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Abstract— We propose a framework to solve a closed-loop,
optimal tracking control problem for a parabolic partial di f-
ferential equation (PDE) via diffusivity, interior, and bo undary
actuation. The approach is based on model reduction via
proper orthogonal decomposition (POD) and Galerkin pro-
jection methods. A conventional integration-by-parts approach
during the Galerkin projection fails to effectively incorp orate
the considered Dirichlet boundary control into the reduced-
order model (ROM). To overcome this limitation we use
a spatial discretization of the interior product during the
Galerkin projection. The obtained low dimensional dynamical
model is bilinear as the result of the presence of the diffusivity
control term in the nonlinear parabolic PDE system. We design
a closed-loop optimal controller based on a nonlinear model
predictive control (MPC) scheme aimed at bating the effect
of disturbances with the ultimate goal of tracking a nominal
trajectory. A quasi-linear approximation approach is used to
solve on-line the quadratic optimal control problem subject to
the bilinear reduced-order model. Based on the convergence
properties of the quasi-linear approximation algorithm, the
asymptotical stability of the closed-loop nonlinear MPC scheme
is discussed. Finally, the proposed approach is applied to the
current profile control problem in tokamak plasmas and its
effectiveness is demonstrated in simulations.

I. I NTRODUCTION

In this work, we focus on a 1-D parabolic PDE with
diffusivity, interior, and boundary control inputs overΩ =
{(x,t) : |0≤ x≤ 1, 0≤ t ≤ T}, which is governed by

∂θ(x,t)
∂ t =u1(t)

[

h0(x)
∂θ2(x,t)

∂x2 +h1(x)
∂θ(x,t)

∂x +h2(x)θ (x,t)
]

+ h3(x)u2(t),
(1)

with nonhomogeneous Dirichlet boundary conditions

θ (0, t) = 0, θ (1, t) = k3u3(t), (2)

where θ (x,t) represents the system state;u1(t), u2(t) and
u3(t) denote the diffusivity, interior and boundary controls
respectively and∀ t, u1(t) > 0, u2(t) > 0 and u3(t) > 0;
h0(x), h1(x), h2(x) and h3(x) are functions of the space
coordinate and∀ x ∈ [0,1], h0(x) > 0; andk3 is a constant
coefficient. The control objective is to makeθ (x,t) track
a prescribed spatiotemporal profile for any arbitrary initial
condition θ0(x), minimizing at the same time the control
effort.
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The control of parabolic diffusion-reaction partial differen-
tial equations (PDE) such as (1) has been extensively studied
using interior control (defines a feedback control law for
u2(t) in (1)), usually making use of model reduction tech-
niques (see [1] and references therein) orboundary control
(defines a feedback control law foru3(t) in (1)) (see [2]
and references therein). Control throughu1(t) in (1), named
diffusivity control here, has been rarely considered before.
However, the diffusivity coefficient is not necessarily fixed
or uncontrollable in some applications. For example, the
diffusivity control problem arises in the control of the current
density profile in magnetically confined fusion plasmas [3],
where physical actuators such as plasma total current, line-
averaged density and non-inductive total power are used
to steer the plasma current density to a desired profile in
a designated time period. By modulating these physical
actuators it is possible not only to vary the amount of non-
inductive current driven into the system (interior control) and
the total plasma current (boundary control) but also to modify
the resistivity of the plasma (diffusivity control). Another
example can be found in the area of flow control [4]. In [4],
a saturated flow through a one-dimensional idealized tube
packed with soil is considered. The soil contains contaminant
samples and a fluid is pumped through the tube (from left to
right) to remove the contaminants. The velocity of the fluid
pumped into the tube is considered as the control variable
which appears as the convective coefficient in the convective-
diffusive PDE system governing the contaminant concentra-
tion. In terms of controllability, it has been demonstratedthat
bilinear controls can improve the controllability obtained by
just using either interior or boundary controls (see, e.g.,[5]
and references therein). We propose in this paper a nonlinear
model predictive control (MPC) scheme that makes use of
the three types of actuation to solve the optimal tracking
control problem described above.

Model predictive control, also referred to as moving
horizon control or receding horizon control, has become an
attractive feedback strategy. In the last two decades, several
formulations have been developed for linear and nonlinear
systems [6], [7] finding many successful applications, partic-
ularly in the process industry [8]. The use of MPC schemes
for the control of PDE systems is part of the literature in this
field [9], [10]. In prior work, accurate high order dimension
models are usually accounted for. The drawback of the use
of infinite-dimensional PDE models is that the computational
burden associated with the on-line optimization procedure
may make the implementation of this control strategy simply
unfeasible for not sufficiently slow dynamical systems.



Several methods have been proposed to deal with the
infinite-dimensionality and the complex computational re-
quirements associated with feedback control of PDE systems.
Dufour and coworkers [11] adapted MPC with internal model
control (IMC) structure where the nonlinear PDE system
(solved off-line) and a linearized PDE system (solved during
the on-line optimization task) are both used in order to
decrease the computational burden. A MPC scheme for
output control of hyperbolic PDE systems based on the
method of characteristics has been proposed by Shang [12].
Model reduction by inertial manifold theory and partition of
the eigenspectrum of the PDE operator has been proposed
by Christofides and coworkers [13], and a MPC scheme for
linear parabolic PDE systems is presented in [14].

In this paper we use proper orthogonal decomposition
(POD) [15] and Galerkin methods to obtain a low di-
mensional dynamical model for the nonlinear PDE system
(1) with the ultimate goal of reducing the computational
burden associated with the optimization procedure. Dirichlet
boundary control cannot be effectively incorporated into the
reduced-order model by following a conventional integration-
by-parts approach during the Galerkin projection. Specific
difficulties in Dirichlet boundary control problems result
from the fact that they are not of variational type [16].
Inspired by [17], we overcome this problem by using a spatial
discretization of the interior product during the Galerkin
projection and employing the end-point-separation method.

The obtained low dimensional dynamical model is bilinear
as the result of the presence of the diffusivity control term
in the nonlinear parabolic PDE system (1). To quickly com-
pute the solution of the optimal control problem associated
with the MPC scheme and subject to this bilinear system,
we follow a successive approach based on a quasi-linear
approximation algorithm [18], [19]. As shown in [20], a
general MPC scheme does not guarantee closed-loop sta-
bility because a finite-horizon criterion is not designed to
guarantee an asymptotical property such as stability. Closed-
loop stability can only be obtained by suitable tuning of the
design parameters such as prediction horizon, control horizon
and weighting matrices. Therefore, stability of the proposed
nonlinear MPC scheme is discussed.

This paper is organized as follows. In Section II, we
discuss the model reduction based on POD/Galerkin pro-
jection and the end-point-separation method to integrate the
Dirichlet boundary control into the reduced order model.
After obtaining a low dimensional bilinear system, we state
in Section III the optimal tracking control problem. We
propose in Section IV an infinite-horizon nonlinear MPC
scheme, where a quasi-linear approximation method is used
to solve the associated open-loop optimal control problem
on-line. In Section V, we discuss feasibility and stabilityof
the proposed nonlinear MPC scheme. Section VI illustrates
the effectiveness of the proposed feedback controller in
addressing the current profile control problem in tokamaks.
Finally, conclusions and future work are presented in Sec-
tion VII.

II. MODEL REDUCTION WITH
END-POINT-SEPARATION

A. POD Modes

We simulate the parabolic PDE system on the gridQi j =
(xi ,t j ), wherei, j are integers with 1≤ i ≤ m;1≤ j ≤ n. The
set V = span{θ1, · · · ,θn} ⊂ R

m refers to a data ensemble
consisting of the snapshots{θ j}n

j=1 obtained from the sim-
ulation. We let{ϕk}d

k=1 be the orthonormal basis of the data
ensembleV , whered = dimV ≤ m. The goal of the POD
method is to find a subset of the orthonormal basis{ϕk}d

k=1
such that for some predefined 1≤ l ≤ d the reconstruction
error for the snapshots is minimized, i.e.,

min
{ϕk}l

k=1

1
n

n
∑

j=1

∥

∥

∥

∥

∥

θ j −
l

∑

k=1

(θ j ,ϕk)ϕk

∥

∥

∥

∥

∥

2

, (3)

subject to(ϕi ,ϕ j ) = δi j ,1≤ i ≤ l ,1≤ j ≤ i, where ‖θ‖=√
θ Tθ and (·, ·) denotes the inner product. The solution of

(3) can be found in the literature, e.g., [15].

B. Galerkin Projection

Let VPOD = {ϕ1,ϕ2,ϕ3,ϕ4, ...,ϕl} be the set of obtained
POD modes. Using thel POD modes, we approximate the
system state as

θ (x,t) ≈ θ l (x,t) =

l
∑

i=1

αi(t)φi(x), (4)

where continuous POD basis functionsφi(x) ∈ C2([0,1])∩
L2([0,1]) are obtained by interpolating the POD modesϕi

(vectors). We substitute this expression in (1) to obtain
l

∑

i=1

α̇i(t)φi(x)

=h0(x)u1(t)
l

∑

i=1

αi(t)
∂ 2φi

∂x2 +h1(x)u1(t)
l

∑

i=1

αi(t)
∂φi

∂x

+h2(x)u1(t)
l

∑

i=1

αi(t)φi(x)+

l
∑

i=1

h3(x)u2(t).

(5)

We write theweak formof equation (5) by multiplying
both sides byφk(x), for k = 1,2, ..., l , and integrating over
the spatial domain[0,1], i.e.,

l
∑

i=1

α̇i(t) < φi(x),φk(x) >= u2(t) < h3(x),φk(x) >

+u1(t)
l

∑

i=1

αi(t) < h0(x),φ ′′
i (x),φk(x) >

+u1(t)
l

∑

i=1

αi(t) < h1(x),φ ′
i (x),φk(x) >

+u1(t)
l

∑

i=1

αi(t) < h2(x),φi(x),φk(x) >,

(6)

where

< g1g2...gn >,

∫ 1

0
g1g2...gn dx≈≪ g1g2...gn ≫N, (7)



≪ g1g2...gn ≫N,

N
∑

n=1

g1(n∆x)g2(n∆x)...gn(n∆x). (8)

Here∆x is the spatial interval size andN+1 is the number
of grid points (N∆x = 1) considered for the numerical
approximation of the interior product. The grid is partitioned
as

~x = [[0 ∆x 2∆x ... (N−1)∆x]T 1]T , [~xT
o 1]T . (9)

Since the POD modesφi(x) are orthonormal to each other,
i.e., < φi(x),φ j (x) >= δi, j , whereδi, j is the Kronecker delta
function, from (6)α̇ can be approximated by

α̇k(t) = u2(t) ≪ h3,φk ≫N

+u1(t)
l

∑

i=1

αi(t)[≪ h0,φ ′′
i ,φk ≫N−1 +h0(1)φ ′′

i (1)φk(1)]

+u1(t)
l

∑

i=1

αi(t)[≪ h1,φ ′
i ,φk ≫N−1 +h1(1)φ ′

i (1)φk(1)]

+u1(t)
l

∑

i=1

αi(t)[≪ h2,φi ,φk ≫N−1 +h2(1)φi(1)φk(1)].

(10)

C. Inclusion of Boundary Control in Reduced-Order Model

We include the Dirichlet boundary control into the equa-
tion (10) without applying “integration-by-parts”. Using(4),
we rewrite the boundary condition as

θ |x=1 =

l
∑

i=1

αi(t)φi(1) = k3u3(t). (11)

From (11) we can write αk(t)φk(1) = k3u3(t) −
∑l

i=1(1 − δi,k)αi(t)φi(1). By substituting αk(t)φk(1)

into u1(t)h0(1)
∑l

i=1 αi(t)φk(1)φ ′′
i (1) in (10), we obtain

u1(t)h0(1)

l
∑

i=1

αi(t)φk(1)φ ′′
i (1)

=u1(t)h0(1)αk(t)φk(1)φ ′′
k (1)

+u1(t)h0(1)
l

∑

i=1

(1− δi,k)αi(t)φk(1)φ ′′
i (1)

=u1(t)h0(1)k3u3(t)φ ′′
k (1)

+u1(t)h0(1)

l
∑

i=1

αi(t)[φk(1)φ ′′
i (1)−φi(1)φ ′′

k (1)].

We follow similar procedure for the
terms u1(t)h1(1)

∑l
i=1 αi(t)φk(1)φ ′

i (1) and
u1(t)h2(1)

∑l
i=1 αi(t)φk(1)φi(1) in (10) to write

α̇k(t) = u1(t)

{

l
∑

i=1

αi(t)[≪ h0φ ′′
i φk ≫N −h0(1)φi(1)φ ′′

k (1)]

+h0(1)k3u3(t)φ ′′
k (1)+

l
∑

i=1

αi(t)[≪ h1,φ ′
i ,φk ≫N

−h1(1)φi(1)φ ′
k(1)]+h1(1)k3u3(t)φ ′

k(1)+h2(1)k3u3(t)φk(1)

+
l

∑

i=1

αi(t)≪h2,φi ,φk≫N−1

}

+u2(t)≪h3,φk≫N .

Using the notation

Γki = ≪ h0,φ ′′
i ,φk ≫N −h0(1)φi(1)φ ′′

k (1)
+ ≪h1,φ ′

i ,φk≫N −h1(1)φi(1)φ ′
k(1)+ ≪ h2,φi ,φk ≫N−1,

Φk = ≪ h3,φk ≫N,
Πk = h0(1)k3φ ′′

k (1)+h1(1)k3φ ′
k(1)+h2(1)k3φk(1),

and redefining the control vector as

u = (v1,v2,v3)
T = (u1,u2,u1u3)

T , (12)

we obtain a matrix representation for the reduced order
model,

dᾱ
dt

= Γᾱv1(t)+ Φv2(t)+ Πv3(t), (13)

where ᾱ(t) = (α1, ...,αl )
T ∈ R

l , Γ ∈ R
l×l , Φ,Π ∈ R

3×1

and vi ∈ R
1, for i = 1,2,3. The vectorᾱ(t) is the finite

dimensional approximation ofθ (x,t), w.r.t. the associated
POD modes.

III. TRACKING CONTROL DESIGN

In this section, a feedback control law is proposed for
the optimal tracking problem around a predefined open-
loop control trajectory. The optimal controller mainly focuses
on improving the system response when the whole control
process is perturbed.

We let vo(t) = [vo
1 vo

2 vo
3]

T be a set of open-loop control
trajectories, which are computed off-line, andαo(t) be the
open-loop state trajectory associated with the open-loop
controlvo(t), with a nominal initial stateαo

0 . The open-loop
state trajectory satisfies

dαo

dt
= Γαovo

1(t)+ Φvo
2(t)+ Πvo

3(t), (14)

with initial condition αo(t0) = αo
0 .

Let us define

e(t) = α(t)−αo(t), vc(t) = v(t)−vo(t), (15)

where v(t) = [v1 v2 v3]
T is the overall control input and

vc(t) = [vc
1 vc

2 vc
3]

T is the to-be-designed closed-loop control,
which is appended to the open-loop controlvo(t). Then, we
can write

dαo

dt
+

de
dt

=Γ(αo +e)(vo
1 +vc

1)+Φ(vo
2+vc

2)+Π(vo
3 +vc

3). (16)

By substituting (14) into (16), we obtain

de
dt

= A(t)e+B(e)u= f (e,u), (17)

where, A(t) = Γvo
1(t) ∈ R

l×l , B(e) = [Γ(e+ αo) Φ Π] ∈
R

l×3, u(t) = vc(t) = [vc
1 vc

2 vc
3]

T ∈ R
3×1 subject to input

constraints of the form:u(t) ∈ U, ∀t ≥ 0 whereU := {u∈
R

3| |ui| ≤ umax
i }, i = 1,2,3.



IV. N ONLINEAR MODEL PREDICTIVE CONTROL

In general, the model predictive control (MPC) problem is
formulated as solving on-line at timet a finite horizon open-
loop optimal control problem subject to system dynamics and
constraints involving states and controls. In order to incorpo-
rate some feedback mechanism, the open-loop input function
obtained from the optimization process is implemented only
until the next measurement becomes available at timet +δ ,
which is used to update the optimization process. One of
the key questions in nonlinear MPC is certainly whether a
finite horizon nonlinear MPC strategy does lead to stabilityof
the closed-loop, which is an asymptotical property [20]. We
propose in this work a MPC scheme with infinite prediction
horizon tp. The feasibility of implementing an infinite-
horizon scheme is indeed a consequence of employing a
quasi-linear approximation approach to the bilinear optimal
control problem defined in each step of the MPC scheme.

The open-loop optimal control problem at timet with
measured initial state ¯e(t) is formulated as

min
u(·)

J=
1
2

eT(t f )P̄e(t f )+
1
2

∫ t f

t
eT(τ)Qe(τ)+uT(τ)Ru(τ)dτ, (18)

subject to the system dynamics (17), and wheret f = t + tp.
By introducing the lagrange multiplierλ (t) ∈ R

l×1, we
can define the Hamiltonian

H(e,u,λ ) =
1
2

eT(t)Ω(t)e(t)+
1
2

uT(t)R(t)u(t)

+ λ T(t)[A(t)e(t)+B(e)u(t)].
(19)

And by invoking the principle of optimality, the open-loop
optimal problem reduces to solving a nonlinear two-point-
boundary-value (TPBV) problem,

de
dτ

=
∂H
∂λ

= A(τ)e+B(e)u

dλ
dτ

= −∂H
∂e

= −Qe−A(τ)Tλ −uT ∂BT(e)
∂e

λ ,

(20)

with boundary conditionse(t) = ē(t), λ (t f ) = P̄e(t f ).
The solution of this nonlinear TPBV problem is usually

computationally demanding. To quickly compute the solution
of the optimal problem (18), we follow a successive approach
based on a quasi-linear approximation algorithm [18], [19].
We replace the bilinear system (17) with a sequence of linear
systems. By expanding our problem (17) up to first-order
around the previous iteration trajectoriesek(τ) and uk(τ),
the system takes the form

ėk+1 = A(τ)ek+1 +Bk(τ)uk+1, (21)

wherek is the iteration number andBk(τ) = B(e)|ek(τ), with
initial condition ek+1(t) = ē(t). The cost function is

Jk+1 =
1
2
(ek+1)T(t f )P̄ek+1(t f )

+
1
2

∫ t+tp

t
(ek+1)T(τ)Qek+1(τ)+(uk+1)T(τ)Ruk+1(τ)dτ.

(22)

For each iterationk, we have a standard linear quadratic
optimal control defined by (21)-(22).

We assume that the linear system (21) is always control-
lable, i.e., the pair(A(t),Bk(e(t))) is controllable∀t. Then,
the optimal control at iterationk is given by

uk+1 = −R−1(Bk(e))TPk+1ek+1. (23)

The matrix Pk+1 ∈ R
l×l is governed by the Riccati matrix

differential equation

Ṗ = −ATPk+1−Pk+1A−Q+Pk+1BkR−1(Bk)TPk+1, (24)

with P(t f ) = P̄, which is derived from a (20)-like
TPBV problem for ek+1 and λ k+1, assumingλ k+1(τ) =
Pk+1(τ)ek+1(τ), and taking into account thatBk = Bk(τ) and
∂ ((Bk)T (ek(τ))

∂ek+1 = 0.
Due to the stability issues discussed above, we extend

the prediction horizon to infinite, i.e.,tp → ∞. Assuming
convergence, the Riccati differential equation (24) reduces
to the Riccati algebraic equation

0 = −ATPk+1−Pk+1A−Q+Pk+1BkR−1(Bk)TPk+1. (25)

The iterative procedure is stopped when convergence (as
shown in [19]) is achieved under given error tolerance. The
solution of the open-loop optimal control problem (18) with
t f → ∞, and subject to the bilinear system dynamics (17), is
given by

u∗(τ) = −R−1BT(e∗)P∗e∗, (26)

where∗ denotes the converged values of the iteration. The
optimal trajectorye∗(t) driven byu∗(t) is

de∗

dτ
= (A−B∗R−1(B∗)TP∗)e∗. (27)

V. A SYMPTOTIC STABILITY PROPERTY

According to MPC fundamentals, the open-loop optimal
control problem given by equations (17) and (18) will be
solved repeatedly, updated with new measurements ¯e(t). The
closed-loop control ¯u(·) is defined by

ū(τ) = u∗(τ; ē(t),t,t f = ∞), τ ∈ [t,t + δ ]. (28)

whereu∗(·) in (26) is the solution of the open-loop optimal
problem (18) whent f → ∞. In this section, we study the
stability properties of the closed-loop system

ė(t) = f (e(t), ū(t)). (29)

Lemma 1:For the nominal system (17) with no distur-
bance, the feasibility of the open-loop control problem (18)
subject to equations (17) at timet = t0 (t0 ≥ 0) implies
its feasibility for all t > t0. Here, feasibility of the optimal
problem means that there exists at least one (not necessarily
optimal) control input trajectoryu(·) : [t,t f = ∞] →U , such
that the value of the cost functional (18) is bounded.

Proof: It is assumed that at timet = t0, with measured
initial condition ē(t0), an optimal solutionu∗(·) : [t0,t f =
∞] → U to the optimal control problem given by equations
(17) and (18) exists and is found. Since by assumption
there are no disturbances and we only consider the nominal
system driven by the optimal control inputu∗(τ; ē(t0)),
τ ∈ [t0,t0 + δ ], the state measurement at timet0 + δ is
ē(t0+δ ) = e∗(t0+δ ; ē(t0)). Therefore, to solve the open-loop



optimal control problem att0 + δ with the initial condition
e(t0 + δ ) = ē(t0 + δ ), a feasible candidate control inputu(·)
on [t0 + δ ,t f = ∞] may be chosen as

u(τ) = u∗(τ; ē(t0), t0, t f = ∞] for τ ∈ [t0 + δ , t f = ∞], (30)

where u∗(·) is the optimal control input at timet0. Thus,
the nominal statee(t) follows the optimal trajectorye∗(t) in
(27). Then, the argument can be repeated ast → ∞.

Theorem 2:Suppose that the open-loop control problem
(18) subject to (17) is feasible att = 0. Then in the absence
of disturbances, the closed-loop system with the model
predictive control (26) is nominally asymptotically stable.
Let X ⊆ R

l denote the set of all the initial states satisfying
the assumption, thenX is the attraction region of the closed-
loop system.

Proof: According to Lemma 1, feasibility of the open-
loop control problem at each timet > 0 is guaranteed by
the assumption in the theorem. For ¯e(t) = 0, the optimal
solution to the optimization problem (18) isu∗(·; ē(t),t,t f =
∞) : [t,t f = ∞] → 0, i.e., ū∗(τ) = 0, ∀ τ ∈ [t, t + δ ]. Due to
f (0,0) = 0 in (17), then ¯e(t) = 0 is an equilibrium of the
closed-loop system (29).

The key point of this proof is that in the absence of
disturbance, driven by control ¯u(t), the closed-loop states
e(t) will always follow an open-loop optimal trajectorye∗(t)
in (27) controlled by the correspondingu∗(t) in (26).

We define a functionV(e(t)) = eT(t)P∗(t)e(t), where for
any given ē(0) ∈ X, P∗(t) is the solution of the algebraic
Riccati equation (25) after the quasi-linear approximation al-
gorithm converges. Then,V(e) has the following properties:

(1) V(0) = 0 andV(e) > 0 for e 6= 0,
(2) along the trajectory of the closed-loop system starting

from ē(0) ∈ X,

V̇(e) =ėTP∗e+eTP∗ė

=eT [A−BR−1BTP∗]TP∗e+eTP∗[A−BR−1BTP∗]e

=−eT(Q+P∗BR−1BTP∗)e.

SinceQ andR are positive definite,̇V(e) is negative definite.
Therefore, the closed-loop system (29) is asymptotically
stable. Note that stability does not depend on the optimality
of the solution but on the convergence of the quasi-linear
approximation scheme.

VI. SIMULATION STUDY

In this section, the proposed approach is applied to the
current profile control problem in tokamak plasmas and its
effectiveness is demonstrated in simulations.

A. Current Profile Evolution Model

A key goal in the control of a magnetic fusion reactor
is to maintain current profiles that are compatible with a
high fraction of the self-generated non-inductive current
as well as with magnetohydrodynamic (MHD) stability at
high plasma pressure. This enables high fusion gain and
noninductive sustainment of the plasma current for steady-
state operation. It is possible to use the poloidal component
Bpol of the helicoidal magnetic lines confining the plasma in

a tokamak to define nested toroidal surfaces corresponding
to constant values of the poloidal magnetic flux. The poloidal
flux ψ at a pointP is the total flux through the surfaceS
bounded by the toroidal ring passing throughP, i.e., ψ =
∫

BpoldS. The dynamics of the poloidal fluxψ is governed in
normalized cylindrical coordinates by a nonlinear parabolic
partial differential equation (PDE) usually referred to asthe
magnetic diffusion equation, where the spatial coordinate
corresponds to the minor radius of the torus [3],

∂ψ
∂ t

= f1(ρ̂)u1(t)
1
ρ̂

∂
∂ ρ̂

(

ρ̂ f4(ρ̂)
∂ψ
∂ρ̂

)

+ f2(ρ̂)u2(t), (31)

with boundary conditions

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=0
= 0,

∂ψ
∂ρ̂

∣

∣

∣

∣

ρ̂=1
= k3u3(t). (32)

and where

f1(ρ̂) =
ke f fZe f f

k3/2
Te µoρ2

b

1

F̂2(ρ̂)(T pro f ile
e (ρ̂))3/2

(33)

f2(ρ̂) = −RoĤµoρ2
bF̂2(ρ̂)kNIpar j pro f ile

NIpar (ρ̂) f1(ρ̂)(34)

=
ke f fZe f fRokNIpar

k3/2
Te

Ĥ(ρ̂) j pro f ile
NIpar (ρ̂)

(T pro f ile
e (ρ̂))3/2

(35)

k3 =
µo

2π
Ro

Ĝ
∣

∣

ρ̂=1 Ĥ
∣

∣

ρ̂=1

(36)

f4(ρ̂) = F̂ĜĤ, (37)

and

u1(t) =

(

n̄(t)

I(t)
√

Ptot

)3/2

, u2(t) =

√

Ptot(t)

I(t)
, u3(t) = I(t).

The non-inductive current drive powerPtot(t), the spatially
averaged density ¯n(t), and the total plasma currentI(t) are
considered as the physical actuators of the system. The
spatial functions̄j pro f ile

NI andT pro f ile
e denote the non-inductive

current drive and electron temperature reference profiles.
F̂ ,Ĝ,Ĥ are geometric factors,̂ρ = ρ/ρb is the normalized
radius, ρb is the radius of last closed flux surface,Ro is
the plasma geometric center,µo is the vacuum permeabil-
ity, ke f f = 4.2702· 10−8 (Ωm(kev)3/2), Ze f f = 1.5, kTe =
1.7295· 1010 (m−3A−1W−1/2), and kNIpar = 1.2139· 1018

(m−9/2A−1/2W−5/4).
Since the current density in tokamak is proportional to the

spatial derivative of the magnetic fluxψ , we define the to-
be-controlled variable asθ (ρ̂ ,t) = ∂ψ

∂ ρ̂ . The control objective
is to drive θ (ρ̂ ,t) from any arbitrary initial profile to a
prescribed target or desirable profileθ des(ρ̂) at some timeT
by tracking a predefined trajectory. To simplify notation, we
replaceρ̂ with x hereafter. We rewrite (31) as

∂ψ
∂ t

= g1(x)u1(t)(g2(x)θ (x,t))′ +g3(x)u2(t) (38)

with g1(x) = f1(x)
1
x , g2(x) = x f4(x), g3(x) = f2(x).
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By differentiating both sides of equation (38) w.r.tx, we
obtain

∂θ (x,t)
∂ t

=g1(x)g2(x)u1(t)θ ′′(x, t)+ (g′1(x)g2(x)

+2g1(x)g
′
2(x))u1(t)θ ′(x, t)+ (g′1(x)g

′
2(x)

+g1(x)g
′′
2(x))u1(t)θ (x, t)+g′3(x)u2(t),

(39)

with boundary conditions (32) rewritten asθ (0,t) =
0, θ (1,t) = k3u3(t). By defining h0(x) = g1(x)g2(x),
h1(x) = g′1(x)g2(x) + 2g1(x)g′2(x), h2(x) = g′1(x)g

′
2(x) +

g1(x)g′′2(x), h3(x) = g′3(x), we recover (1)-(2).

B. Simulations

In this section, we present simulation results showing the
effectiveness of the proposed optimal control algorithm in
a disturbance rejection problem. The nominal initial profile
θinit shown in Fig. 1 (solid blue line) has been considered for
the synthesis of an off-line optimal controller via Extremum
Seeking [21]. The time evolution of the control inputsvo(t)
obtained from the off-line optimization procedure are shown
in Fig. 2 (blue dashed lines). Fig. 3-(a) illustrates the nominal
space-time profile ofθ (t, ρ̂), which is driven by the control
inputsvo(t) without any disturbance.

We first simulate the original PDE system (1) by using
a finite difference scheme on the gridQi j = (xi ,t j), where
i, j are integers with 1≤ i ≤ m;1 ≤ j ≤ n (m = 101, n =
121), and then a data ensemble is created with snapshots of
θ (t, ρ̂). We next extract POD modes from the created data
ensemble. With the eight most dominant POD modes, we
construct a low dimensional dynamical system governed by
the ordinary differential equation (ODE) system (13). Before
computing the nonlinear MPC scheme based on the reduced-
order model, we assess the effectiveness of the reduced-order
model in approximating the original PDE system. Fig. 3-(b)
shows the approximation error as function of time and space.
The order of the error demonstrates that the reduced-order
model based on only eight POD modes can successfully
approximate the PDE system.

In each open-loop optimal control problem of the nonlin-
ear MPC scheme, we chooseQ(t) ≡ Q = 100Il×l (I is an
identity matrix, l = 8), and

R(t) ≡ R= diag

{

200

max(vol
1 )

,
2

max(vol
2 )

,
200

max(vol
3 )

}

,

for the cost functional (18), wheremax(vol
i ) stands for the

maximum value of the open-loop controlvol
i (t). We use

the proposed quasi-linear approximation scheme to compute
the optimal control. After several iterations, the solution of
the Riccati matrix equation converges, and the controller
is implemented according to (26). In order to test the
infinite-horizon nonlinear MPC scheme, we useδ = 0.1s as
the measurement sampling time. Each of these intervals is
discretized in steps of 0.01s to solve the algebraic Riccati
equation (25).

We consider now a disturbed initial profileθinit , as shown
in Fig. 1 (dashed green line), and compare the performances
of both open-loop and closed-loop controllers in the presence
of this disturbance. In addition, a process disturbanced(x,t)
is added to test the performance of the nonlinear MPC
scheme. The disturbed PDE model is given as,

∂θ (x,t)
∂ t

=h0(x)θ ′′(x,t)u1(t)+h1(x)θ ′(x,t)u1(t)

+h2(x)θ (x,t)u1(t)+h3(x)u2(t)+d(x,t)

whered(x,t) = 0.1sin(πx)cos(t).
For our particular problem, the convergence rate of the

quasi-linear approximation scheme is quite fast. Simulations
indicate that given an initial errore(0) ∈ X, the scheme will
converge after 2-3 iterations. Fig. 3-(c) shows the differences
between the final-time profilesθ (x,T), for T = 1.2s, obtained
with both the open-loop and the closed-loop controllers and
the desired target profileθ d(x). Both final-time profiles are
obtained considering disturbances in both the initial profile
and the state. In the case of the open-loop controller, the
control input trajectories shown in Fig. 2, and computed for
the nominal initial profile, are used. In the case of the closed-
loop controller, the control input trajectories are shown in
Fig. 2. It is possible to note from Fig. 3-(c) that the closed-
loop controller can reduce the matching error caused by the
disturbances. It is also possible to note that the matching by
the closed-loop controller is not perfect. However, this does
not imply a limitation of the closed-loop controller but a
consequence of the imposed constraints for the actuators (the
matrix R is selected to keep the actuator trajectories within
physical ranges) and the final timeT. If the constraints of
actuators can be reduced or the actuators are allowed to act
longer, (e.g.T > 1.2s), the control effect is more observable.
Fig 3-(c) shows that better performance could be achieved
by settingT equal to 4.8s (longer plasma discharge).

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider a nonlinear parabolic PDE
system with nonhomogeneous Dirichlet boundary conditions.
Using this PDE model, and the POD/Garlekin technique
combined with the end-point-separation approach, we derive
a low dimensional dynamical system which integrates the
Dirichlet boundary control. To overcome the disturbances in
the system, we propose a nonlinear MPC scheme using the
convergent successive approach to solve on-line an open-loop
infinite-horizon optimal tracking control problem based on
the reduced order system. A simulation study is carried out
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for the current profile control problem in tokamak plasmas,
showing that the proposed controller can overcome to some
extent perturbations both in the initial conditions and in
the process. The asymptotic stability of the MPC approach
is proved for the reduced-order model. The experimental
validation of this controller at the DIII-D tokamak is part
of our research plans.
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