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Abstract— Two key properties that are often used to define
a plasma operating scenario in nuclear fusion tokamak devices
are the current and electron temperature (Te) profiles due to
their intimate relationship to plasma performance and stability.
In the tokamak community, the current profile is typically
specified in terms of the safety factor (q) profile or its inverse,
the rotational transform (ι = 1/q) profile. The plasma poloidal
magnetic flux (Ψ) and Te dynamics are governed by an infinite-
dimensional, nonlinear, coupled, physics-based model that is
described by the magnetic diffusion equation and the electron
heat transport equation. In this work, an integrated feedback
controller is designed to track target ι (proportional to the
spatial gradient of Ψ) and Te profiles by embedding these partial
differential equation models into the control design process.
The electron thermal conductivity profile is modeled as an
uncertainty, and the controller is designed to be robust to an
expected uncertainty range. The performance of the integrated
ι + Te profile controller in the TCV tokamak is demonstrated
through simulations with the simulation code RAPTOR by first
tracking a nominal target, and then modulating the Te profile
between equilibrium points while maintaining the ι profile in
a stationary condition.

I. INTRODUCTION

Nuclear fusion is the process by which two light nuclei
combine together. Energy generated from these reactions can
be used to produce electrical power through a conventional
Rankine cycle. However, many technological challenges still
need to be solved in order to develop a commercial fusion
power plant. Due to the Coulombic repulsion force that
exists between the positively charged nuclei, they must be
heated to very high temperatures so that the nuclei possess
enough kinetic energy to get close enough to fuse. At these
temperatures, the fusion reactants are in the plasma state.
The tokamak [1] machine employs a helical magnetic field
structure to confine the plasma in a fixed toroidal volume
and create the conditions necessary for fusion to occur by
exploiting the plasma’s ability to conduct electrical current.

In order to meet the objectives of the ITER tokamak
project [2] (next phase of tokamak development), extensive
research has been conducted to find plasma operating scenar-
ios characterized by a high fusion gain and magnetohydro-
dynamic (MHD) stability where a dominant fraction of the
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current flowing in the plasma is generated by noninductive
means [3]. Two key properties that are often used to define
a plasma operating scenario are the current and electron
temperature (Te) profiles due to the intimate relationship
these quantities have to plasma performance [4] and stabil-
ity [5]. Therefore, the development of plasma profile control
algorithms has the potential to improve the performance
and reproducibility of tokamak operating scenarios. In the
tokamak community, the current profile is typically specified
in terms of the safety factor (q) profile. Advances towards de-
veloping first-principles-driven (FPD), physics-model-based
algorithms for q profile control in various tokamaks are dis-
cussed in [6]–[17]. Additionally, algorithms for simultaneous
control of the q profile and the volume-averaged plasma
energy have been developed following both data-driven [18]
and FPD [19], [20] approaches. Finally, an algorithm for
q and Te profile control based on real-time estimation of
linearized static plasma profile response models is discussed
in [21]. In this work, we synthesize a feedback algorithm for
simultaneous q and Te profile control in the TCV tokamak
following a FPD, physics-based approach.

The plasma poloidal magnetic flux (Ψ) and electron
temperature dynamics are governed by an infinite dimen-
sional, nonlinear, coupled physics model that is described
by the magnetic diffusion equation [22] and the electron
heat transport equation [23]. The rotational transform (ι)
profile, defined as ι = 1/q, is proportional to the spatial
gradient of Ψ, and therefore represents a natural plasma
property conducive for feedback control. In this work, an
integrated feedback controller is designed to track target ι

and Te profiles by embedding the partial differential equation
(PDE) models into the design process. We model the electron
thermal conductivity profile as an uncertainty and design the
controller to be robust to an expected uncertainty range. The
actuators used for ι and Te profile control are the total plasma
current and the auxiliary heating/current-drive (H&CD) sys-
tem. The RAPTOR code [24], which is a simplified physics-
based code that simulates the plasma Ψ and Te profile
dynamics, is used to test the capabilities of the controller
in TCV. The integrated ι + Te profile controller performance
is demonstrated by first tracking a nominal target, and then
modulating the Te profile between equilibrium points while
maintaining the ι profile in a stationary condition.

II. PLASMA PROFILE DYNAMIC MODELS

The helical magnetic field (~B) in a tokamak plasma is
composed of a toroidal component (~Bφ ) and a poloidal
component (~Bθ ) as shown in Fig. 1. The poloidal magnetic



Fig. 1. Toroidal magnetic flux surfaces in a tokamak plasma. The limiting
flux surface at the plasma core is called the magnetic axis and (R,Z) define
the radial and vertical coordinates in the poloidal plane.

flux is defined as Ψ=
∫
~Bθ ·d~AZ , where ~AZ is a disk of radius

R that is perpendicular to a unit vector in the Z direction. In a
well confined plasma MHD equilibrium [1], nested toroidal
surfaces, which are defined by a constant poloidal magnetic
flux, are obtained as shown in Fig. 1. Any quantity that
is constant on these magnetic flux surfaces can be used to
index them. In this work, the spatial coordinate ρ̂ = ρ/ρb
is used to index the magnetic flux surfaces, where ρ is a
mean effective minor radius of a magnetic flux surface, i.e.,
Φ(ρ) = πBφ ,0ρ2, Φ is the toroidal magnetic flux, Bφ ,0 is the
vacuum toroidal magnetic field at the geometric major radius
R0 of the tokamak, and ρb is the mean effective minor radius
of the last closed magnetic flux surface.

The rotational transform is related to the spatial gradient
of the poloidal magnetic flux and is defined as

ι(ρ̂, t) = 1/q(ρ̂, t) =−dΨ/dΦ =−[∂ψ/∂ ρ̂]/[Bφ ,0ρ
2
b ρ̂], (1)

where t is the time and ψ(ρ̂, t) is the poloidal stream
function, which is closely related to Ψ(ρ̂, t), i.e., Ψ = 2πψ .
The poloidal magnetic flux dynamics in a tokamak plasma
are given by the magnetic diffusion equation [22]

∂ψ

∂ t
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b F̂2
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ρ̂F̂ĜĤ

∂ψ
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)
+R0Ĥη(Te) jni, (2)

with boundary conditions ∂ψ/∂ ρ̂(0, t) = 0 and
∂ψ/∂ ρ̂(1, t) = −kIp Ip, where η(ρ̂, t) is the plasma
resistivity, Te(ρ̂, t) is the electron temperature, µ0 is
the vacuum magnetic permeability, jni(ρ̂, t) is the total
noninductive current density, kIp is a geometrical constant,
and Ip(t) is the total plasma current. The geometric spatial
factors F̂(ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are related to the magnetic
configuration of a particular plasma MHD equilibrium.

Assuming diffusion is the dominant heat transport mech-
anism in the tokamak plasma, the electron temperature dy-
namics are given by the electron heat transport equation [23]
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with boundary conditions ∂Te/∂ ρ̂(0, t) = 0 and Te(1, t) =
Te,bdry, where ne(ρ̂, t) is the electron density, χe(ρ̂, t) is the
electron thermal conductivity, Qe(ρ̂, t) is the total electron
heating power density, and Te,bdry is the electron temperature
at the plasma boundary, which is assumed constant.

III. PHYSICS-BASED PLASMA PARAMETER MODELING

The plasma resistivity scales inversely with the electron
temperature and is modeled by a simplified Spitzer model as

η(ρ̂, t) = ksp(ρ̂)Ze f f /[Te(ρ̂, t)3/2], (4)

where ksp is a spatial profile and Ze f f is the effective average
charge of the ions, which is assumed constant in space and
time. The total noninductive current density is generated by
the auxiliary sources and the bootstrap current [25], i.e.,

jni(ρ̂, t) =
naux∑
i=1

jaux,i(ρ̂, t)+ jbs(ρ̂, t), (5)

where jaux,i is the current density driven by the individual
auxiliary sources, jbs is the current density driven by the
bootstrap current, and naux is the number of auxiliary sources.
The individual auxiliary current-drives are modeled as

jaux,i(ρ̂, t) = jre f
aux,i(ρ̂)[Te(ρ̂, t)/ne(ρ̂, t)]Paux,i(t), (6)

where jre f
aux,i is a normalized reference current density depo-

sition profile for the i-th auxiliary source, Te/ne represents
the current-drive efficiency (for electron cyclotron current-
drive [26]), and Paux,i is the i-th auxiliary power. The boot-
strap current is a self-generated current in the plasma which
arises from the radial pressure gradient that is produced by
the magnetic confinement [25], and is modeled as [27], [28]

jbs(ρ̂, t) =
kJkeV R0

F̂

(
∂ψ
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)−1 [
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∂Te
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(ρ̂, t)

]
, (7)

where L31(ρ̂), L32(ρ̂), L34(ρ̂), and α(ρ̂) depend on the
magnetic configuration of a particular plasma equilibrium,
kJkeV = 1.602× 10−16 J/keV, and we have assumed equal
electron and ion densities and temperatures, respectively.

The total electron heating power density is expressed as

Qe(ρ̂, t)=
1

kJkeV

[
Qe,ohm(ρ̂, t)+

naux∑
i=1

Qe,auxi(ρ̂, t)−Qe,rad(ρ̂, t)

]
(8)

where Qe,ohm is the ohmic power density, Qe,auxi are the in-
dividual auxiliary power densities, and Qe,rad is the radiated
power density. The ohmic power density is modeled as

Qe,ohm(ρ̂, t) = jtor(ρ̂, t)2
η(ρ̂, t), (9)

where the total toroidal current density is expressed as
jtor(ρ̂, t) = − 1

µ0ρ2
b R0Ĥ

1
ρ̂

∂

∂ ρ̂

(
ρ̂ĜĤ ∂ψ

∂ ρ̂

)
[29]. The individual

auxiliary power densities are modeled as

Qe,auxi(ρ̂, t) = Qre f
auxi

(ρ̂)Pauxi(t), (10)

where Qre f
aux,i is a normalized reference power density deposi-

tion profile for the i-th auxiliary source. The radiated power
density (for Bremsstrahlung radiation) is modeled as [1]

Qe,rad(ρ̂, t) = kbremZe f f ne(ρ̂, t)2
√

Te(ρ̂, t), (11)

where kbrem = 5.5×10−37 Wm3/
√

keV is the Bremsstrahlung
radiation coefficient.
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Fig. 2. (a) Cubic spline basis functions Λα (ρ̂) used to model χe and (b)
the χe uncertainty range (gray-shaded region) captured by the model (12).
The nominal model (characterized by δα = 0) is shown by the solid black
line, and the maximum/minimum values (characterized by δα = 1 and δα =
−1, respectively) are shown by the dashed black lines. The multicolored
lines show the various χe profiles that are achieved during a typical TCV
simulated discharge using RAPTOR [24]. The high central χe in some cases
is due to MHD activity, specifically the sawtooth phenomena [1].

From (4), (6), and (7), we see that the Te dynamics
are coupled to the Ψ dynamics through resistive diffusion,
auxiliary current-drive efficiency, and bootstrap current-drive.
From (9), we see that the Ψ dynamics are coupled to the
Te dynamics through ohmic heating. Additionally, the local
thermal transport, i.e., χe, is intimately dependent on the
local plasma magnetic state [4]. However, it is extremely
difficult to develop closed-form expressions that accurately
represent this complex interaction. Therefore, in this work,
we model χe as a nominal profile plus a bounded uncertainty.
We represent χe by a finite number of elements nα as

χe(ρ̂)≈
nα∑

α=1

Λα(ρ̂)γα where γα = γ
nom
α + γ

unc
α δα , (12)

Λα(ρ̂) are basis functions, and γnom
α and γunc

α are constants
that define the range for each γα such that each uncertainty
δα satisfies the condition |δα | ≤ 1. The basis functions are
chosen as cubic splines and are shown in Fig. 2(a). The
evolution of the χe profile during a typical TCV simulated
discharge using RAPTOR [24] is shown in Fig. 2(b). Based
on this data, we can obtain values for γnom

α and γunc
α by

projecting (12) onto a set of trial functions Λβ (ρ̂) and
integrating over the spatial domain, i.e.,∫ 1

0
Λβ (ρ̂)χe(ρ̂)dρ̂ ≈

nα∑
α=1

∫ 1

0
Λβ (ρ̂)Λα(ρ̂)dρ̂γ

∗
α . (13)

By choosing the set Λβ equal to the set Λα , (13) can
be written in matrix form as Aβα Γ∗α = bβ , where Γ∗α =

[γ∗1 , . . . ,γ
∗
nα
]. For each RAPTOR simulated χe, we solve this

matrix equation for Γ∗α , and the parameters γnom
α and γunc

α

in (12) are then calculated as γnom
α = [max(γ∗α)+min(γ∗α)]/2

and γunc
α = [max(γ∗α)−min(γ∗α)]/2. The χe uncertainty range

captured by the model (12) is shown in Fig. 2(b).

IV. FEEDBACK CONTROL DESIGN

The auxiliary H&CD actuators on TCV considered in this
work are 4 electron cyclotron (gyrotron) launchers that are
grouped into 2 clusters (denoted as a and b). The current-
drive and power density deposition profiles for each source
are shown in Fig. 3. The gyrotrons in cluster a are: 1 on-
axis heating and co-current-injection source ( jre f

ec1a and Qre f
ec1a

in Fig. 3) and 1 off-axis heating and counter-current-injection
source ( jre f

ec2a and Qre f
ec2a in Fig. 3), and the gyrotrons in

cluster b are: 1 on-axis heating and counter-current-injection
source ( jre f

ec1b and Qre f
ec1b in Fig. 3) and 1 off-axis heating and

co-current-injection source ( jre f
ec2b and Qre f

ec2b in Fig. 3). The
electron density could be used for control, but in this work
the electron density profile is assumed regulated around a
constant profile.

By combining the magnetic diffusion equation (2) with the
resistivity (4) and noninductive current-drive (5)-(7) mod-
els, and defining the quantities fη(ρ̂) = kspZe f f /[µ0ρ2

b F̂2],
Dψ(ρ̂) = F̂ĜĤ, geci(ρ̂) = R0ĤkspZe f f jre f

eci /ne, fbs1(ρ̂) =
kJkeV R2

0kspZe f f Ĥ/F̂ , fbs2(ρ̂) = 2L31[dne/dρ̂], fbs3(ρ̂) =
{2L31 +L32 +αL34}ne, for i ∈ [1a,2a,1b,2b], we obtain

∂ψ
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1

T 3/2
e
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e
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(
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T 3/2
e
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∂Te
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. (14)

By combining the electron heat transport equation (3) with
the electron heat source (8)-(11) and χe (12) models, and
defining the quantities fTe(ρ̂) = [2/3][1/(ρ2

b Ĥne)], DTe(ρ̂) =
ĜĤ2ne/F̂ , f jtor(ρ̂) = [2/3]kspZe f f /[kJkeV ne][1/(µ0ρ2

b R0Ĥ)]2,
D jtor(ρ̂) = ĜĤ, frad(ρ̂) = [2/3]kbremZe f f n2

e/[kJkeV ne],
meci(ρ̂) = [2/3]Qre f

eci /[kJkeV ne], for i ∈ [1a,2a,1b,2b], we get

∂Te
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= fTe

1
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( nα∑
α=1

Λα {γnom
α + γ

unc
α δα}

)
∂Te

∂ ρ̂

]

+ f jtor

1
ρ̂2

[
∂
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(
ρ̂D jtor
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)]2 1

T 3/2
e

− fradT 1/2
e

+[mec1a +mec2a ]Peca(t)+
[
mec1b +mec2b

]
Pecb(t). (15)

From (1), we see that the rotational transform is related
to the poloidal flux spatial gradient, which we define as
θ(ρ̂, t) ≡ [∂ψ/∂ ρ̂(ρ̂, t)]. Inserting this definition into (14)-
(15) and after application of the chain rule, we obtain PDE
models of the θ and Te profile dynamics. Spatially discretiz-
ing these models by employing a finite difference method
results in ordinary differential equation models defined by

˙̂
θ = Fθ (θ̂ , T̂e,u) ˙̂Te = FTe(θ̂ , T̂e,u,δ ) ιi =−

1
Bφ ,0ρ2

b ρ̂i
θi,
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Fig. 4. Schematic of ι + Te profile feedback control problem formulation.

where θ̂ = [θ2, . . . ,θm−1] ∈ Rn, T̂e = [Te2 , . . . ,Tem−1 ] ∈ Rn,
θi, Tei , ιi, and ρ̂i are the values of θ , Te, ι , and ρ̂ at the
discrete nodes, for i = [2, . . . ,m− 1], u = [Peca ,Pecb , Ip] ∈
R3 is the control input vector, δ = [δ1, . . . ,δnα

] ∈ Rnα is
the uncertain parameter vector, Fθ ∈ Rn and FTe ∈ Rn are
nonlinear functions, n=m−2, and m is the number of nodes
used to represent the spatial domain. By defining the state
vector as x= [θ̂ , T̂e]∈R2n, we can write the state dynamics as

ẋ =
[

Fθ (θ̂ , T̂e,u)
FTe(θ̂ , T̂e,u,δ )

]
= Fθ ,Te(x,u,δ ) ∈ R2n. (16)

The output vector is defined as y = [ι̂ , T̂e] ∈ R2n, where
ι̂ = [ι2, . . . , ιm−1] ∈ Rn. After linearizing (16) with respect
to the state and control input around a nominal operating
point (xeq,ueq,0), i.e., ẋeq = Fθ ,Te(xeq,ueq,0) = 0, we obtain

˙̃x=A(δ )x̃+Bu f b+dδ where A(δ )=A0+

nα∑
i=1

δiAi, (17)

x̃ = x−xeq, u f b = u−ueq is the output of the to-be-designed
feedback controller, dδ = Fθ ,Te(xeq,ueq,δ ), and A(δ ) and B
are the Jacobians ∂Fθ ,Te/∂x∈R2n×2n and ∂Fθ ,Te/∂u∈R2n×3

evaluated at (xeq,ueq,δ ). The components of the matrix A(δ )

are A0, which represents the nominal system response, and
Ai, which represents the effect that the uncertain parameter
δi has on the system response.

We now exploit the structure of the matrix A(δ ) to
write (17) in the conventional P−∆ robust control framework
(shown in the little purple box in Fig. 4), where P is the
generalized system transfer function and ∆ = diag{δ} is a
structured uncertainty matrix. The nominal model will be
coupled with the uncertain parameters in the transfer function
representation of (17). By employing the method outlined
in [30], we can separate the uncertain parameters from the
nominal parameters to write (17) in the P−∆ framework.
The system input-output equations in this framework are

y∆ = P11u∆ +P12u f b y = P21u∆ +P22u f b +d, (18)

where P11, P12, P21, and P22 are the component transfer
functions of P that describe how the system inputs (u∆, u f b)
affect the system outputs (y∆, y) and d represents the effect
that the disturbance dδ has on the system outputs.

The feedback system (18) is an underactuated system, i.e.,
there are 2n outputs but only 3 inputs. Therefore, at most 3
linear combinations of the system output can be controlled.
In this work, we employ a singular value decomposition
(SVD) of the nominal input-output relation y = G0(s)u f b
at a particular frequency to choose the output directions
(and associated input directions) to control, where G0(s) =
C (sI−A(0))−1 B + D and s denotes the Laplace variable.
The real approximation of the nominal input-output relation
at a particular frequency jωdc is expressed as ŷ = Ĝ0û f b =
Q−1/2G̃0R1/2û f b = Q−1/2UΣV T R1/2û f b, where Ĝ0 denotes
the real approximation of the complex matrix G0( jωdc)
[31]. We define the “weighted” transfer function G̃0 and its
economy size SVD as G̃0 = Q1/2Ĝ0R−1/2 = UΣV T , where
Σ ∈ R3×3 is a diagonal matrix of singular values, and U ∈
R2n×3 and V ∈R3×3 are matrices that possess the following
properties V TV = VV T = I,UTU = I. We have introduced
the positive definite matrices Q ∈ R2n×2n and R ∈ R3×3 to
weight the relative tracking performance and control effort.

The singular vectors of the basis for the subspace of
obtainable output values (ŷ = Q−1/2UΣŷ∗) and the corre-
sponding input singular vectors (û f b =R−1/2V û∗f b) are shown
in Fig. 5, where ŷ∗ and û∗f b are the decoupled output and
input, i.e., ŷ∗ = û∗f b. In this work, the frequency to evaluate
the relevant channels at is chosen as ωdc = 250 rad/s. By
examining Fig. 5, we see that this choice allows us to use
the gyrotrons (Peca and Pecb in opposite directions) to control
the ι profile in the plasma core through auxiliary current-
drive, the total plasma current to control the ι profile near
the plasma boundary, and the gyrotrons (Peca and Pecb in the
same direction) to control the Te profile.

The feedback control problem is formulated as shown in
Fig. 4, where r is the reference value, e= r−y is the tracking
error (e∗ , Σ−1UT Q1/2e , r∗− y∗), and K is the feedback
controller. The closed-loop system outputs are Z1 and Z2,
and the frequency dependent weight functions Wp and Wu
are used to optimize the feedback performance. The feedback
control objectives are to maintain a small tracking error for



0.0 0.2 0.4 0.6 0.8 1.0
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

Normalized Effective Minor Radius

ŷ
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Fig. 6. (a) Nominal performance (tracking and control effort), (b) structured singular value versus frequency for physically relevant (solid) and all possible
(dashed) uncertainties according to the model (12), and (c) the corresponding χe that results in the largest µ-value at a frequency of 100 rad/s for each
respective case in (b). The robust stability condition is defined as µ(N11( jω))< 1 ∀ω [31].

any reference, reject the effects of the external disturbance,
use as little feedback control effort as possible, and robustly
stabilize the system. The control problem is formulated as

min
K

∣∣∣∣Tzw
∣∣∣∣

∞
, ∀ω Tzw =

[
WpSDCO −WpSDCO

WuKSDCO −WuKSDCO

]
, (19)

which represents the closed-loop nominal performance (NP)
condition. The function Tzw is the closed-loop transfer func-
tion from the inputs (r∗,d∗) to the outputs (Z1,Z2), d∗ =
Σ−1UT Q1/2d, and SDCO = (I +Σ−1UT Q1/2P22R−1/2V K)−1.
The feedback controller is written in state-space form as

ẋ f b = A∗f bx f b +B∗f be∗ u∗f b =C∗f bx f b +D∗f be∗, (20)

where x f b is the controller state vector, and A∗f b, B∗f b, C∗f b,
D∗f b are the controller matrices obtained by solving (19).

To analyze the closed-loop system NP, the maximum
singular value diagrams of the inverse of the performance
weight functions and the achieved transfer functions SDCO

and KSDCO are shown in Fig. 6(a). As shown, the controller
achieves NP. The closed-loop system robust stability (RS)
with the nominal controller is analyzed by exploiting the
block-diagonal structure of ∆, which allows us to compute
the structured singular value µ (N11( jω)) [31], where N11
is the closed-loop transfer function between the signals y∆

and u∆ in Fig. 4. A plot of µ versus frequency is shown in
Fig. 6(b). As shown, for all possible uncertainties (dashed
line in Fig. 6(b)) according to the model (12), RS is not
achieved. However, by comparing the χe profile that results
in the largest µ-value for this case (dashed line in Fig. 6(c))
to the χe profiles predicted by RAPTOR in Fig. 2(b), we see
that the model (12) can allow unphysical χe profiles for the
considered scenarios. Therefore, we restrict the uncertainties
in the model (12) by requiring that the resulting χe profile
safisfies ∂ χe/∂ ρ̂ < 0 for ρ̂ ∈ [0,0.35] and ∂ χe/∂ ρ̂ > 0 for
ρ̂ ∈ [0.45,0.85]. We then recompute µ , and as shown by
the solid line in Fig. 6(b), RS is achieved for this subset of
uncertainties (marginal stability is reached at 100 rad/s).

V. CONTROL ALGORITHM PERFORMANCE TESTING

We now test the closed-loop performance of the integrated
ι + Te profile feedback controller (20) in TCV RAPTOR [24]
simulations. In order to ensure a fair test of the controller
performance, the target plasma state must be physically
achievable, i.e., the ι and Te profiles that are specified as
targets in the simulations must be compatible with each other.
In this work, we obtain Te profiles that are compatible with
specific ι profiles by executing RAPTOR simulations with ι

profile control only [16] and taking the resulting Te profile
as a nominal compatible target. In this work, a q profile
achieved in TCV with Ip = 190 kA and counter-current-
injection auxiliary power is chosen as the target, and the
corresponding nominal Te profile has a broad profile shape.

During the simulations, the ι profile target is held constant,
and the nominal Te profile is set as the target for t ∈ [0,1) s.
For t ∈ [1,1.4) s, the nominal Te profile is scaled down by
10%, and the resulting profile is set as the target. Finally,
the nominal Te profile is scaled up by 10%, and the resulting
profile is set as the target for t ∈ [1.4,2] s. First, a ι and Te
profile evolution is obtained by executing a feedforward-only
simulation with a particular set of input trajectories. Next, the
ability of the controller to track the target is determined by
executing a feedforward + feedback simulation with the same
feedforward input trajectories used in the first simulation.

Time traces of q and Te at various spatial locations, and
a comparison of the control inputs is shown in Fig. 7. Once
the controller becomes active at 0.1 s, it is able to drive the
ι and Te profiles to the target during the nominal phase of
the simulation (t ∈ [0,1) s) by increasing the total plasma
current and the cluster b gyrotron power and decreasing the
cluster a gyrotron power. During the time interval t ∈ [1,2] s,
the controller is able to modulate the Te profile between
equilibrium points while maintaining the q profile in a
relatively stationary condition by rejecting the effects that
the changing Te have on the magnetic profile dynamics.
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Fig. 7. Time traces of outputs (q,Te) and inputs (Ip,Peca ,Pecb ). The solid-orange vertical line denotes when the target q profile is maintained in a stationary
condition while modifying the Te profile between equilibrium points. Feedback controller off (gray-shaded region) and actuator limits (solid-brown line).

VI. CONCLUSIONS AND FUTURE WORK

An integrated feedback algorithm for ι and Te profile con-
trol in tokamaks was developed following a FPD, physics-
based modeling approach. The controller was designed to
be robust to an expected range of uncertainty in the χe
profile. The performance of the controller was demonstrated
through RAPTOR simulations of the TCV tokamak plasma
dynamics. One direction of future work is to develop a model
of the χe that naturally predicts physically relevant profiles.
Additionally, our future work includes using the closed-loop
plasma state observer developed in [32] to reconstruct the
ι and Te profiles in real-time to experimentally test the
controller in TCV.
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