)Ti + 3
2neTe.

The separate ion and electron energy response models are

Ėi =− Ei
τE,i

+ φαPα + Pei + Paux,i, (4)

Ėe =− Ee
τE,e

+(1−φα)Pα−Pei−Pbr+Poh+Paux,e, (5)

where Pα is the alpha particle heating from fusion reactions,
φα is the fraction of Pα deposited into the plasma ions, Pbr is
the bremsstrahlung radiation losses, Poh is the ohmic heating,
Pei is the ion-electron collisional power exchange, Paux,i
and Paux,e are the controlled external heating delivered to
the ions and electrons, respectively. Each term has units of
Wm−3. The energy confinement times are τE,i and τE,e.

Each fusion reaction produces one alpha particle with
Qα = 3.52 MeV of kinetic energy. Therefore, Pα = QαSα.
With Ti expressed in keV, the DT reactivity [10] is given by

〈σν〉 = C1ω
√
ξ/(mrc2T 3

i )e−3ξ, ξ = (B2
G/4ω)1/3 (6)

ω= Ti

[
1− Ti(C2 + Ti(C4 + TiC6))

1 + Ti(C3 + Ti(C5 + TiC7))

]−1

, (7)

where and BG, mrc
2 and Cj for j∈{1, ..., 7} are constants.

While the DT reactivity depends on ion temperature,
the radiation losses, Pbr = 5.5× 10−37Zeffn

2
e

√
Te, and

ohmic heating, Poh = 2.8× 10−9ZeffI
2
pa

−4T
−3/2
e , depend

on electron temperature (expressed in keV). The plasma
current and minor radius are Ip and a. The effective atomic
number is Zeff = (nH + 4nα + Z2

InI)/ne. Bremsstrahlung
radiation does not depend on Ti because the light electrons
accelerate and radiate much more than the heavy ions [1].

The power exchange between ions and electrons is

Pei =
3

2
ne
Te − Ti
τei

, τei =
3π
√

2πε20T
3/2
e

e4m
1/2
e ln Λe

∑
ions

mi

niZ2
i

, (8)

where τei is the energy relaxation time [11]. In (8), e =
1.622 × 10−19C, me = 9.1096 × 10−31kg, ε0 = 8.854 ×
10−12F/m and Te is expressed in J. The natural logarithm is
given by Λk = 1.24× 107T

3/2
k /(n

1/2
e Z2

eff ) for k ∈ {i, e}.
Fast ions, such as fusion-born alpha particles or injected

neutral beam particles, deposit fractions φf and φ̄f , (1−φf )
for f ∈ {α, nbi} of their energy into the plasma ions and
electrons. As a fast ion collides with the surrounding plasma
particles [1], it loses energy, εf for f∈{α, nbi}, at a rate of

dεf
dt

= −Dεf −Dεf
(
εc
εf

)3/2

≡ −Pfe − Pfi, (9)

where D = m
1/2
e e4neZ

2
f ln Λe/(3

√
2π

3/2ε20mfT
3/2
e ). The

fast ion’s charge and mass are Zf and mf for f∈{α, nbi}.
The first and second terms of (9) represent the power going
to the electrons (Pfe) and ions (Pfi), respectively. At high
energies [12], the fast ions primarily heat the electrons. As
fast ions slow down, more of their energy goes to the ions.
The electron and ion heating are equal at the critical energy,

εc = m−1/3
e Af

Te

n
2/3
e

(
3
√
π ln Λi

4 ln Λe

)2/3(∑
ions

niZ
2
i

Ai

)
, (10)

where Af for f ∈{α, nbi} and Ai for i∈{α,D, T, I} are,
respectively, the atomic mass of the fast ion and plasma ions
(me is in amu). By solving for D in (9) and substituting it
into the definition of Pfi, Pfi can be expressed in terms of
dεf/dt. Then, the total energy delivered to the ions can be
found by integrating Pfi in time from zero to the time it takes
for the fast ion to lose all of its energy, tf . The ion-heating
fraction, φf for f∈{α, nbi}, is this integral divided by the
the fast ion’s initial kinetic energy, εf0 for f∈{α, nbi}:

φf ,
1

εf0

∫ tf

0

Pfidt =
1

εf0

∫ tf

0

−ε3/2c

ε
3/2
f +ε

3/2
c

dεf
dt

dt (11)

=
ε
3/2
c

εf0

∫ 0

εf0

−dεf
ε
3/2
f +ε

3/2
c

=
1

εf0

∫ εf0

0

dεf
(εf/εc)3/2 + 1

.

With the change in variables x = εf/εc and x0 = εf0/εc,

φf=
εc
εf0

∫ εf0/εc

0

d(εf/εc)

(εf/εc)3/2 + 1
=

1

x0

∫ x0

0

dx

x3/2 + 1
(12)

=
1

x0

[
1

3
ln

1−x1/2
0 +x0

(1 + x
1/2
0 )2

+
2√
3

(
arctan

2x
1/2
0 −1√

3
+
π

6

)]
.

The fraction of Pα delivered to the ions, φα in (4) and (5),
is calculated using (10) and (12) with εα0 =Qα and Aα=4.



The expression for the global energy confinement time is

τE = Hτ scE = HKP−0.69V −0.69n0.41e19 , (13)

where K = 0.0562I0.93p B0.15
T M0.19R1.97ε0.58κ0.78, H is a

constant that depends on plasma’s confinement quality, BT
is the toroidal field, R is the plasma major radius, ε=a/R,
M = 3γ+ 2(1− γ), κ is the vertical elongation at 95%
flux surface, P =Paux,i+Paux,e−Pbr+Pα+Poh is the total
power in MWm−3, V is the plasma volume, and ne is in units
of 1019m−3 [13]. In ITER, Ip, BT , R, a, κ and V have values
15 MA, 5.3 T, 6.2 m, 2 m, 1.7 and 837 m3, respectively.
The particle confinement times are proportional to global
energy confinement time: τh = khτE for h ∈ {α,D, T, I}.
Similarly, ζi = τE,i/τE and ζe = τE,e/τE are constant.

The parameters H , ζi, ζe, kD, kT , kα, kI and fspI are
uncertain, and they are grouped into the nominal uncertainty
vector θ such that (1), (2), (4) and (5) can be rewritten as

Ėi =− θ1
Ei
τscE

+ φαPα + Pei + Paux,i,

Ėe =− θ2
Ee
τscE

+(1−φα)Pα−Pei−Pbr+Poh+Paux,e,

ṅα =− θ3
nα
τscE

+ Sα, (14)

ṅD =− θ4
nD
τscE
− Sα + SD,

ṅT =− θ5
nT
τscE
− Sα + ST ,

ṅI =− θ6
nI
τscE

+ θ7
n

τscE
+ θ8ṅ,

where θi is the ith element of θ. The elements of θ can be
easily inferred from (1), (2), (4), (5) and (14).

III. BURN CONTROL OBJECTIVES
The controller is designed to track equilibria defined by

system (14) at steady-state. With six states (with desired
values Ēi, Ēe, n̄α, n̄D, n̄T , n̄I ) and four virtual control
efforts (P̄aux,i, P̄aux,e, S̄D, S̄T ), the system of six equations
is solved by predefining Ēi, Ēe, n̄ and γ̄. Deviations of states
from their desired values are Ẽi = Ei− Ēi, Ẽe = Ee− Ēe,
ñα=nα−n̄α, ñD =nD−n̄D, ñT =nT−n̄T and ñI =nI−n̄I .
The control objective is to drive the deviations in the system,

˙̃Ei =− θ1
Ēi + Ẽi
τscE

+ φαPα + Pei + Paux,i,

˙̃Ee =−θ2
Ēe+Ẽe
τscE

+(1−φα)Pα−Pei−Pbr+Poh+Paux,e,

˙̃nα =− θ3
n̄α + ñα
τscE

+ Sα, (15)

˙̃nD =− θ4
n̄D + ñD
τscE

− Sα + SD,

˙̃nT =− θ5
n̄T + ñT
τscE

− Sα + ST ,

˙̃nI =− θ6
n̄I + ñI
τscE

+ θ7
n̄+ ñ

τscE
+ θ8 ˙̃n,

to zero despite model uncertainty. This is accomplished by
developing adaptive control laws from a Lyapunov function.

IV. ADAPTIVE BURN CONTROL ALGORITHM

Control laws for heating, Paux,i and Paux,e, and fueling,
SD and ST , are developed using the Lyapunov function

V = k2i Ẽ
2
i + k2eẼ

2
e + k2γ γ̃

2 + ñ2 + θ̃TΓ−1θ̃, (16)

where Γ is a positive definite matrix, and ki, ke and kγ are
positive constants. The vector θ̃ is the online estimation error
of nominal θ. The controller’s current estimation of nominal
θ is θ̂. Therefore, θ̃ = θ̂ − θ. The time derivative of (16) is

V̇ = k2i Ẽi
˙̃Ei + k2eẼe

˙̃Ee + k2γ γ̃ ˙̃γ + ñ ˙̃n+ θ̃TΓ−1 ˙̃
θ. (17)

Recalling (3) and (15), the derivatives ˙̃n and ˙̃γ are

˙̃n = 3 ˙̃nα + 2 ˙̃nT + 2 ˙̃nD + (ZI + 1) ˙̃nI

=− 3θ3
nα
τscE
− 2θ5

nT
τscE
− 2θ4

nD
τscE
− (ZI + 1)θ6

nI
τscE
− Sα

+ 2SD + 2ST + (ZI + 1)θ7
n

τscE
+ (ZI + 1)θ8ṅ, (18)

˙̃γ =
ṅTnH−nT ṅH

n2H
=
ṅT
nH
−γ
(
ṅD+ṅT
nH

)
=

1

nH

[
ST −Sα

−θ5
nT
τscE
−γ
(
SD+ST −θ4

nD
τscE
−θ5

nT
τscE
−2Sα

)]
. (19)

Substituting expressions for ˙̃Ei,
˙̃Ee, ˙̃n and ˙̃γ into (17) gives

V̇ = k2i Ẽi

[
Paux,i − θ1

Ēi
τscE
− θ1

Ẽi
τscE

+ φαPα + Pei

]
+k2eẼe

[
Paux,e − θ2

Ēe
τscE
−θ2

Ẽe
τscE

+(1−φα)Pα−Pei

−Pbr+Poh

]
+
k2γ
nH

γ̃

[
ST −Sα−θ5

nT
τscE
− γ
(
SD

+ST −θ4
nD
τscE
−θ5

nT
τscE
−2Sα

)]
+ñ

[
2SD+2ST

−3θ3
nα
τscE
−2θ5

nT
τscE
−2θ4

nD
τscE
−(ZI+1)θ6

nI
τscE
−Sα

+(ZI+1)θ7
n

τscE
+(ZI+1)θ8ṅ

]
+ θ̃TΓ−1 ˙̃

θ. (20)

With application of the certainty equivalence principle (as-
sume θ̂ = θ) [14], the control laws are taken as

Paux,i = θ̂1
Ēi
τscE
− φαPα − Pei, (21)

Paux,e = θ̂2
Ēe
τscE
−(1−φα)Pα+Pei+Pbr−Poh, (22)

SD =
1

2

[
3θ̂3

nα
τscE

+ 2θ̂4
nD
τscE

+ 2θ̂5
nT
τscE

+ (ZI+1)θ̂6
nI
τscE

+Sα−2ST −(ZI+1)

(
θ̂7

n

τscE
+θ̂8ṅ

)
−KN ñ

]
, (23)

ST = θ̂5
nT
τscE

+Sα+γ

[
3

2

(
θ̂3
nα
τscE
−Sα

)
+

(ZI+1)

2
θ̂6
nI
τscE

− (ZI+1)

2

(
θ̂7

n

τscE
+ θ̂8ṅ

)
− KN

2
ñ

]
−KT γ̃, (24)

where KN and KT are positive constants. Application of
(21), (22), (23) and (24) transforms (20) to



V̇ =− k2i Ẽ
2
i

τscE
θ1 −

k2eẼ
2
e

τscE
θ2 + k2i Ẽi

Ēi
τscE

θ̃1 + k2eẼe
Ēe
τscE

θ̃2

+ 3ñ
nα
τscE

θ̃3+

(
2ñ−

k2γ γ̃

nH
γ

)
nD
τscE

θ̃4 + ñ(ZI + 1)
nI
τscE

θ̃6

+

(
2ñ− (γ − 1)

k2γ γ̃

nH

)
nT
τscE

θ̃5 − (ZI + 1)ñ
n

τscE
θ̃7

−(ZI + 1)ñṅθ̃8−KT

k2γ γ̃
2

nH
−KN ñ

2 + θ̃TΓ−1 ˙̃
θ. (25)

The following stability condition is attained when θ̃ = 0:

V̇ =−k
2
i Ẽ

2
i

τscE
θ1 −

k2eẼ
2
e

τscE
θ2 −KT

k2γ γ̃
2

nH
−KN ñ

2 ≤ 0. (26)

Since parameters are usually unknown (θ̂ 6= θ), the controller
needs to estimate θ online for (26) to hold. Adaptive law,

˙̂
θ ≈ ˙̃

θ = Γ



−(Ēi/τ
sc
E )k2i Ẽi

−(Ēe/τ
sc
E )k2eẼe

−3ñ(nα/τ
sc
E )

−[2ñ− ((k2γ γ̃γ)/nH)](nD/τ
sc
E )

−[2ñ− (γ − 1)(k2γ γ̃)/nH ](nT /τ
sc
E )

−ñ(ZI + 1)(nI/τ
sc
E )

ñ(ZI + 1)(n/τscE )

(ZI + 1)ñṅ


, (27)

reduces (25) to (26). Note that ˙̂
θ ≈ ˙̃

θ because changes in the
uncertain parameters are considered to be negligible (θ̇ ≈ 0).
Despite model uncertainty, adaptive control laws (21), (22),
(23), (24) and (27) stabilize the equilibria of system (15).

The stability of ñα can be shown with Vα= ñ2α/2 which
has derivative V̇α= ñα(−θ3nα/τscE +Sα). With the stabiliza-
tion of ñ, γ̃, Ẽi and Ẽe, the sum (−θ3nα/τscE +Sα) increases
with decreasing nα and vice versa. Therefore, it is valid
to write (−θ3nα/τscE + Sα) = −µñα where µ is a positive
continuous function. The stability of ñα is proven with V̇α =
−µñ2α < 0 ∀ ñα 6= 0 when ñ = γ̃ = Ẽi = Ẽe = 0. The
stability of ñI can be shown using the impurity balance (2)
at steady-state, 0=−nI +fspI n. Clearly, ñI =0 when ñ=0.

V. CONTROL ALLOCATION ALGORITHM

To represent ITER, four power actuators are considered.
The ion cyclotron (IC) system, electron cyclotron (EC)
system and two neutral beam (NB) injectors, respectively,
deliver powers Pic, Pec, Pnbi,1 and Pnbi,2 to the plasma.
Respectively, the IC and EC systems directly heat ions and
electrons by sending electromagnetic radiation at frequencies
resonant with ions and electrons. Heat is then transferred
between species via particle collisions (modeled using Pei).

The NB power heats the plasma by injecting highly kinetic
particles at a high repetition rate. Therefore, the NB injectors
are sources of fast ions subject to the dynamics described
by (9) through (12). The NB injectors planned for ITER
will fire deuterium particles with 1 MeV of energy into the
plasma [15]. Consequently, the fraction of the NB power

deposited into the plasma ions, φnbi, is calculated using (10)
and (12) with εnbi0 =1 MeV and Anbi=2. In Section IV, the
virtual control efforts Paux,i and Paux,e required for energy
stabilization were obtained. The relationships between virtual
control efforts and control inputs, with φ̄nbi , 1−φnbi, are

Paux,i=ηicPic + ηnbi,1φnbiPnbi,1+ ηnbi,2φnbiPnbi,2, (28)
Paux,e=ηecPec+ηnbi,1φ̄nbiPnbi,1 +ηnbi,2φ̄nbiPnbi,2,

where ηic, ηec, ηnbi,1, and ηnbi,2 are actuator efficiency
factors which can be set to zero to simulate actuator failures.

Since four actuators are available to achieve two virtual
control efforts, the system is over-actuated [16]. In this
section, a control allocation (CA) algorithm is designed to
coordinate the actuators so that the desired virtual control
efforts are produced. The algorithm considers actuator satu-
ration and rate constraints. Separating the power of the two
NB injectors in (28) allows the CA algorithm to consider
fault scenarios where only one NB injector is available. The
system would still be over-actuated if ηnbi,1 = ηnbi,2 and
Pnbi,1 = Pnbi,2. The equations in (28) are rewritten as

v = Bu =

[
ηic 0 ηnbi,1φnbi ηnbi,2φnbi
0 ηec ηnbi,1φ̄nbi ηnbi,2φ̄nbi

]
u, (29)

v =
[
Paux,i Paux,e

]T
, u =

[
Pic Pec Pnbi,1 Pnbi,2

]T
.

The control effectiveness matrix, B, is state-dependent and
time-varying. In the static effector model (29), B is updated
at every sampling instant. The algorithm’s primary objective
is to calculate the control input u that produces the virtual
efforts requested by the controller. When this objective fails
due to actuator constraints, the algorithm searches for a u
that minimizes the allocation errors (differences between the
requested virtual efforts and the efforts produced by the
constrained actuators). A secondary objective is to minimize
the total power consumed by the heating systems.

Respectively, ū and
¯
u contain the upper and lower satura-

tion limits of each actuator. For ITER, the IC system, the EC
system and each of the NB injectors will have a maximum
power of 20 MW, 20 MW and 16.5 MW, respectively [2].
The minimum power is zero for each actuator. The upper and
lower rate constraints are placed into δ̄ and

¯
δ, respectively.

Then, the most restrictive lower and upper limits are

ul = max(
¯
u, u? + ∆t

¯
δ), uu = min(ū, u? + ∆tδ̄), (30)

where u? is the control input from the last sampling instant,
∆t is the time step, and the elements of

¯
δ are negative.

The CA problem is posed as a quadratic program (QP):

minimize
s,u

(
2∑
i=1

gis
2
i +

4∑
j=1

wju
2
j

)
subject to Bu = v + s, ul ≤ u ≤ uu.

(31)

The slack variables s =
[
s1, s2

]T
are introduced to allow

error in the mapping between u and v due to actuator
constraints [17]. The elements of g and w are set to 104

and 1, respectively, because minimizing the slack variables
takes priority over minimizing the total power consumption.



Problem (31) is reformulated as a standard QP:

minimize
s,u

1

2
(uT , sT )H

(
u

s

)
(32)

subject to (B,−I)

(
u

s

)
= v,

(
I 0
−I 0

)(
u

s

)
≥
(
ul
−uu

)
,

where H = 2× diag(w1, ..., w4, g1, g2). The introduction of
slack variables ensures the existence of a feasible solution.
Since H is positive definite, the QP is a strictly convex
optimization problem with a unique optimal solution [18].

Fueling CA is not required because ITER will only have
two pellet injectors to supply SD and ST . Maximum fueling
rates will be SD = 120 Pa m3/s and ST = 111 Pa m3/s [2].

VI. SIMULATION STUDY

The performance of the adaptive control and control
allocation (CA) algorithms are assessed with the following
simulation study. For comparison with CA scheme (32), a
simpler CA scheme is introduced. The least-squares problem,

minimize
u

(1/2)uT Iu subject to Bu = v, (33)

has the solution u = B+v where B+ = BT (BBT )−1 is the
Moore-Penrose pseudo-inverse. Actuator constraints (30) are
applied after solving (33).

Three 270 second simulations with different burn control
and CA schemes are compared. All simulations use con-
trol laws (21), (22), (23) and (24). An adaptive controller
(adaptive law (27)) with QP CA (32) is compared to a
non-adaptive (dθ̂/dt = 0) controller with QP CA to test the
adaptive control algorithm. To assess the effectiveness of the
QP CA algorithm (32), the adaptive controller with QP CA is
also compared to an adaptive controller with pseudo-inverse

CA (33). Each simulation used nα = 2.6× 1018m−3, nD =
4.2 × 1019m−3, nT = 4.5× 1019m−3, nI = 1× 1018m−3,
Ei = 2.05× 105J/m3 and Ee = 2.4 × 105J/m3 as initial
conditions (also ZI = 4). The nominal values (and initial
control estimates) of uncertain parameters H , ζi, ζe, kα,
kD, kT , kI and fspI were 1.1 (1.02), 1.15 (1.25), 0.85 (1),
6 (8.2), 3 (4), 2.5 (4), 8.7 (12) and 0.005 (0.02), respectively.
Actuator saturation limits were given in Section V. The IC,
EC and NB rate constraints were taken to be ±10 MW/s,
±10MW/s and ±1MW/s, respectively. The heating efficien-
cies were set to ηic=0.9, ηec=0.9, ηnbi,1=1 and ηnbi,2=0.8.
The desired equilibrium initially given to the controllers was
determined by using Ēi=1.83×105J/m3, Ēe=2.4×105J/m3,
n̄= 2 × 1020m−3 and γ̄ = 0.5 to solve (14) with d/dt= 0
and nominal θ. At 90 seconds, the desired equilibrium was
changed to that defined by Ēi = 1.65 × 105J/m3, Ēe =
2.15 × 105J/m3, n̄ = 1.8 × 1020m−3 and γ̄ = 0.48. The
CA modules were evaluated with an actuator fault scenario.
At 180s, the second NB injector shuts down. This was sim-
ulated by setting its efficiency (ηnbi,2) to zero, its saturation
limit to zero, and allowing it to drop to zero instantly.

Fig. 1 (a, b, c, d) demonstrates how well the three control
schemes track target equilibria using the actuation shown
in Fig. 2. Due to uncertainties, the non-adaptive controller
with QP CA moves the system away from the targets. The
adaptive controller with QP CA successfully stabilizes the
desired equilibria despite the uncertainties and actuator fault.
In the first two-thirds of the simulation, both CA schemes
favor the first NB injector over the second due to its better
efficiency. Despite the actuator fault at 180s, the adaptive
controller with QP CA holds the system at the desired ion
and electron energy targets, while the adaptive controller with
pseudo-inverse CA cannot keep the system on the targets.

Fig. 1: (a, b, c, d) Adaptive controller with QP CA (blue solid), non-adaptive controller with QP CA (black dashed-dotted)
and adaptive controller with pseudo-inverse CA (magenta dotted) attempt to track targets (red dashed). (e, f) Allocation
errors under adaptive control with QP CA (green solid) and pseudo-inverse CA (purple dashed) are compared.



Fig. 2: Time evolutions of the heating and fueling actuators under adaptive control with QP CA (blue solid), non-adaptive
control with QP CA (black dashed-dotted) and adaptive control with pseudo-inverse CA (magenta dotted) are presented.

The allocation errors produced by the adaptive controller
with QP CA and pseudo-inverse CA are compared in
Fig. 1 (e, f). The allocation errors are the absolute values
of the differences between the requested control efforts
(calculated from (21) and (22)) and the efforts produced from
the allocated actuators (calculated from (28) after solving
either (32) or (33)). Allocation errors occur because either the
requested efforts are unattainable due to actuator constraints
or the CA module fails to find a solution to (29). Throughout
the simulation, the QP CA scheme finds a solution with
zero allocation errors. The pseudo-inverse CA scheme misses
the requested efforts by a few megawatts in both the first-
third and last-third of the simulation. The failure of the
pseudo-inverse CA scheme to meet the requested external
heating generates steady-state errors in the ion and elec-
tron energies. Measured at 270s, the steady-state errors are
|∆Ei| = 1.12× 105J and |∆Ee| = 1.42× 105J. With QP
CA, the steady-state errors are negligible (|∆Ei| = 2.5J and
|∆Ee| = 20.4J). Clearly, the more complex QP CA module
is worth the extra design effort and computational load.

VII. CONCLUSIONS AND FUTURE WORK

The proposed nonlinear adaptive burn control algorithm
successfully determines the virtual control efforts that force
the plasma to equilibrium targets despite the model uncer-
tainties. The actuator redundancy of the two-temperature
plasma is resolved with a control allocator that determines
the constrained inputs that best achieve the requested virtual
control efforts. Future work may focus on adaptive control
allocation to manage the existence of uncertain parameters
in the effector model (29). Another problem to consider is
the inclusion of time delays in the model. Time delays, such
as actuator response times and the ablation time of injected
fuel pellets, can degrade the closed-loop performance.
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