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Abstract— Setting up a suitable toroidal current profile in a
fusion tokamak reactor is vital to the eventual realization of a
commercial nuclear fusion power plant. Creating the desired
current profile during the ramp-up and early flat-top phases of
the plasma discharge and then actively maintaining this target
profile for the remainder of the discharge is the goal at the DIII-
D tokamak. The evolution of the toroidal current profile in toka-
maks is related to the evolution of the poloidal magnetic flux
profile, which is modeled by the magnetic diffusion equation. A
simplified first-principles-driven, nonlinear, dynamic, control-
oriented, partial differential equation model of the poloidal
flux profile evolution is obtained by combining the magnetic
diffusion equation with empirical correlations obtained from
experimental data at DIII-D and is used to synthesize a robust
H∞ feedback controller to track a desired reference trajectory
of the poloidal magnetic flux gradient profile. We employ a
singular value decomposition of the static gain matrix of the
plant model to identify the most relevant channels which we
control with the feedback controller. A framework for real-time
feedforward + feedback control was implemented in the DIII-D
Plasma Control System and experimental results in the DIII-
D tokamak are presented to illustrate the capabilities of the
feedback controller. These experiments mark the first time ever
a first-principles-driven model-based magnetic profile controller
was successfully implemented and tested in a tokamak device.

I. INTRODUCTION

The magnetic confinement approach to nuclear fusion
energy production has been extensively researched for many
years, and one of the most promising magnetic confinement
devices is the tokamak. However, in order for a commercial
tokamak power plant to be realized, there are many chal-
lenges that need to be overcome, one of which is the ability
to operate the tokamak in a “steady state” manner, which
requires non-inductive sustainment of the plasma current.
Setting up a desirable current profile in the device is essential
to one advanced tokamak operating scenario characterized by
non-inductive sustainment of the plasma current. The safety
factor, or q, profile can be used to specify the current profile
in the machine, and active feedback control of the evolution
of the q profile at discrete points in the tokamak has been
demonstrated at DIII-D [1] during the ramp-up and early
flat-top phases of the discharge. Present limitations of the
employed non-model-based controller, such as oscillations
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and instability under certain operating conditions, motivate
the design of a model-based controller that takes into account
the dynamics of the entire q profile in response to the
actuators and has the potential for improved performance.

The poloidal magnetic flux profile evolution, modeled in
normalized cylindrical coordinates by a partial differential
equation (PDE) called the magnetic diffusion equation, is
related to the current profile evolution. A first-principles-
driven, control-oriented, PDE model of the poloidal flux
profile evolution for low-confinement (L-mode) plasma dis-
charges was developed in [2]. The control strategy we
employ to control the q profile evolution is a feedforward +
feedback control scheme, where the feedforward and feed-
back control inputs are computed off-line and on-line respec-
tively. Optimal feedforward control algorithms to achieve the
best possible q profile/target matching during the initial phase
of the discharge were designed using nonlinear programming
[3] and extremum seeking [4]. To add robustness to the
control strategy, we add a feedback component to the control
scheme, with the goal being to track a desired reference
trajectory of the q profile evolution, to reject the effects
of external disturbances to the system, and to overcome
uncertainties in the model used for control design.

In this work, we extend our previous work [5] in many im-
portant areas. Firstly, we consider the problem of designing a
feedback controller to track a desired reference trajectory of
the poloidal flux gradient profile, which is inversely related
to the q profile, instead of regulating the poloidal flux profile
around a desired reference trajectory. Secondly, we employ
a singular value decomposition of the static gain matrix of
the plant model to determine which linear combinations of
the plant outputs we can effectively control [6]. Finally, we
implemented a framework for real-time control in the DIII-
D Plasma Control System (PCS) and tested the feedback
controller experimentally in the DIII-D tokamak. These
experiments mark the first time ever a first-principles-driven
model-based magnetic profile controller was successfully
implemented and tested in a tokamak device.

We introduce a PDE model for the poloidal flux gradient
profile evolution in section II. In section III, the governing
PDE is approximated by a finite dimensional system of
ordinary differential equations. The reduced-order model is
linearized around the feedforward trajectories of the system,
and a linear, time varying state-space system of the deviation
dynamics is derived. The time varying system is represented
as an uncertain state-space model and formulated into a
robust control framework in section IV. In section V, we



use the nominal model to identify the most relevant control
channels, and a robust H∞ feedback controller is designed to
control those channels in section VI. Finally, the feedback
controller is tested experimentally in section VII.

II. CURRENT PROFILE EVOLUTION MODEL

Any quantity that is constant on each magnetic surface
within the tokamak plasma can be used to index the magnetic
surfaces. We choose the mean geometric minor radius, ρ ,
of the magnetic surface, i.e., πBφ ,0ρ2 = Φ, as the indexing
variable, where Φ is the toroidal magnetic flux and Bφ ,0 is
the reference magnetic field at the geometric major radius
R0 of the tokamak. The normalized minor radius is defined
as ρ̂ = ρ/ρb, where ρb is the minor radius of the last closed
magnetic surface. Simplified scenario-oriented models for
the electron temperature, the plasma resistivity, and the non-
inductive current density were identified based on empirical
correlations obtained from experimental observations at DIII-
D for L-mode discharges [2]. The plasma current is mainly
driven by induction in L-mode discharges, therefore, we
neglect the effects on the non-inductive bootstrap current. By
using these simplified models, the evolution of the poloidal
magnetic flux is given by the magnetic diffusion equation

∂ψ
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= f1(ρ̂)u1(t)
1
ρ̂

∂
∂ ρ̂

�
ρ̂ f4(ρ̂)

∂ψ
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∂ψ
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where ψ is the poloidal stream function which is closely
related to the poloidal magnetic flux Ψ, i.e., Ψ = 2πψ , t
is the time, f1(ρ̂), f2(ρ̂), and f4(ρ̂) are functions of the
simplified models, k3 is a constant, and

u1(t)=

�
n̄(t)

I(t)
�

Ptot(t)

�3/2

, u2(t)=
�

Ptot(t)
I(t)

, u3(t)=I(t) (3)

are the diffusivity, interior, and boundary control actuators
respectively, where I(t) is the total plasma current, Ptot(t)
is the total average neutral beam power injected into the
plasma, and n̄(t) is the line average plasma density [2].

The q profile is related to the current profile in the
machine and is defined as q(ρ, t) = −dΦ/dΨ. By using
the constant relationship between ρ and Φ, πBφ ,0ρ2 = Φ,
and the definition of ρ̂ , the safety factor is written as
q(ρ̂, t) =−[Bφ ,0ρ2

b ρ̂]/[∂ψ/∂ ρ̂]. As the q profile is inversely
dependent on the poloidal stream function gradient ∂ψ/∂ ρ̂ ,
it is chosen to be the controlled variable and is denoted by

θ(ρ̂, t) = ∂ψ/∂ ρ̂(ρ̂, t). (4)

By expanding (1) using the chain rule, inserting (4) into this
expanded equation, and differentiating the resulting equation
with respect to ρ̂ , the PDE governing the evolution of θ(ρ̂, t)
is found to be
∂θ
∂ t

=

�
h0(ρ̂)

∂ 2θ
∂ ρ̂2 +h1(ρ̂)

∂θ
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+h2(ρ̂)θ
�

u1(t)+h3(ρ̂)u2(t)

(5)

with boundary conditions

θ(0, t) = 0 θ(1, t) =−k3u3(t) (6)

where (·)� = d/dρ̂ , h0(ρ̂) = f1(ρ̂) f4(ρ̂), h1(ρ̂) =
f �1(ρ̂) f4(ρ̂) + f1(ρ̂) f4(ρ̂)/ρ̂ + 2 f1(ρ̂) f �4(ρ̂), h2(ρ̂) =
f �1(ρ̂) f �4(ρ̂) + f �1(ρ̂) f4(ρ̂)/ρ̂ + f1(ρ̂) f �4(ρ̂)/ρ̂ −
f1(ρ̂) f4(ρ̂)/ρ̂2 + f1(ρ̂) f ��4 (ρ̂), and h3(ρ̂) = f �2(ρ̂). The
model (5)-(6) is the starting point for the development of
the feedback controller design.

III. MODEL REDUCTION

The governing PDE (5) is discretized in space using a
truncated Taylor series expansion to approximate the spatial
derivatives while leaving the time domain continuous [7] in
order to construct a reduced-order model suitable for control
design. The non-dimensional domain of interest, [0,1], is
represented as l nodes, and the spacing between the nodes,
∆ρ̂ , is defined as ∆ρ̂ = 1/(l − 1). Central finite difference
spatial derivative approximations of O(∆ρ̂2) are used in the
interior node region, 2≤ i≤ (l−1). After applying the spatial
derivative approximations to (5) and taking into account the
boundary conditions (6), we obtain a matrix representation
for the reduced-order model

α̇(t) = Γα(t)v1(t)+Ωv2(t)+Πv3(t) (7)

where the vector α = [θ2, . . . ,θl−1]T ∈ R(l−2)×1 is the state
of the system at the interior discrete nodes, the vector

[v1(t),v2(t),v3(t)]T = [u1(t),u2(t),u1(t)u3(t)]T ∈ R3×1 (8)

is the control input, and Γ ∈R(l−2)×(l−2), Ω ∈R(l−2)×1, and
Π ∈R(l−2)×1 are the system matrices. The values of θ at the
boundary nodes i = 1 and i = l are known from (6) and are
therefore not included in the reduced-order model (7).

Let αFF(t) and vFF(t) be the feedforward trajectories
of the states and control inputs respectively with initial
condition αFF(0). These feedforward trajectories satisfy

α̇FF(t) = ΓαFF(t)v1FF (t)+Ωv2FF (t)+Πv3FF (t). (9)

By defining the perturbation variables x(t) = α(t)−αFF(t)
and vFB(t) = v(t)−vFF(t), where x(t) is the deviation away
from the feedforward state trajectories and vFB(t) is the out-
put of the to-be-designed feedback controller, we can obtain
a model suitable for tracking control design. By inserting
the fluctuation variables into (7) and using (9), we obtain a
nonlinear dynamic model for x. While we preserve the input
nonlinearities by the nonlinear transformations (3) and (8),
we approximately linearize the state dynamics by neglecting
the nonlinear term, i.e., [αFF + x] ≈ αFF . Simulations and
experiments show the closed-loop system to be robust to this
approximation. Therefore, the linear, time variant dynamic
model for the deviation dynamics is expressed as

ẋ = A(t)x+B(t)vFB y =Cx+DvFB (10)

where A(t) = Γv1FF (t) ∈ Rn×n, B(t) = [ΓαFF(t),Ω,Π] ∈
Rn×3, C = In ∈ Rn×n where In is an n× n identity matrix,
D= 0∈Rn×3, x∈Rn×1, y∈Rn×1, vFB = [v1FB ,v2FB ,v3FB ]

T ∈
R3×1, and n = l − 2. Here α , and therefore x, is assumed
measurable.



IV. MODEL IN ROBUST CONTROL FRAMEWORK

A linear system with state-space matrices A, B, C, and D
has a transfer function representation G(s)=C(sIn−A)−1B+
D where s denotes the Laplace variable. By defining the
matrix

Ma =

�
A B
C D

�
(11)

the system transfer function can be written as an upper linear
fractional transformation (LFT) as G(s) = Fu(Ma, [1/s]In) =
D+C(sIn −A)−1B, where Fu denotes the upper LFT. The
time varying parameters v1FF (t) and αFF(t) in the definition
of the system matrices of (10) are chosen to be modeled as
a time varying uncertainty as

v1FF (t) ∈ γv

�
1+βvδv

�
αiFF (t) ∈ γ i

α

�
1+β i

α δ i
α

�
(12)

where γv = (v1FFmax + v1FFmin
)/2, γ i

α = (αiFFmax +αiFFmin
)/2,

βv = (v1FFmax − v1FFmin
)/(2γv), and β i

α = (αiFFmax −
αiFFmin

)/(2γ i
α) with |δv|≤ 1 and |δ i

α |≤ 1 where i= 1,2, . . . ,n.
By employing (12) and defining the total uncertainty vector
as δ = [δ 1

α , . . . ,δ n
α ,δv] ∈ R(n+1)×1, the matrix Ma is written

in the form of a general affine state-space uncertainty

Ma =




A0 +

n+1�
m=1

δmA∗
m B0 +

n+1�
m=1

δmB∗
m

C0 +
n+1�
m=1

δmC∗
m D0 +

n+1�
m=1

δmD∗
m



 (13)

where

A0 = γvΓ B0k =

� n�

i=1

γ i
α Γk,i,Ωk,Πk

�
C0 = In D0 = 0

(14)
and

A∗
1,2,...,n = 0 A∗

n+1 = γvβvΓ
B∗

mk
=
��

γm
α β m

α
�
Γk,m,0,0

�
for m = 1,2, . . . ,n B∗

n+1 = 0
C∗

1,2,...,n+1 = 0 D∗
1,2,...,n+1 = 0 (15)

where k = 1,2, . . . ,n, Γk,i denotes the k-th row i-th column
component of Γ, B0k and B∗

mk
denote the k-th component of

B0 and B∗
m respectively, and δm denotes the m-th component

of δ .
By exploiting the structure of the state matrices in (13) and

using singular value decomposition, the feedback system can
be expressed in the conventional P−∆ control framework by
employing the method outlined in [8]. See [5] for an example
of this technique. If the plant P ∈ R(qT+n)×(qT+3), where qT
is the rank of the structured uncertainty matrix ∆ = diag{δ},
is partitioned as

P =

�
P11 P12
P21 P22

�
(16)

the input-output equations of the system are

y∆ = P11u∆ +P12vFB y = P21u∆ +P22vFB (17)

where P11 ∈ RqT×qT , P12 ∈ RqT×3, P21 ∈ Rn×qT , P22 ∈ Rn×3,
y∆ ∈ RqT×1, u∆ ∈ RqT×1, y ∈ Rn×1, and vFB ∈ R3×1.

V. IDENTIFICATION OF RELEVANT CONTROL CHANNELS

It is desired that the output y(t) be able to track a reference
value r(t), therefore, we define the tracking error e(t) as

e(t) = r(t)− y(t). (18)

The conditions to bring the tracking error exactly to zero
are typically not met because the number of controlled
outputs n is larger than the number of controlled inputs
3. As a result, we can only independently control 3 linear
combinations of the output of the system, and we employ a
technique based on the singular value decomposition of the
static gain matrix of the nominal state-space system A0, B0,
C0, D0 to identify the most relevant control channels. The
relationship between the outputs y and the inputs vFB of the
nominal system is expressed as y = G0(s)vFB where G0(s) =
C0(sIn −A0)−1B0 +D0 is the nominal transfer function.

To begin the process of determining the relevant channels,
we consider a steady state performance index defined as

J̄ = lim
t→∞

eT (t)Qe(t) = ēT Qē (19)

where ē denotes the steady state tracking error, (·)T denotes
the matrix transpose, and Q ∈ Rn×n is a symmetric positive
definite weighting matrix. Assuming a constant reference
r̄ and provided the closed-loop system is internally stable,
the system can be maintained at steady state. Under these
assumptions, the input-output relation in steady state is
expressed as

ȳ = Ḡ0v̄FB =
�
−C0(A0)

−1B0 +D0)v̄FB (20)

where ȳ denotes the steady state output, v̄FB denotes the
steady state input, and Ḡ0 denotes the steady state gain of
the plant G0(s) (i.e., s → 0). We introduce another positive
definite weighting matrix R ∈ R3×3 in order to also weight
the control effort, and we define the “weighted” steady state
transfer function G̃0 and its “economy” size singular value
decomposition [9] as

G̃0 = Q1/2Ḡ0R−1/2 =UΣV T (21)

where Σ = diag(σ1,σ2,σ3) ∈ R3×3 is a diagonal matrix of
steady state singular values and U ∈Rn×3 and V ∈R3×3 are
unitary matrices. By employing (21), the steady state input-
output relation (20) is expressed as

ȳ = Q−1/2G̃0R1/2v̄FB = Q−1/2UΣV T R1/2v̄FB. (22)

We note that the columns of the matrix Q−1/2UΣ define
a basis for the subspace of obtainable steady state output
values, and as a result, we can write

ȳ = Q−1/2UΣȳ∗ ⇐⇒ ȳ∗ = Σ−1UT Q1/2ȳ (23)

where ȳ∗ ∈ R3×1. This implies that only the component of
the reference vector r̄ that lies in this subspace will be
able to be tracked in steady state. Therefore, the reference
vector is decomposed as r̄ = r̄t + r̄nt where r̄t is the trackable
component and r̄nt is the non-trackable component. The
reference vector components are then defined as

r̄t = Q−1/2UΣr̄∗ ⇐⇒ r̄∗ = Σ−1UT Q1/2(r̄t + r̄nt) (24)



Fig. 1. Schematic of control problem formulation.

with r̄∗ ∈ R3×1 and Σ−1UT Q1/2r̄nt = 0. By defining v̄∗FB =
V T R1/2v̄FB ∈ R3×1, a one-to-one relationship between the
outputs ȳ∗ and the inputs v̄∗FB is obtained by using (23) and
(22) as

ȳ∗ = Σ−1UT Q1/2ȳ = Σ−1UT Q1/2Q−1/2UΣV T R1/2v̄FB = v̄∗FB.
(25)

The steady state error is now written as ē = r̄ − ȳ =
Q−1/2UΣ(r̄∗ − ȳ∗) and the performance index (19) is ex-
pressed as

J̄ = ēT Qē =
�
r̄∗ − ȳ∗

�T Σ2(r̄∗ − ȳ∗) =
3�

i=1

σ2
i
�
r̄∗i − ȳ∗i

�2 (26)

where σi denotes the i-th singular value, r̄∗i denotes the i-th
component of r̄∗, and ȳ∗i denotes the i-th component of ȳ∗.

We note that the i-th singular value acts as a weight
parameter for the i-th component of the tracking error in (26).
It is possible that two sequential singular values could exhibit
a large difference in magnitude, i.e., σi � σi+1. As a result,
if we take all of the singular values into account, we could
spend a lot of control effort for only a small improvement
in the value of the performance index (26). To avoid this
penalty, we partition the singular values into k significant
singular values Σs and 3− k negligible singular values Σns
and introduce the partitions

U =
�
Us Uns

�
V =

�
Vs Vns

�
Σ =

�
Σs 0
0 Σns

�
(27)

r̄∗ =
�

r̄∗s
r̄∗ns

�
ȳ∗ =

�
ȳ∗s
ȳ∗ns

�
v̄∗FB =

�
v̄∗FBs
v̄∗FBns

�
(28)

where Us ∈Rn×k, Σs ∈Rk×k, Vs ∈R3×k, r̄∗s ∈Rk×1, ȳ∗s ∈Rk×1,
and v̄∗FBs

∈Rk×1. Using (27) and (28), a reduced form of the
performance index (26) is written as

J̄s =
�
r̄∗s − ȳ∗s

�T Σ2
s
�
r̄∗s − ȳ∗s

�
=

k�

i=1

σ2
i
�
r̄∗i − ȳ∗i

�2 (29)

where

r̄∗s = Σ−1
s UT

s Q1/2(r̄t + r̄nt) ȳ∗s = Σ−1
s UT

s Q1/2ȳ. (30)

By employing (30) and (22), a reduced form of the decoupled
system (25) is expressed as

ȳ∗s = Σ−1
s UT

s Q1/2ȳ = Σ−1
s UT

s Q1/2Q−1/2UΣV T R1/2v̄FB = v̄∗FBs
(31)

where we have defined v̄∗FBs
=V T

s R1/2v̄FB.

Fig. 2. Model in ∆−P∗ −K robust control design framework.
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VI. CONTROLLER SYNTHESIS

The control goal is to design a feedback controller that
can minimize the tracking error (18) while using as little
feedback control effort as possible, achieve a set of specified
performance objectives, and robustly stabilize the system
by controlling the significant portion of the output of the
system (17). A schematic of this control problem is shown
in Figure 1 where K is the feedback controller, Z1 =Wpe∗s ,
Z2 =Wuv∗FBs

, and Wp and Wu are frequency dependent weight
functions. The feedback system is expressed in the conven-
tional ∆−P∗ −K robust control design framework shown
in Figure 2 where P∗ is the generalized plant. By defin-



Fig. 5. DIII-D tokamak configuration with DIII-D PCS real-time code.

ing the transfer functions GDC = Σ−1
s UT

s Q1/2P22R−1/2Vs,
Ty∆v = P12R−1/2Vs, and Tyu∆ = Σ−1

s UT
s Q1/2P21, the input-

output equations of the generalized plant P∗ are




y∆
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e∗s



=
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11 P∗

12 P∗
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21 P∗

22 P∗
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31 P∗

32 P∗
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=

�
P̃∗

11 P̃∗
12

P̃∗
21 P̃∗

22

�


u∆
r∗s

v∗FBs





(32)
where

P∗
11 = P11 P∗

21 =−WpTyu∆ P∗
31 = 0

P∗
12 = 0 P∗

22 =Wp P∗
32 = 0

P∗
13 = Ty∆u P∗

23 =−WpGDC P∗
33 =Wu

P∗
41 =−Tyu∆ P∗

42 = I P∗
43 =−GDC.

The system (32) can be written in the N−∆ control analysis
configuration by using the definition of the lower LFT, which
is denoted as Fl , between P∗ and K, i.e., N = Fl(P∗,K) =
P̃∗

11 + P̃∗
12K(I − P̃∗

22K)−1P̃∗
21. By using the definitions SDCO =

(I+GDCK)−1, TDCO = GDCK(I+GDCK)−1, and I = SDCO +
TDCO , the feedback system is written as



y∆
Z1
Z2



=N
�

u∆
r̄∗s

�
N =




P11 −Ty∆vKSDCOTyu∆ Ty∆vKSDCO

−WpSDCOTyu∆ WpSDCO
−WuKSDCOTyu∆ WuKSDCO



 .

The nominal performance condition of the closed-loop
system and the control problem are expressed as
�

Z1
Z2

�
=

�
WpSDCO

WuKSDCO

��
r̄∗s
�

⇒ min
K

����

����
WpSDCO

WuKSDCO

����

����
∞
, ∀ω

(33)
where || · ||∞ denotes the H∞ norm. The frequency dependent
weight functions Wp(s) and Wu(s) are chosen to shape the
closed-loop transfer functions and are parameterized as [10]

Wp(s) =

�
s/
�

Mp +ωp
�2

�
s+ωp

�
H∗

p
�2 Wu(s) =

�
s/
√

Mu +ωu
�2

�
s+ωu

√
H∗

u
�2 (34)

where Mp = 1, H∗
p = 10−6, ωp = 1, Mu = 1, H∗

u = 100.1, and
ωu = 10. The feedback controller K found by solving (33)
is written in state-space form as

ẋc = Acxc +Bce∗s v∗FBs =Ccxc +Dce∗s (35)

where the vector xc ∈ Rp×1 is the internal controller states,
Ac ∈ Rp×p, Bc ∈ Rp×1, Cc ∈ R1×p, and Dc ∈ R1×1 are the

controller system matrices, and p is the number of controller
states. For this controller design, the significant singular
values were chosen as Σs = σ1. To analyze the closed-loop
performance of the nominal system, the maximum singular
value diagrams of the inverse of the weight functions and the
achieved transfers are computed and are shown in Figure 3.
As can be seen from the figure, the desired shapes of the
transfer functions SDCO and KSDCO are achieved.

To analyze the robust stability of the closed-loop system,
the structure of the uncertainty in the N−∆ control analysis
framework is now taken into account. Because the uncer-
tainty has a defined structure, ∆ = diag{δ}, we can define
the structured singular value µ as

µ
�
N11( jω)

�
=

1
min{km|det(I − kmN11∆) = 0} (36)

where N11 is the transfer function between y∆ and u∆.
The closed-loop system is robustly stable for all allowable
perturbations if and only if µ

�
N11( jω)

�
< 1, ∀ω [10]. Figure

4 shows a plot of µ versus frequency, and as can be seen
from the figure µ < 1, ∀ω . Finally, the multi-input-multi-
output feedback controller K̂ ∈ R3×n is expressed as

ẋc = Acxc +BcΣ−1
s UT

s Q1/2e
vFB = R−1/2VsCcxc +R−1/2VsDcΣ−1

s UT
s Q1/2e. (37)

A general framework for real-time feedforward + feedback
control of magnetic and kinetic plasma profiles has been
implemented in the DIII-D PCS as shown in Figure 5. The
feedback portion of the controller was implemented as a
discrete time state-space controller with a sampling time
of 20 milliseconds and was interfaced with the real-time
equilibrium reconstruction code in the DIII-D PCS [11] via
the Coordinate Transformation block. The Nonlinear Trans-
formation block converts the feedforward + feedback control
input to the physical control actuator signals. It is important
to note that the requests made by the control algorithm are
the references to the control loops commanding the physical
actuators. This PCS configuration provides us the ability
to test the feedback controller in reference tracking and
disturbance rejection experiments. A simulation simserver
of the magnetic diffusion equation that can interface with
the DIII-D PCS was developed to test the real-time code
implemented in the DIII-D PCS [12] where the simulation
simserver replaces the DIII-D tokamak in Figure 5.

VII. EXPERIMENTAL REFERENCE TRACKING RESULTS

The actuators used to manipulate the poloidal flux gradient
profile evolution θ(ρ̂, t) have a limited ability to drive the
system towards a desired target profile based on the physical
design of the DIII-D tokamak. As a result, there are a limited
number of target profiles that are physically achievable by
the machine no matter what type of profile control strategy is
employed. The control actuators themselves are also phys-
ically constrained in magnitude as well as rate of change,
which further reduces the range of target profiles achievable
for a given initial θ profile. The goal of the experimental test
was to verify that the feedback controller synthesized from
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Fig. 6. Time trace of poloidal flux gradient θ at normalized radii (a) ρ̂ = 0.3, (b) ρ̂ = 0.4, (c) ρ̂ = 0.6, (d) ρ̂ = 0.7, (e) ρ̂ = 0.8, and (f) ρ̂ = 0.9.

a first principles based model of the poloidal flux profile
evolution is able to drive the system to a target profile that
is physically achievable by the machine.

In this section, we experimentally test the reference track-
ing capabilities of the feedback controller in the DIII-D
tokamak. First, we obtained a target poloidal flux gradient
profile evolution θtar(ρ̂, t) that was physically achievable
by the machine by executing a feedfoward control only
discharge with a nominal set of feedforward control inputs
in DIII-D shot # 145477. Another feedforward control dis-
charge was executed with a second set of feedfoward control
inputs to generate a second profile evolution θFF(ρ̂, t) in
DIII-D shot # 146411. Finally, in DIII-D shot # 146458,
the feedforward actuator trajectories from DIII-D shot #
146411 were combined with the feedback controller (37) in a
feedforward + feedback control discharge to track the target
profile evolution θtar(ρ̂, t). The feedback controller was on
for the duration of the discharge, and the reference vector
was set according to r(ρ̂, t) = θtar(ρ̂, t)−θFF(ρ̂, t).

For the DIII-D discharges used to test the feedback con-
troller, the ramp-up phase is associated with the time t =
[0.5,1.2] seconds, and the early flat-top phase corresponds to
the time t = [1.2,2.25] seconds. Time traces of θ , at various
normalized radii ρ̂ , achieved during shot #’s 145477 (target),
146458 (feedforward + feedback), and 146411 (feedforward)
are shown in Figure 6. The feedback controller can manipu-
late the θ profile evolution through diffusivity, interior, and
boundary actuation. Due to the fact that the boundary actua-
tion is one of the more influential actuators, the feedback
controller can more effectively control the θ profile near
the plasma boundary because of the spatial proximity of the
actuator and the controlled quantity. Therefore, a tracking
error in the interior of the plasma will take longer to eliminate
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Fig. 7. Initial poloidal flux gradient θ(ρ̂) profile at time t = 0.538 seconds.

because the control action applied at the plasma boundary
will have to diffuse towards the center of the plasma. This
behavior is shown in Figures 6(c)-6(f) for the time traces of
θ at normalized radii ρ̂ = 0.6, 0.7, 0.8, and 0.9 achieved in
the feedforward + feedback control discharge. During this
discharge, the θ evolution at ρ̂ = 0.6 and 0.7 is initially
below the desired target evolution. Therefore, the feedback
controller causes θ at ρ̂ = 0.8 and 0.9 to overshoot the
desired target evolution at these spatial locations in order
to cause the θ evolution at ρ̂ = 0.6 and 0.7 to increase
towards the target evolution through diffusion. Once the
target θ evolution is achieved at ρ̂ = 0.6 and 0.7 at the
time t = 2.0 seconds as shown in Figures 6(c) and 6(d),
the feedback controller begins to reduce the tracking error at
the normalized radii ρ̂ = 0.8 and 0.9 during the time interval
t = [2.0,2.25] seconds as shown in Figures 6(e) and 6(f).

Due to the nonlinear behavior of the tokamak plasma and
the physical limitations of the actuators to manipulate the
θ profile evolution, there is no guarantee that the feedback
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Fig. 8. Poloidal flux gradient θ(ρ̂) profile at time (a) t = 1.218 seconds, (b) t = 1.618 seconds, and (c) t = 2.258 seconds and control trajectory comparison:
(d) plasma current (MA), (e) total non-inductive power (MW), and (f) line average density (1019 m−3).

controller will be able to drive the θ profile evolution in
the feedforward + feedback control discharge to the target
profile evolution from the perturbed initial condition shown
in Figure 7. The poloidal flux gradient profile θ(ρ̂) match-
ing comparison between shots #’s 145477 (target profile),
146458 (feedforward + feedback), and 146411 (feedforward)
at times t = 1.218, t = 1.618 and t = 2.258 seconds is shown
in Figures 8(a)-8(c). At the beginning of the ramp-up phase,
the feedback controller begins to drive the plasma from the θ
profile evolution in shot # 146411 towards the target profile
evolution by modifying the feedforward actuator trajectories
from shot # 146411. At the end of the early flat-top phase,
the feedback controller is able to drive the θ profile in shot
# 146458 as close as possible to the target profile achieved
in shot # 145477 as shown in Figure 8(c).

A comparison of the actuator trajectories requested by the
control algorithm and achieved by the physical actuators for
I(t), Ptot(t), and n̄(t) in shot #’s 146411 and 146458 is shown
in Figures 8(d)-8(f). To track the target profile evolution,
the feedback component of the combined controller modifies
the feedforward actuator trajectories from shot # 146411
throughout shot # 146458. Also shown in Figures 8(d)-8(f) is
the ability of the control loops commanding the physical ac-
tuators to follow the requests made by the control algorithm.
The control loops commanding the total plasma current and
the total average neutral beam power are able to follow the
requests very well, and the control loop commanding the line
average density is able to follow the request reasonably well.

VIII. CONCLUSIONS AND FUTURE WORK

A robust H∞ feedback controller was synthesized to con-
trol the current profile evolution in the DIII-D tokamak by
employing a first-principles-driven model of the poloidal

flux profile evolution. The feedback controller was success-
fully implemented in the DIII-D PCS, interfaced with the
available real-time measurements, and successfully tested
experimentally. Our future work will consist of developing a
control-oriented model of the poloidal flux profile evolution
valid in high-confinement (H-mode) plasma discharges that
incorporates the effects of the self-generated, non-inductive
source of current in the plasma that arises from achieving
the desired shape of the q profile in the tokamak machine.
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