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Abstract— The control of plasma density profiles is one of
the most fundamental problems in fusion reactors. During
reactor operation, the density profiles of hydrogen ions and
heavier impurity ions must be precisely regulated, and while
the uncontrolled open-loop behavior of these profiles is stable
in non-burning plasmas, the system response time may be
very slow. In this work, a controller is sought to improve the
response of ion density profiles in a non-burning plasma and
to track reference profiles for the electron density and effective
atomic number, a set of coupled variables that are directly
dependent on the hydrogen and impurity ion density profiles.
A one-dimensional approximation of the transport equation
for ion densities is represented in cylindrical coordinates by
a partial differential equation (PDE). To control the density
profiles, the PDE is discretized in space using a finite difference
method and a backstepping design is applied to obtain a discrete
transformation from the original system into an asymptotically
stable target system. Numerical simulations of the resulting
control law show that density profiles can be successfully
controlled with just one step of backstepping. Tracking of
electron density and effective atomic number profiles is then
simulated by first transforming the profiles into corresponding
ion density profiles for use by the backstepping controller.
Simulations show the successful tracking of reference profiles.

I. INTRODUCTION

To realize the promise of nuclear fusion and make it
an economical energy source, tokamak reactors must be
operated at inherently unstable operating points where kinetic
and magnetic variables must be precisely controlled. Most
approaches to the control of kinetic variables in tokamaks
begin by considering 0-D (zero-dimensional) models of
transport within the fusion plasma. In these models the
quantities are spatially averaged over the volume of the
plasma. The dynamic response of these averaged variables
is then governed by ordinary differential equations (ODEs)
and the problem can be approached with lumped-parameter
control design techniques. In previous work the problem is
simplified further by linearizing the nonlinear 0-D model and
putting the model in a standard control form for which linear
control techniques can be used. In [1], [2], the linearization of
the model is avoided and much higher levels of performance
and robustness are achieved. However, the 0-D control of
the system using modulation of bulk heating, fueling and
impurity density does not take into account the 1-D (one-
dimensional) effect of this modulation on the spatial profiles.
In a reactor, the heating, fueling, and impurity injection rates
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are indeed distributed throughout the plasma and effect the
shape of the kinetic variable profiles.

In order to achieve high-performance control of the plasma
in tokamak reactors, precise regulation of kinetic profiles
is essential. The importance of these profiles stems from
their effect on transport, confinement times and magneto-
hydrodynamic stability within the fusion plasma. A reliable
profile control system is necessary to achieve and maintain
kinetic profiles that minimize transport and maximize reactor
performance within stability limits. Precise profile control
in experimental devices could also be useful in providing
insight into the transport process and allow for conclusions to
be made about the validity of proposed transport models. The
importance of kinetic profile control in tokamak reactors is
recognized by previous work in the field [3], [4], [5], [6], [7].
In these pieces of work, the 1-D model is represented by a set
of partial differential equations (PDEs) and different methods
are used to reduce the distributed parameter description of
the system to a lumped parameter description. The resulting
set of ODEs are linearized and conventional linear control
methods are applied for the synthesis of the controller.

The objective of the controller presented in this work is
to regulate both the spatial profile shape (1D) and spatial
average value (0D) of the effective atomic number and the
electron density in a non-burning tokamak plasma. This set
of coupled variables is directly dependent on the hydrogen
and impurity ion density profiles within the plasma. To
control the effective atomic number and electron density,
the control objective is restated in terms of the hydrogen
and impurity ion density profiles through a nonlinear in-
version. A controller is then sought to drive these profiles
to predefined target profiles satisfying the spatial average
value requirements. To control the hydrogen and impurity
ion density profiles, a controller design technique capable of
dealing with the distributed nature of the model is necessary.

In this work, a non-burning plasma with ion diffusion
dynamics described by a 1-D PDE model is considered.
The ion density profiles described by this PDE model are
inherently stable. However, they are slow to converge to
an equilibrium from a perturbed state. Thus, the goal of
the controller is to improve the response of the system by
reducing the time required for the densities to reach the
desired equilibrium profiles from a set of initially perturbed
profiles. To control the system, the PDE describing the den-
sity profiles is discretized in space using a finite difference
method and a backstepping design is applied to obtain a
discrete transformation from the original system into an
asymptotically stable target system. Stability of the target



system is achieved by the choice of convenient boundary
conditions. Because the transformation is invertible for an
arbitrary grid choice, it can be concluded that the discretized
version of the original system is asymptotically stable and
we obtain a nonlinear feedback boundary control law for the
density in the original set of coordinates. This technique,
which avoids linearization of the model, has already been
successfully applied to other physical applications in [8],
[9], [10]. Numerical simulations of the resulting control laws
show that the response time of density profiles is greatly
improved with just one step of backstepping, or, in other
words, with a single sensor measurement of the densities
from within the plasma.

The paper is organized as follows. In Section II a one
dimensional PDE model that governs the dynamics of the
hydrogen and impurity ion densities in a non-burning plasma
is introduced. The control objective is stated in Section III. In
Section IV a backstepping feedback control law that achieves
asymptotic stabilization is presented. A feedback control law
designed on a coarse grid is shown through a simulation
study in Section V to successfully control the effective
atomic number and electron density profiles of the plasma
as well as their spatially averaged values. Conclusions and
future work plans are stated in Section VI.

II. SYSTEM MODEL

The electron density ne and effective atomic number Ze f f

are given by the following relationships

ne = nH +nIZI , (1)

Ze f f =
nH +nIZ

2
I

ne

, (2)

where nH is the hydrogen density, nI is the impurity ion
density and ZI is the impurity ion atomic number. The inverse
transformations used to obtain the ion densities from the
effective atomic number and electron density are given by

nH =
ZI −Ze f f

ZI −1
ne, (3)

nI =
Ze f f −1

ZI(ZI −1)
ne. (4)

The 1-D model used in this work to represent the dynamics
of the hydrogen and impurity ion profiles is based on an ion
transport PDE in cylindrical coordinates [3]. The ion density
transport equation is given by

∂n

∂ t
=

1
r

∂
∂ r

r

�
D

∂n

∂ r
−nVp

�
+S, (5)

where n is the ion density, S is the injection rate of ions
and D is the particle diffusivity. In this work, the model is
simplified by assuming a constant diffusivity and a negligible
pinch velocity Vp. Thus, the equations for the hydrogen and
impurity ion density profiles can be expressed as follows

∂nH

∂ t
=

1
r

∂
∂ r

�
rDH

∂nH

∂ r

�
+SH , (6)

∂nI

∂ t
=

1
r

∂
∂ r

�
rDI

∂nI

∂ r

�
+SI , (7)

where the subscripts H and I refer to hydrogen and impurity
ions, respectively. The following arbitrary boundary condi-
tions are used for the system:

∂nH

∂ r

����
r=0

= 0, (8)

∂nI

∂ r

����
r=0

= 0, (9)

∂nH

∂ r

����
r=a

= knH
nH , (10)

∂nI

∂ r

����
r=a

= knI
nI . (11)

III. CONTROL OBJECTIVE

At equilibrium, the hydrogen and impurity ion densities
are no longer changing with respect to time and the model
simplifies to a set of ODEs,

0 =
1
r

∂
∂ r

�
rDH

∂ n̄H

∂ r

�
+ S̄H , (12)

0 =
1
r

∂
∂ r

�
rDI

∂ n̄I

∂ r

�
+ S̄I . (13)

The equilibrium profiles n̄H and n̄I are determined by the
fueling rates SH(r, t) = S̄H(r) and SI(r, t) = S̄I(r). In this
work, density actuation is only considered at the plasma’s
edge and the fueling rates are used only to define the
equilibrium profiles. Writing nH(r, t) = n̄H(r)+ ñH(r, t) and
nI(r, t) = n̄I(r)+ ñI(r, t), the dynamics of the deviation vari-
ables ñH(r, t) and ñI(r, t) are given by

∂ ñH

∂ t
=

1
r

∂
∂ r

�
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∂ r

�
+ S̄H , (14)

∂ ñI
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∂
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�
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�
+ S̄I . (15)

Taking into account that
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,

and noting that by (12) and (13)

DH

∂ 2
n̄H

∂ r2 +
1
r

DH

∂ n̄H

∂ r
+ S̄H = 0, (16)

DI

∂ 2
n̄I

∂ r2 +
1
r

DI

∂ n̄I

∂ r
+ S̄I = 0, (17)

the equations can be rewritten as

∂ ñH

∂ t
= DH

∂ 2
ñH

∂ r2 +
1
r

DH

∂ ñH

∂ r
, (18)

∂ ñI

∂ t
= DI

∂ 2
ñI

∂ r2 +
1
r

DI

∂ ñI

∂ r
, (19)
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Fig. 1. Controller scheme.

with boundary conditions

∂ ñH

∂ r

����
r=0

= 0, (20)

∂ ñI

∂ r

����
r=0

= 0, (21)

∂ ñH

∂ r

����
r=a

= kHñH(a)+∆nH(t), (22)

∂ ñI

∂ r

����
r=a

= kIñI(a)+∆nI(t). (23)

The objective of the controller is to force ñH(r, t) and
ñI(r, t) to zero with ∆nH(t) and ∆nI(t) as actuation at the
plasma’s edge.

IV. BACKSTEPPING TECHNIQUE

A backstepping technique is used to transform the original
system of equations into an asymptotically stable target
system. Figure 1 illustrates the controller design method.
Because the hydrogen and impurity ion density profile mod-
els are completely analogous, the controller design steps
are shown here for a single, generalized density profile
equation. By defining h= 1

N
, where N is an integer, and using

the notation xi(t) = x(ih, t), i = 0,1, ...,N, the discretized
generalized version of (18)-(19) can be written as

˙̃ni = D
ñi+1 −2ñi + ñi−1

h2 +
1
ih

D
ñi+1 − ñi

h
, (24)

with the boundary conditions written as
ñ1 − ñ0

h
= 0, (25)

ñN − ñN−1

h
= knñ+∆n. (26)

Next, an asymptotically stable target system is considered

∂ F̃

∂ t
=

1
r

∂
∂ r

�
rD

∂ F̃

∂ r

�
−CF̃

= D
∂ 2

F̃

∂ r2 +
1
r

D
∂ F̃

∂ r
−CF̃ ,

(27)

with C > 0 and the following boundary conditions

∂ F̃

∂ r

����
r=0
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∂ r
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Fig. 2. Block diagram of simulation process

The target system can be discretized as

˙̃
Fi = D

F̃i+1 −2F̃i + F̃i−1

h2 +
1
ih

D
F̃i+1 − F̃i

h
−CF̃ , (30)

with the boundary conditions written as

F̃1 − F̃0

h
= 0, (31)

F̃N − F̃N−1

h
= −GF̃N . (32)

Next, a backstepping transformation is found in the form

F̃i = ñi −αi−1(ñ1, . . . , ñi−1). (33)

By subtracting (30) from (24), the expression α̇i−1 = ˙̃ni − ˙̃
Fi

is obtained. This expression can be rearranged and rewritten
in terms of αk−1 = ñk − F̃k, k = i−1, i, i+1, to obtain

αi =
1

D+D/i

��
2D+

D

i
+CF h

2
�

αi−1 −Dαi−2

−h
2
CF ñi +h

2α̇i−1

�
,

(34)

starting with α0 = 0 and where α̇i−1 is calculated as

α̇i−1 =
i−1�

k=1

∂αi−1

∂ ñk

˙̃nk. (35)

Next, subtracting (32) from (26) and putting the resulting
equation in terms of αk−1 = ñk − F̃k, k = i−1, i the control
∆n can be defined as

∆n =
αN−1 −αN−2

h
− knñN −G(ñN −αN−1). (36)

This equation can then be rewritten as the stabilizing law for
the ion density at the plasma’s edge, i.e.,

ñN = αN−1 +
1

(1+Gh)
[ñN−1 −αN−2] . (37)

To show the asymptotic stability of the target system, we
consider the Lyapunov function candidate

V =
1
2

�
a

0
rF̃

2
dr.
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Fig. 3. Open-loop time evolution of hydrogen ion density.

Taking the derivative of this function with respect to time
gives

V̇ =

�
a

0
rF̃

˙̃
Fdr

=

�
a

0
rF̃

�
1
r

∂
∂ r

�
rD

∂ F̃

∂ r

�
−CF̃

�
dr

= F̃rD
∂ F̃

∂ r

����
a

0
−
�

a

0
rD
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∂ F̃
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dr−
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a

0
rCF̃

2
dr

= aDF̃(a)F̃r(a)−
�

a

0
rCF̃

2
dr−

�
a

0
rDF̃

2
r

dr,

where the operation ∂ (·)
∂ r

is denoted by (·)r. Using the
boundary condition (29), this can be written as

V̇ =−GaDF̃(a)2 −
�

a

0
rCF̃

2
dr−

�
a

0
rDF̃

2
r

dr. (38)

It can be concluded that

V̇ ≤−CV −GaDF̃(a)2 −
�

a

0
rDF̃

2
r

dr, (39)

and, because

GaDF̃(a)2 ≥ 0, (40)�
a

0
rDF̃

2
r

dr ≥ 0 (41)

we can conclude that V̇ ≤ −CV , proving the asymptotic
stability of the system.

The control strategy is summarized in Figure 2. Given the
desired shapes (∂/∂ r) and spatially averaged values (<>) for
the effective atomic number and electron density (indicated
by the star notation in the figure), equilibrium profiles are
computed satisfying these specifications. These equilibrium
profiles are then converted to corresponding hydrogen and
impurity ion density equilibrium profiles (n̄H , n̄I) using the
inverse transformations (3) and (4). The set of equilibrium
profiles are then utilized by the backstepping controller to
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Fig. 4. Open-loop time evolution of impurity ion density.
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actuate the ion densities at the plasma edge in order to
achieve the desired shapes and spatially averaged values for
the electron density and effective atomic. We will show in
the next section that single measures of the ion densities at
r = 0.5 are enough to regulate the plasma profiles.

V. SIMULATIONS

The simulation results in this section were obtained using
a spatial step size of h = hs = 0.1, while the controller only
uses one step of backstepping, or a spatial step size of h =
hc = 0.5 for a plasma of a = 1. The choice of the simulation
grid size was based on the standard guidelines for stability
of the numerical method used, while the choice of the
backstepping grid size was motivated by the goal of limiting
the number of sensors needed, thereby minimizing the cost
of implementing the controller. The results shown reflect
a non-burning plasma with the quadratic fueling profiles
S̄H = SH0 [1− (r/a)2] and S̄I = SI0 [1− (r/a)2] and initially
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perturbed density profiles ñH(r,0) = (−1 + 2r/a)1019 and
ñI(r,0) = (−1+ 2r/a)1018. The simulation parameters are
D = 0 and ZI = 6. For the first set of simulations (Fig. 3–
Fig. 8) we have used SH0 = 1.5×1019 and SI0 = 1.5×1018,
while for the second set of simulations (Fig. 9–Fig. 13) we
have used SH0 = 2.8× 1018 and SI0 = 4.5× 1017. For these
conditions, the open-loop response, shown in Figures 3 and
4 is stable, however the rate of convergence from the initially
perturbed profiles to the equilibrium profiles is quite slow.
Figure 5 shows the open-loop response of the ion densities
at the edge of the plasma and indicates that the system
takes several seconds to settle to equilibrium. The closed-
loop simulation results in Figures 6 and 7 show that with
just one measurement from the plasma interior, the boundary
controller is able to improve the system response over that of
the open-loop system. The plot of closed-loop edge densities
in Figure 8 shows that the response time improvement is
roughly of an order of magnitude.

Figure 9 shows the response of the spatially averaged
effective atomic number and electron density against the
established time-varying references. The controller success-
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Fig. 8. Edge modulation for hydrogen and impurity ion density profile.
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fully tracks the references and the system reaches equilibrium
quickly. Figure 10 plots the spatial averages of hydrogen and
impurity ion densities against the references obtained from
the inverse transformations (3) and (4). The edge modulation
generated by the controller is found in Figure 11. The effect
of this modulation on the 1-D ion profiles is shown in the
plots in Figures 12 and 13.

VI. CONCLUSIONS AND FUTURE WORK

A feedback controller based on Lyapunov backstepping
design that improves the response of the density profiles
in a cylindrical plasma has been designed. The resulting
controller holds for any finite discretization in space of the
original PDE model and the simulation in this work shows
that a controller using just one step of backstepping suc-
cessfully controls the density profiles. This controller is then
shown to be capable of tracking time-varying reference for
the spatially averaged effective atomic number and electron
density, a set of coupled variables that are directly dependent
on the hydrogen and impurity ion densities.
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In the future, exploiting the capability of the proposed
backstepping technique to deal with nonlinear PDE systems,
improvements to the system model will be made, including
use of a non-constant value for the diffusion coefficient D.
In addition, we will consider a burning plasma in order to
study the effectiveness of using this technique to control one-
dimensional density and temperature profiles in an inherently
thermally unstable plasma.

REFERENCES

[1] E. Schuster, M. Krstic and G. Tynan, “Burn Control in Fusion
Reactors via Nonlinear Stabilization Techniques”, Fusion Science and

Technology, vol. 43, no. 1, pp. 18-37, 2003.
[2] E. Schuster, M. Krstic and G. Tynan, Nonlinear Lyapunov-Based Burn

Control in Fusion Reactors, Fusion Engineering and Design, 63-64,
pp.569-575, 2002.

[3] M. A. Firestone and C. E. Kessel, “Plasma Kinetics Control in a
Tokamak”, IEEE Transactions on Plasma Science, vol.19, no.1, pp.
29-41, 1991.

[4] G. H. Miley and V. Varadarajan, “On Self-tuning Control of Tokamak
Thermokinetics”, Fusion Technology, vol.22, pp. 425-38, 1992.

0

0.2

0.4

0.6

0.8

1 0
0.5

1
1.5

2
2.5

3
3.5

4

0

1

2

3

4

5

6

7

8

9

x 10
19

Time (s))
Radius (m)

n
H

Fig. 12. Time evolution of hydrogen ion density.

0

0.2

0.4

0.6

0.8

1 0
0.5

1
1.5

2
2.5

3
3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
18

Time (s)
Radius (m)

n
I

Fig. 13. Time evolution of impurity ion density.

[5] V. Fuchs, M. M. Shoucri, G. Thibaudeau, L. Harten and A. Bers,
“High-Q Thermally Stable Operation of a Tokamak Reactor”, IEEE

Transactions on Plasma Science, vol. PS-11, no.1, pp. 4-18, March
1983.

[6] M. A. Firestone, J. W. Morrow-Jones and T. K. Mau, “Comprehensive
Feedback Control of a Tokamak Fusion Reactor”, Fusion Technology,
vol.32, pp. 390-403, Nov. 1997.

[7] M. A. Firestone, J. W. Morrow-Jones and T. K. Mau, “Developing
Integrated Tokamak Dynamics Models for Next Generation Machine
Control”, Fusion Technology, vol.32, pp. 526-544, Dec. 1997.

[8] E. Schuster, M. Krstic, “Control of a Non-linear PDE System arising
from Non-burning Tokamak Plasma Transport Dynamics”, Interna-

tional Journal of Control, vol. 76, no. 11, pp. 1116-2224, 2003.
[9] D. Boskovic and M. Krstic, “Backstepping Control of a Chemical

Tubular Reactor”, Computers and Chemical Engineering, vol. 26, no.
7-8, pp. 1077-1085, 2002.

[10] D. Boskovic and M. Krstic, “Stabilization of a Solid Propellant Rocket
Instability by State Feedback”, Int. J. Robust Nonlinear Control, vol.
13, pp. 483495, 2003.


