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Abstract— The paper proposes a model-based control ap-
proach for the coupled evolution of the poloidal magnetic flux
profile and the normalized pressure ratio Sy. The model is
determined by a system identification method which is shown
to sufficiently reproduce the plasma response to variations
in particular actuators. Data for model identification is col-
lected during the plasma current flattop in a large Sy, high-
confinement scenario (H-mode) with the actuators modulated in
open loop. Using this data, a linear state-space plasma response
model for the poloidal magnetic flux profile and Sy dynamics
around a plasma equilibrium state is identified. An optimal
state feedback controller with integral action is designed for
the purpose of simultaneous control of the poloidal flux profile
and Sy. Experimental results showing the performance of the
proposed controller implemented in the DIII-D tokamak are
presented.

I. INTRODUCTION

To initiate a fusion reaction on earth, temperatures on the
order of 107 — 10° K are required to overcome the Coulomb
repulsion between like-charged nuclei. The conventional
fusion plasma, i.e., a hot gas of hydrogen ions and elec-
trons, must be confined by magnetic fields because the high
temperatures would otherwise melt the confining structure.
The motion of ionized particles are tied to the magnetic field
lines by the Lorentz force, so, to contain the plasma, the
common solution is to close the magnetic field lines in on
themselves, forming a torus as shown in Fig. 1. The primary
field component, in the longitudinal direction, is called the
toroidal field, labeled Bg. The magnetic field component
in the azimuthal direction, called the poloidal field, By,
serves to counteract the various forces on the plasma due to
field curvature and gradient that cause particle drift towards
the vessel wall. Following a given field line a number of
times around the torus a closed flux tube is mapped, a so
called magnetic-flux surface. These surfaces mark points of
constant poloidal magnetic flux [1], a collection of such
points along the plasma radius is called the poloidal magnetic
flux profile, labeled v in this work.

The design of an efficient, economically viable tokamak
machine will require the development of what’s called an
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advanced tokamak (AT) scenario. The scenario is character-
ized by an optimization of various plasma parameter profile
shapes. Investigations have shown that careful control of
some plasma profiles, such as the poloidal magnetic flux
profile (1-profile), can help stabilize the plasma while reduc-
ing transport and enhancing non-inductive current sources
necessary for steady-state operation [2], [3], [4] (profile’
refers to the shape that a plasma variable takes as a function
of the minor radius, r (see Fig. 1)). AT scenarios require
high By, a key performance parameter which is defined
as the normalized ratio between the internal plasma kinetic
pressure and the external pressure of the confining magnetic
field. The 5 parameter represents a measure of efficiency of
confinement since it defines how much magnetic confining
pressure is required to maintain a particular plasma kinetic
pressure. This work attempts to model and control the
coupled evolution of the ¢ and Sy .

System identification (data-driven modeling) using exper-
imental data has been used to model profile dynamics in
ASDEX Upgrade [5]. In the JET tokamak [6], a two-time-
scale linear model has been used to describe the dynamics of
the magnetic and kinetic profiles around certain quasi-steady-
state trajectories, where system matrices can be identified
from experimental data. Our previous work [7] considered
system identification of a low order model of the poloidal
flux profile in DIII-D. This work builds upon the previous
modeling procedure and extends the model to span the full
profile by projecting the measured data onto a low order
subspace and limiting identification to the main response
dynamics. Moreover, the model is augmented to include the
effects of off-axis neutral beam injection, beams that are
directed at an angle to the plasma axis, where previously
all neutral beams were aligned for on-axis injection.

The aim of the paper is to develop an input-output re-
sponse model and a real-time feedback controller, for the
magnetic profile dynamics and S in response to the neutral
beams injectors (NBI), electron cyclotron current/heating
(EC) H&CD, and the plasma loop voltage during H-mode
scenarios in DIII-D. This paper is organized as follows;
Section II describes the model structure, available actuators,
data collection, and system identification procedure. Based
on the obtained linear model an optimal feedback integral
controller is designed in Section III to regulate the -
profile and By around a desired target in the presence of
disturbances. Experimental results on DIII-D are presented
in Section IV and conclusions made in Section V.
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Fig. 1. Magnetic fields of a toroidal confinement system.

II. MODEL STRUCTURE AND SYSTEM IDENTIFICATION
PROCEDURE

To collect data for system identification, a number of
discharges of an advanced tokamak (AT) scenario (i.e., at
high plasma pressure relative to the magnetic field pressure)
were run with identical ramp-up phases during the exper-
imental campaign of 2009 [8]. The reference plasma state
(equilibrium state) was that of a plasma current I, = 0.9 MA
AT scenario which had been optimized to combine non-
inductive current fractions near unity with 3.5 < Sy < 3.9,
bootstrap current fractions larger than 65%, and Hog(y, 2) =
1.5 [9]. During flattop various actuators were modulated
around their reference values. Actuator modulations, at both
slow and fast frequencies, were applied from ¢t = 2.6 s, i.e.,
after 1 s of 0.9 MA current flat top.

Available actuators include the neutral beam injectors
(NBI), electron cyclotron (EC) power and the plasma surface
loop voltage. The NBIs, fast neutrals injected into the bulk
plasma, are the primary source of auxiliary heating. Charged
particles cannot be injected into the plasma because of the
magnetic field, but neutrals can cross the magnetic field and
once in the plasma they impart their energy by collisions. The
EC power is delivered in the form of radio frequency waves
which resonate with the plasma and drive current or create
heat. The surface loop voltage is generated by a transformer
which is the main source of current drive.

The NBIs were grouped by: co-injection beam power,
counter-injection beam power, and balanced-injection beam
power, where the co-injection means in the direction of
plasma current, counter-injection is the opposing direction,
and balanced-injection refers to equal co- and counter-
injection power. All actuators were modulated individually in
open loop according to predefined waveforms while the other
actuators were kept constant and equal to those values used
to produce the reference discharge. Starting in 2012, two of
the co-injection neutral beam injectors were re-positioned to
direct their beams at 16.5° off-axis, providing more current
drive towards the center of the profile. Data from the 2012
campaign is used to include the effects of off-axis NBL

The transport equations describing the time evolution of
current density, the plasma density, and temperature of the
plasma can be reduced to a 1D model by assuming an
axisymmetric plasma and approximating the plasma volume

as a long cylinder which reduces the differential operators
to derivatives with respect to the radial coordinate alone [6].
Linearizing the resulting set of simplified transport equations
around a particular plasma equilibrium state and projecting
the plasma parameters onto an appropriate set of basis func-
tions, one can obtain a simple discrete, lumped-parameter
model to represent the coupled evolution of the poloidal
magnetic flux, ¥(t), and Sy:
9y
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This work makes uses the mean geometric radius, p; it
can be expressed in terms of the toroidal magnetic flux, @,
and the toroidal field strength at the plasma center, By o, i.e.
7rB¢70p2 = &. Normalized p, denoted by p, is defined as
p/ ps, where py, is the value of p at the last closed magnetic
flux surface. Since the magnetic profile has only a slow evo-
lution, we can use the unfiltered input/output data to identify
the model, i.e. all frequencies of the measured data. The
measured profile data was first projected onto 9 trial basis
functions by Galerkin projection reducing the distributed
data set to an approximate discrete data set of 9 points
across the normalized plasma radius p = 0.1,0.2,...,0.9.
System identification for the discretized 1-profile was carried
out using data collected during experiments in which the
various actuators were modulated in open loop. All-in-all, a
model of 9 states all measurable, 1 output, and 6 inputs is
to be identified by the a step-wise identification procedure
described in Sections II-A and II-B.

A. Model order reduction

If we try to identify a model of full order, i.e. an A matrix
of size 9 x 9, the number of parameters becomes rather large.
When using noisy experimental data the possible solutions
become multiple and unstable to small changes in the data
and the identification algorithm cannot determine a consistent
model. In order to find a model that applies to all 9 discrete
points, the data set has to be projected onto an appropriate
subspace of reduced order [10]. Then we identify only the
dynamics within this subspace and neglect the remaining
dynamics.

For the -profile, the static gain matrix

Ky =—-A"B, 2)

which represents the steady state gain of the profile in
response to a step input for each of the actuators, can be used
to determine the subspace since it contains the most essential
aspects of the model for control purposes, namely the steady
state response. Singular value decomposition of the static
gain matrix is used to determine its principal components,
the most significant of which are used to form the subspace
basis

w.z.-vT, (3)
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The output vectors corresponding to the largest singular
values are used as the subspace basis. For example, if we



choose to identify a model with order 3, the first three
singular vectors, Wy, Wy, and W3, would form the subspace
basis. Thus, the data used for identification would capture
the dominant characteristics of the system in steady state. A
reduced order model of the form

X(t) = A X (t) + Bgu(t) 5)

is then sought by system identification, where X (¢) repre-
sents the reduced order states, determined by

Pty EWIP).  (6)

Once A; and B have been identified, the system output
equation which maps the states, X (¢), to the 9 discrete
points, 1(t), is assumed to be ¥ (t) = W, X (¢).

Xty =[w Wy, wy]"

B. Model identification procedure

In prior work [7], a model was determined for the -
profile at 5 discrete points (p = [0.2,0.4,0.5,0.6,0.8]),
from this model we obtain an initial estimate of the static
gain matrix (2) necessary to begin the identification process.
The model is then identified using a step-wise approach,
meaning parts of the model are identified in one step, then
held constant to identify other parts of the model, iterating
back and forth until a suitable model is determined. The
identification experiments, alternatively referred to as shots,
used to generate the model were organized into various
groups; one group for shots with little modulation, and one
group for each set of shots with modulation in just one of the
actuators. We start with the low modulation group to identify
the free dynamics of the system, i.e. the matrix As. Once
the Ag matrix is determined, we identify the B matrix one
column at a time using shots with only one modulated input
corresponding to that B, column. Then the static gain matrix
is updated and the subspace basis is updated for subsequent
iterations.

The identification process is carried out using the predic-
tion error method [11] which calculates the matrices A, and
B by minimizing the norm Vi (A, Bs) = + Zgzl e2(k),
where ¢(k), called the prediction error, is the difference
between the measured output and the predicted output at
discrete time k. We begin the identification considering only
the data without off-axis NBI. To begin the identification
of A, a model and subspace of order 1 was chosen to
identify the smallest eigenvalue, i.e. the longest characteristic
time of the system. This eigenvalue was then held constant
and the model order was increased to 2 to identify the
next eigenvalue, this process was repeated up to order 4
using the shot group with low input modulation. Then
we began with identification of the By matrix using the
appropriate shot group for each column, while holding the
eigenvalues of A, constant. The identified model was found
to have characteristic times of 5.88, 2.38, 1.05, and 0.19
seconds. This means that model orders above 4 have very
fast transients with time constants less than 0.19 s, therefore
they will not contribute much to the control design and a
model of order 4 should be sufficient.

The off-axis NBI deliver a different current drive dis-
tribution from that of the on-axis co-injection beams used
to identify the model, therefore they must be considered
as a new actuator group. To account for this effect an
additional column was added to the B, matrix using various
experiments from the early 2012 campaign with similar
plasma scenarios to that of the open-loop system identifi-
cation experiments carried out in 2009. Fig. 2(a) displays
an example of the typical fit between the experimental data
and the identified model for shot 140094, which included
modulation of the NBI power, the EC power, and the external
surface loop voltage.

For control purposes it is preferable to have a model that
spans the whole profile without an output equation, i.e. one
in which the states represent the 9 discrete points of ¢ and
the outputs are identically the states. The full order model
can be achieved by using the subspace basis to expand A,
and B while imposing arbitrarily, large stable eigenvalues to
the new eigenstates whose dynamics have not been identified.
We refer to the new state equation matrices as A and B:

A=W, AWT B=W,B,. (7)

At this point we have obtained a state equation for the
1-profile of order 9 with 6 inputs, but have yet to consider
Bn. The matrices Cg, and Dg, of (1) are estimated in a
similar manner as Ay and Bj, first using the shots little input
modulation to identify C and then identifying D column by
column using shots with the corresponding input modulated.

The static gain matrix (2) of the identified model can
be represented as in Fig. 2(b). In the figure, the steady-
state response of the poloidal flux to unitary changes in the
various inputs is plotted. The surface loop voltage has the
greatest effect in manipulating the profile, the co-injection
and counter-injection beams are the second most powerful,
affecting the profile in different directions. The contradictory
affects of co-injection and counter-injection beams agree
with prior experiments considering neutral beam injection at
different trajectories [12]. Both the balanced-injection beams
and the gyrotrons lead to a small increase in the magnetic
profile. The off-axis co-injection beam has a similar effect to
the on-axis co-injection beam with the exception of reduced
gain on the interior of the profile.

III. CONTROL SYSTEM STRUCTURE
A. Control System Structure

The design of an optimal controller with integral action
based on the linear data-driven model identified in Section II
is presented in this section. The control algorithm is broken
down into two steps: (1) decouple the system and reduce the
system to the most relevant control channels (Section III-B)
and (2) design the optimal controller based on the reduced
system (Section III-C).

The particular plant model under consideration, labeled P,

is of the form
P:{ Zgj i Az + Bu

Cx + Du ®)
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Fig. 2. Left: Comparison between measured (blue) and estimated (red) «-profile (Wb) at p = 0.1,0.3,0.5,0.7,and, 0.9 for DIII-D shot 140094. Right:
Model static gain matrix. The powers are the co-current NBI Prp (MW), off-axis co-current NBI Py 4 (MW), counter-current NBI Py (MW),
balanced NBI Pg 4z (MW), electron cyclotron Prc (MW), and surface loop voltage V. (0.1 V).

where the n model states represent the 1-profile at the chosen
discrete points and the p output measurements y represent
the -profile+8y, ie. C = [I,, C} 1" and D = [Z, D} 17,
and Z,, is the zero matrix of size n x n. The vectors z(t),
u(t), and y(t) are n-, m-, and p-order, state, control and
output vectors, respectively.

B. Singular Value Decomposition

Singular value decomposition is employed to decouple
the system and determine the most significant input-output
channels for tracking. Provided the closed loop system is
internally stable, the steady-state input-output relation can be
described by the static gain matrix, K, = —CA'B+D,

€)

where () denotes the steady-state value. Consider the singu-
lar value decomposition of the weighted static gain matrix

Ko =Q"?K, R =Usv7 (10)

where ¥ = diag(c1,02,...,0m) € R™*™ form < p, U €
RP*™ Y < R™*™ and o; are the individual singular values
with o1 > 02 > ... > o,,. The positive definite matrices
Q € RP*P and R € R™*™ are introduced to weight the
tracking error and steady-state control effort, respectively.
Then the steady state output relation can be expressed as

§=Q VK ,RY?u=Q PUSVTR?u. (11

The columns of the matrix Q'/2UY define a basis for
subspace of obtainable steady state output values. Therefore
the components of the output signal that are achievable can
be defined as

y= ngaa

F=2"0TQY% & Ky (12)

Similarly, the components of the reference that are trackable
can be expressed as

7 =2 UTQYr = K, F. (13)
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Fig. 3. LQR control configuration with integral action and reference input.
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Making use of equations (9), (10) and (12)

7 = E*lUTQl/Qg
= S WwTQVPQTVPUSVTRY?u (14)
VIR ?u 2 K .
If we define w,
w=VTRY?u=K'q, (15)

then we will have reduced the steady-state plant to a one-one
relationship between inputs and outputs, i.e. Z = w, which
represents a square m X m decoupled system. Let us define
the steady-state performance index as

J= tlgglo el () Qe(t) = eT' Qe,

where € is the steady-state tracking error, which can now be
rewritten as

(16)

e=7F—g§=Q VUL - 32) (17)

and substituted into (16), resulting in the performance index
J=(F -2 —2) =) ol(r; - 7). (18)
i=1

Clearly, the input-output channels associated with the largest
singular values are the most significant when minimizing .J.
Considering only the largest singular values and ignoring
the others by reducing the system appropriately we can
significantly reduce the control effort necessary to reach
the steady-state target profile without substantial increase in



the steady-state error [13]. The system is reduced to these
important channels and the others are ignored. The reduction
is carried out using the following partitions:

U=[Us Unsl, V=1[Ve Viel,
¥, 0 ¥, 0
=[5 s)=[v o
where s stands for significant and ns stands for non-
significant. Then, from (12), (15), we can approximate

19

j = QVUSr~Q VUEZEK,Z (20

w = VIR u~VIRY?u2 K lu QD
Defining z = K, ;y and u = K, ;w, we can write

2 =K, PK, w2 P, (22)

where we have used the fact that y = Pu, K,, =

Y UTQY?, K, . = R™'/?V, and let s denote the number
of significant singular values. The reduced plant is charac-
terized by the state space representation

i = Ax+ Bw
ya =

Cz 4 Dw
where A = A, B =
Ky DK, ;.

P : (23)

BK, s C = K,C, and D =

C. Optimal State Feedback Controller

The control design considers an optimal state feedback
controller with integral action added as shown in Fig. 3 to
remove the steady-state error. Here the control error 7% — z is
integrated and the controller is designed for the augmented
plant with the integrator states. Adding the integrator states,
xzy = [7* — z, to the reduced plant P, the augmented plant

(A, B) can be expressed as:
: o -C)., [-D 1] ..

x—[o A}x—k[é}w—k[o}r

with augmented states & = [ z]7.
The task of the control synthesis is to find the optimal

control law w(t) = f(&(¢)) which minimizes the following
cost functional J [14],

(24)

1 /T . R
J = lim _/ [iTQ£+wTRw dt,
0

T—0

(25)

where Q is an x n symmetric positive-semidefinite matrix
and R is a m X m symmetric positive-definite matrix. The
solution to this linear quadratic regulator problem (LQR) can

be written in terms of the simple state feedback law
w(t) = —K,2(t) (26)

where K. is a constant matrix independent of plant noise,
given by

K, =R 'BTX, 27
where X = X7 > 0 is the unique positive-semidefinite
solution of the algebraic Riccati equation

ATX + XA-XBR'BTX+0=0. (28)
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Fig. 4. Overall feedback scheme.

We choose @ such that only the integrated states [ 7 —y
I, 0

0 O
R= al,,, with a > 0. Note that only the ratio between R
and Q affects the minimum of the cost function, reducing R
yields a faster response with more control energy.

The control configuration of Fig. 3 can be re-expressed in
the form of Fig. 4 to determine the overall controller. The
result is the two degree of freedom controller K. Using the
relation

are weighted, which gives Q= [ }, and we choose

w=—-K, [x’} £ [-K; —Kp] [x’} , (29)
x x
and absorbing the integrator, K can be written as
. I3
~ r; = 0x; + [Ky,s —Kyﬁ] [ :| ,
K- Y (30)

lu = —Ku,sKIl'I - Ku,s I:OSXP KP 01] |:;:| ’

where K is the state feedback matrix for the integrated
states and K p is the state feedback for the original states.

IV. EXPERIMENTAL RESULTS

Using the identified model of Section II, the proposed
optimal control law synthesized in Section III was put to
the test in experiment at DIII-D. The first two singular
values are found to be the most significant and the system
is reduced to 2 x 2 in the singular value decomposition. The
weight Q is selected such that only the integrator states are
weighted in the control design, weighting the 1¢ integrated
state twice as high as the 27?, and « in R is selected
such that the system reacts sufficiently quickly without too
much overshoot. During the experiment the device was setup
to reproduce the initial ramp-up profile of the reference
discharge used in Section II for system identification.

Some tuning was done in simulation and eventually the
SVD weighting matrices were selected as Q@ = diag{l},
R = diag{400,1,1,1,1} . The first value of 400 for R was
selected to reduce the control effort applied to the surface
loop voltage, this large value was chosen to ensure that
control requested value was within the physical ramp limits.
The multiplier o was set to 0.1 for the controller weight R.

Fig. 5 shows the resulting inputs and outputs (i-profile
evolution and By value) of the experimental shot 150752.
The experimental goal was to reproduce the profile shape
and high Sy achieved in shot 147634, an AT scenario shot
with high 8y = 3.5. However, to avoid complete saturation
of the all the beam powers and allow some room for profile
control, the target Sy of 3.5 was reduced to 3. One of
the counter-injection neutral beam-lines was non-operational
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Fig. 5. Shot 150752: The green dashed line represents the target profile and associated feed-forward inputs. The blue line represents the control requested
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during the experiment, so, the option to use balance injection
was not available. The controlled actuators are the on-axis
co-injection, off-axis co-injection, on-axis counter-injection
neutral beams, the total EC power, and the surface loop
voltage. The 1-profile+3y controller took over at t = 1 s
and effectively regulated the -profile around the target
profile and drove [y to the target value. The NBI powers,
particularly the counter NBI, are driven up from the feed-
forward values to boost the Sy while the Vi, value is
reduced to balance the increasing beam powers and maintain
tight profile regulation. However at ¢ = 3.5 s the shot
incurred significant magneto-hydro-dynamic activity in the
form of a neoclassical tearing mode (NTM). This unfortunate
event instigated a controlled termination of the plasma at
t = 3.5 s. The NTM was most likely caused by the large
ramp-up in the co-injection neutral beam power required to
achieve the high Sy value.

V. SUMMARY AND CONCLUSIONS

A simplified linear model for the evolution of the poloidal
magnetic flux profile as well as Sy in the DIII-D tokamak
was obtained based on a semi-interactive system identifica-
tion method. Reasonable model prediction of the magnetic
profile evolution in response to modulations in the on-
axis and off-axis neutral beam injector power, the total
gyrotron power, and the surface loop voltage was achieved.
An optimal feedback controller with integral action was
proposed for tracking a desired target profile and maintaining
plasma pressure. During experiment good profile tracking
was observed, however, the required large neutral beam
powers initiated an NTM, which creates an interest for
simultaneous profile and NTM control [15].
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