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Abstract— We propose a framework to solve a closed-loop,  The control of parabolic diffusion-reaction partial diféam-
optimal tracking control problem for a parabolic partial di -  tjal equations (PDE) such as (1) has been extensively studie
ferential equation (PDE) via diffusivity, interior, and boundary using interior control (defines a feedback control law for

actuation. The approach is based on model reduction via ) in (1 I ki f del reduction tech
proper orthogonal decomposition (POD) and Galerkin pro- uz(t) in (1)), usually making use of model reduction tech-

jection methods. A conventional integration-by-parts appoach ~ hiques (see [1] and references thereinpoundary control
during the Galerkin projection fails to effectively incorporate  (defines a feedback control law fag(t) in (1)) (see [2]
the considered Dirichlet boundary control into the reduced  and references therein). Control througt) in (1), named
order model (ROM). To overcome this limitation we use it sivity control here, has been rarely considered before.

a spatial discretization of the interior product during the H the diffusivit fficient i t v fix
Galerkin projection. The obtained low dimensional dynamial owever, the diffusivity coeflicient IS not necessarily lixe

model is bilinear as the result of the presence of the diffusity ~ Of uncontrollable in some applications. For example, the
control term in the nonlinear parabolic PDE system. We desig  diffusivity control problem arises in the control of the oemt

a closed-loop optimal controller based on a nonlinear model density profile in magnetically confined fusion plasmas [3],
predictive control (MPC) scheme aimed at bating the effect \ypare physical actuators such as plasma total current, line

of disturbances with the ultimate goal of tracking a nominal dd it d inductive total d
trajectory. A quasi-linear approximation approach is used to average ensity and non-inductive total power are use

solve on-line the quadratic optimal control problem subje¢ to ~ t0 steer the plasma current density to a desired profile in
the bilinear reduced-order model. Based on the convergence a designated time period. By modulating these physical
properties of the quasi-linear approximation algorithm, the  actuators it is possible not only to vary the amount of non-
asymptotical stability of the closed-loop nonlinear MPC sheme ., 4,,ctive current driven into the system (interior conjad

is discussed. Finally, the proposed approach is applied tché .
current profile control problem in tokamak plasmas and its the total plasma current (boundary control) but also to fiyodi

effectiveness is demonstrated in simulations. the resistivity of the plasma (diffusivity control). Anath
example can be found in the area of flow control [4]. In [4],
I. INTRODUCTION a saturated flow through a one-dimensional idealized tube

packed with soil is considered. The soil contains contantina
hsamples and a fluid is pumped through the tube (from left to
right) to remove the contaminants. The velocity of the fluid
pumped into the tube is considered as the control variable
26(xt 962(xt 96(xt which appears as the convective coefficient in the convectiv
% :ul(t)[ho(x) 3)52, )+h1(x)%+h2(x)e(x’t)} (1) diffusivepFF)’DE system governing the contaminant concentra-
+  ha(X)ua(t), tion. In terms of controllability, it has been demonstrateat
bilinear controls can improve the controllability obtadhley
just using either interior or boundary controls (see, €4].,
0(0,t) =0, 06(1,t)= kaus(t), (2) and references therein). We propose in this paper a nonlinea
model predictive control (MPC) scheme that makes use of
where 6(x,t) represents the system statjt), ux(t) and the three types of actuation to solve the optimal tracking
uz(t) denote the diffusivity, interior and boundary controlscontrol problem described above.
respectively andv t, ui(t) > 0, up(t) > 0 and us(t) > O; Model predictive control, also referred to as moving
ho(x), hi(x), h2(x) and hg(x) are functions of the space horizon control or receding horizon control, has become an
coordinate and’ x € [0,1], ho(x) > 0; andks is a constant attractive feedback strategy. In the last two decadesrakeve
coefficient. The control objective is to mak#x,t) track formulations have been developed for linear and nonlinear
a prescribed spatiotemporal profile for any arbitrary a&iti systems [6], [7] finding many successful applications, ipart
condition 6(x), minimizing at the same time the control ylarly in the process industry [8]. The use of MPC schemes
effort. for the control of PDE systems is part of the literature irsthi
. _ field [9], [10]. In prior work, accurate high order dimension
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In this work, we focus on a 1-D parabolic PDE wit
diffusivity, interior, and boundary control inputs over =
{(xt):|0<x<1,0<t<T}, which is governed by

with nonhomogeneous Dirichlet boundary conditions



Several methods have been proposed to deal with the Il. MODEL REDUCTION WITH
infinite-dimensionality and the complex computational re- END-POINT-SEPARATION
quirements associated with feedback contrpl o_f PDE systemM§ pop Modes
Dufour and coworkers [11] adapted MPC with internal model ] )
control (IMC) structure where the nonlinear PDE system Ve simulate the parabolic PDE system on the g#gl =
(solved off-line) and a linearized PDE system (solved dyrin(%i:tj), wherei, j are integers with £i <m1<j<n. The
the on-line optimization task) are both used in order t§€t” =spar{6y,---,6n} C R™ refers to a data ensemble
decrease the computational burden. A MPC scheme f§PNSisting of the snapshofg;}_, obtained from the sim-
output control of hyperbolic PDE systems based on thdlation. We let{¢y}{_; be the orthonormal basis of the data
method of characteristics has been proposed by Shang [12Psemble?’, whered = dim?” < m. The goal of the POD
Model reduction by inertial manifold theory and partitioh o Method is to find a subset of the orthonormal basig}_,
the eigenspectrum of the PDE operator has been proposétfh that for some predefined<ll < d the reconstruction
by Christofides and coworkers [13], and a MPC scheme f&Tor for the snapshots is minimized, i.e.,
linear parabolic PDE systems is presented in [14]. n |
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In this paper we use proper orthogonal decomposition {;P}IE HZ
(POD) [15] and Galerkin methods to obtain a low di- =t
mensional dynamical model for the nonlinear PDE systersubject to(¢i, ¢;) = §;,1<i <I1,1<j <i, where |0| =
(1) with the ultimate goal of reducing the computational/676 and (-,-) denotes the inner product. The solution of
burden associated with the optimization procedure. Digich (3) can be found in the literature, e.g., [15].
boundary control cannot be effectively incorporated irte t
reduced-order model by following a conventional integnai
by-parts approach during the Galerkin projection. Specific Let Vpop = {@1, §2, 3, @a,...,¢ } be the set of obtained
difficulties in Dirichlet boundary control problems resultPOD modes. Using the POD modes, we approximate the
from the fact that they are not of variational type [16].System state as |
Inspired by [17], we overcome this problem by using a spatial B(x,t) ~ 0 (xt) = Z ait)@(x), 4)
discretization of the interior product during the Galerkin -

projection and employing the end-point-separation method,here continuous POD basis functiomsx) € C2([0,1]) N

The obtained low dimensional dynamical model is bilineat?([0,1]) are obtained by interpolating the POD mods
as the result of the presence of the diffusivity control ternfvectors). We substitute this expression in (1) to obtain
in the nonlinear parabolic PDE system (1). To quickly com- l
pute the solution of the optimal control problem associated Y _ &i(t)@(x)
with the MPC scheme and subject to this bilinear system, i=1
we follow a successive approach based on a quasi-linear ' 2 '
approximation algorithm [18], [19]. As shown in [20], a :ho(x)ul(t)Zai(t)%—X(g+h1(x)u1(t)Zai(t)(g—ﬁ )
general MPC scheme does not guarantee closed-loop sta- i=1 i=1
bility because a finite-horizon criterion is not designed to ! !
guarantee an asymptotical property such as stability.eglos ~ TN2(X)ta(t) > ait)@x)+ Y _hs(x)u(t).
loop stability can only be obtained by suitable tuning of the =1 =1
design parameters such as prediction horizon, contratbori  We write theweak formof equation (5) by multiplying
and weighting matrices. Therefore, stability of the praggbs both sides byg(x), for k=1,2,....1, and integrating over
nonlinear MPC scheme is discussed. the spatial domair0, 1], i.e.,

B. Galerkin Projection

This paper is organized as follows. In Section Il, we [
discuss the model reduction based on POD/Galerkin pro- Zai (t) < @(x), @&(X) >=uUp(t) < hz(x), &(x) >
jection and the end-point-separation method to integtege t i=1
Dirichlet boundary control into the reduced order model. I
After obtaining a low dimensional bilinear system, we state +u1(t)Zai (t) < ho(X), @’ (X), @(X) >
in Section Ill the optimal tracking control problem. We 1 6)
propose in Section IV an infinite-horizon nonlinear MPC
scheme, where a quasi-linear approximation method is used+U1(t)ZGi (t) < (%), @ (%), @(x) >
to solve the associated open-loop optimal control problem i=1
on-line. In Section V, we discuss feasibility and stability !
the proposed nonlinear MPC scheme. Section VI illustrates +u1(t)Zai (t) <hz(X), @ (x), @(x) >,
the effectiveness of the proposed feedback controller in i=1
addressing the current profile control problem in tokamaksvhere

Finally, conclusions and future work are presented in Sec- At N
tion VIL. < 018200 >= | 0102--On X~ G1G2.--Gn >, (7)



N . .
Using the notation
< G102.-Gn >NE D " 91 (NAX)go(NAX)..gn(NAX). () 9
. _ . _ Mi= <ho, ", >N —ho(D)@a (1) g (1)
Here Ax is the spatial interval size and+ 1 is the number + <hy g, @sN —hy( )qq( ) (1)+ < ho, @, & SN-1
of grid points NAXx = 1) considered for the numerical Py = < hg, @ >N,
approximation of the interior product. The grid is partitéal My = ho(L)ksq! (1) + hy(1)kagt,(1) + ha(1) ks (1),
as

£=[0 Ax 2&x .. (N—DAT 172K 47, (9) and redefining the control vector as

Since the POD modeg(x) are orthonormal to each other, U= (va,Va,va)T = (U1, Up, Usus)T, (12)
i.e., < q@x),q(x) >= 3 j, whered j is the Kronecker delta
function, from (6)a can be approximated by we obtain a matrix representation for the reduced order

ak(t) = up(t) < hg, @ >N model, ~
! da _
9 G (t) + dup(t) + Mva(t 13
+u1(t)Zai (0)[< ho, @', @ >N +ho(D e’ (1) k(1)) gr = Fava(t) +eva(t) + Mvs(t), (13)

where a(t) = (ag,..,a)" € R, T e R o.n ¢ R3*?

+u(t Za' (< hy, @, @ >Nt +hi (Vg ()a(1)] a_nd Vi E_Rl, for i =123. The vectora(t) is the fir_1ite
dimensional approximation of(x;t), w.r.t. the associated
POD modes.

U (t) Z ai(t)[< ha, @, @Mt (D@ (1) a(1))-

(10)
C. Inclusion of Boundary Control in Reduced-Order Model In this section, a feedback control law is proposed for

We include the Dirichlet boundary control into the equat® optimal tracking problem around a predefined open-
tion (10) without applying “integration-by-parts”. Using), loop control trajectory. The optimal controller mainly fees

I1l. TRACKING CONTROL DESIGN

we rewrite the boundary condition as on improving the system response when the whole control
process is perturbed.
Olyg = Za. = kaus(t). (11) We let\vo(t) = [V V3 VT be a set of open-loop control

B trajectories, which are computed off-line, and(t) be the
From 1(11) we Ca{] Wgte ak(g(?ft(lt). - K?‘lff(t)l_ open-loop state trajectory associated with the open-loop
Yia(l = 8, k)al( )@ ( )- y ~ substiuling k() @(1) control\°(t), with a nominal initial statery. The open-loop
into uy (t)ho(1) 7 10’1 (De"(2) in (10), we obtain state trajectory satisfies

1)20“ Oa)g' (1) dd_“to — Fa%(t) + DVB(E) + ML), (14)
=t (t)ho(1 | (De (1) with initial condition a®(tg) = ag.
+u1(t)h0(1)2(1 &0 aa’ (1) Let us define
—u(h l'@jg Hal() et) =a(t) ~a°t),  V(H)=vt) V().  (15)
, , wherev(t) = [vi V> v3]" is the overall control input and
+U1(t)h0(1)z ai(®)[@a(Dg’ (1) - a(He (D). V() = [V vgl]T s the to-be-designed closed-loop control,
We ollow 7S|m|lar orocedure or the which i_s appended to the open-loop conw®(t). Then, we
ems  wh() Y, @ O@(De D) and
Uy (ha(1) Ty & (H@&(D@(1) in (10) to write ddit+3_f F(@® +€) (V3 4+ &)+ D8+ V8)+M(V+15). (16)
t) {Zai < hod' @& >N —ho(L)@(1)¢ (1) By substituting (14) into (16), we obtain
| de
Fho(L)ksUs(t) (1) +Z ai(t)[< he, of, g >N pri At)e+B(e)u= f(eu), 17)

—hﬂl)ca(l)cu&(l)]+h1'<1>Keu3<t><¢<1>+hz(lmus(tm(l) where, A(t) = ['vi(t) € R, B(e) = [[(e+a°) @ T]e
RS, u(t) = vo(t) = VS 5 vg] € R¥>1 subject to input

+) ai (t)<<hz,m,qq<>>N1}+U2(t)<<h3,(n<>>'\' . constraints of the for rg t) €U, vt >0 whereU := {ue

(
R3| |u| <u™, i=1,23.



IV. NONLINEAR MODEL PREDICTIVE CONTROL We assume that the linear system (21) is always control-

In general, the model predictive control (MPC) problem idable, i.e., the paifA(t),B¥(e(t))) is controllablevt. Then,
formulated as solving on-line at tintea finite horizon open- the optimal control at iteratiok is given by
loop optimal control problem subject to system dynamics and Uk = —R(BK(e)) TPR L, (23)
constraints involving states and controls. In order to ipoe
rate some feedback mechanism, the open-loop input functidfe matrix P € R'*! is governed by the Riccati matrix
obtained from the optimization process is implemented onl§ifferential equation
unt_il thg next measurement becor_ne_s ayailable at timé, P— _ATPF_pkia_Qy Pk+lBkR71(Bk)T Pl (24)
which is used to update the optimization process. One of _
the key questions in nonlinear MPC is certainly whether with P(t;) = P, which is derived from a (20)-like
finite horizon nonlinear MPC strategy does lead to stabiifty TPBV problem for <"1 and A1, assumingAk1(1) =
the closed-loop, which is an asymptotical property [20]. Wd?k”(rT )ét1(1), and taking into account tha&k = BX(t) and
propose in this work a MPC scheme with infinite predmtmn‘ﬁﬂi =0.
horizon tp. The feasibility of implementing an infinite- Due to the stability issues discussed above, we extend
horizon scheme is indeed a consequence of employingti#e prediction horizon to infinite, i.et, — . Assuming
quasi-linear approximation approach to the bilinear optim convergence, the Riccati differential equation (24) reduc
control problem defined in each step of the MPC scheme.to the Riccati algebraic equation

The open-loop optimal control problem at tintewith B
measured initial state(t) is formulated as 0=—ATP—PHIA—Q+ PHBR(BN TP (25)

1 The iterative procedure is stopped when convergence (as

minJ = Qe (tr)Pe(ti 1 / T)Qe(THu' (T)RUT)dT, (18)  shown in [19]) is achieved under given error tolerance. The
ue) solution of the open-loop optimal control problem (18) with

subject to the system dynamics (17), and where t +t,.  t; — oo, and subject to the bilinear system dynamics (17), is
By introducing the lagrange muiltipliek (t) € R'*1, we given by

can define the Hamiltonian u'(1) = —R BT (") P¢", (26)
H(eu,A) :%eT t)Q(t)et) + %UT (HR®)u(t) (19) Wh_ere* de_notes tl;le coqverged Zalugs of the iteration. The
L ATOADE() + Bleu()]. optimal trajectorye*(t) driven byu*(t) is
And by invoking the principle of optimality, the open-loop ?ﬁ (A—B'R }(B")TP")e". (27)

optimal problem reduces to solving a nonlinear two-point-

boundary-value (TPBV) problem, V. ASYMPTOTIC STABILITY PROPERTY

According to MPC fundamentals, the open-loop optimal

de _ oH =A(1)e+B(e)u control problem given by equations (17) and (18) will be
dr oA - (20) solved repeatedly, updated with new measuremehfsThe
dA - _gH =—Qe—A(T)"A-u" B (e)/\’ closed-loop control(-) is defined by

dr de de Q1) = (GE LY =),  Teltt+d].  (28)

with boundary conditiong(t) = &(t), A (t;) = Pe(t;). . . . .
. . : ; whereu*(+) in (26) is the solution of the open-loop optimal
The solution of this nonlinear TPBV problem is usually oblem (18) whert; — . In this section, we study the

computationally demanding. To quickly compute the solutio pro
of the optimal problem (18), we follow a successive approac %tablhty properties of the closed-loop system

based on a quasi-linear approximation algorithm [18], [19] e(t) = f(e(t),u(t)). (29)
We replace the bilinear system (17) with a sequence of linear _Lemma 1:For the nominal system (17) with no distur-
systems. By expanding our problem (17) up to first-ordesance, the feasibility of the open-loop control problem)(18
around the previous iteration trajectone‘fs(r and uk( T), subject to equations (17) at time=ty (to > 0) implies

the system takes the form its feasibility for allt > tg. Here, feasibility of the optimal
gher1 :A(T)ekHJr Bk(r)uk”, 1) pro_blem means Fhat therg exists at least one (not necgssaril
optimal) control input trajectory(-) : [t,t; = o] — U, such
wherek is the iteration number ang(1) = B(€)|e(r), With  that the value of the cost functional (18) is bounded.
initial condition €*1(t) = &(t). The cost function is Proof: It is assumed that at time= tp, with measured
1 initial condition e(tp), an optimal solutionu*(-) : [to,tf =
JHL = Z (T (1) Pet(ty) »] — U to the optimal control problem given by equations
1 t+2p (22) (17) and (18) exists and is found. Since by assumption
+ 5/ (DT (DQEH (1)U T (T)RUT (1) dT. there are no disturbances and we only consider the nominal
t

system driven by the optimal control input‘(7;e(tp)),
For each iteratiork, we have a standard linear quadratict € [to,to + ], the state measurement at tinig+ J is
optimal control defined by (21)-(22). e(to+0) =€e*(to+ 9;€(to)). Therefore, to solve the open-loop



optimal control problem aty 4+ & with the initial condition a tokamak to define nested toroidal surfaces corresponding
e(to+ d) = e(to+ 9), a feasible candidate control input:) to constant values of the poloidal magnetic flux. The poloida
on [to+ d,t; = o] may be chosen as flux ¢ at a pointP is the total flux through the surfacg

u(T) = U*(T; &lto), to, tr = ] for T € [to+ 8,t; = ], (30) bounded by the torc_>ida| ring pasging thro_ulahi.e., 1} =
o ) i _ J BpoidS The dynamics of the poloidal flug is governed in
whereu _(') is the optimal control !nput at_ t|ma3.*Thgs, normalized cylindrical coordinates by a nonlinear parabol
the nominal state(t) follows the optimal trajectorg”(t) in o ria) gifferential equation (PDE) usually referred totas

(27). Then, the argument can be repeated as. u magnetic diffusion equation, where the spatial coordinate
Theorem 2:Suppose that the open-loop control promen}:orresponds to the minor radius of the torus [3],
(18) subject to (17) is feasible at= 0. Then in the absence
oy

of disturbances, the closed-loop system with the model gy . 10 (.. . .

predictive control (26) is nominally asymptotically stabl 3¢ — fl(p)ul(t)g% pfa(p) ap + f2(0)uz(t), (31)
Let X C R' denote the set of all the initial states satisfying _ -

the assumption, theX is the attraction region of the closed- With boundary conditions

loop systgm. . . o o
Proof: According to Lemma 1, feasibility of the open- - =0, L = kaus(t). (32)

loop control problem at each time> 0 is guaranteed by op p=0 op p=1
the assumption in the theorem. Feft) = 0, the optimal and where
solution to the optimization problem (18) is(-;e(t),t,ts =
®) : [t,tf = 0] — 0, i.e., (1) =0, V T € [t,t + 5]. Due to W) — KettZeft 1 (33)
f(0,0) =0 in (17), thene(t) = 0 is an equilibrium of the k?{fuopg F2(p (Teproflle(f)))s/z
closed-loop system (29_). _ _ t(0) = —RofLoplF2(p)k _pmf”e(A)f (5)(39)

The key point of this proof is that in the absence of '2\P) = HoPu= (P )KNtparInipar (P)T1(P
disturpance, driven by contral(t), the .closed-lloop states _ kettZettRoknipar ﬁ(ﬁ)iﬁﬁ‘},g're(f))
e(t) will always follow an open-loop optimal trajectosy (t) = e (TN ) 372 (35)
in (27) controlled by the corresponding(t) in (26). Te € p

We define a functioV (e(t)) = €T (t)P*(t)e(t), where for ks = Ho ROA (36)
any givene(0) € X, P*(t) is the solution of the algebraic 2m G\f,:l H‘f):l
Ricpati equation (25) after the quasi-linear a}pproximgb f4(p) = FGH, 37)
gorithm converges. TheW,(e) has the following properties:

(1) V(0) =0 andV(e) > 0 for e#0, and

(2) along the trajectory of the closed-loop system starting 3

— /2
from &0) € X, w0 = (L) ) = Y <1,
I(t)v/Rot I(t)

V(e) =€"P*e+e'Pre
—e'[A-BR B"P*|"P*e+ e P [A-BR B"P*]e The non(;il?jduct_iveﬂcurregt r(]jrive plovvlﬂot(t), the .:,Et?tially
T roo-loT o averaged densitn(t), and the total plasma curreht) are
= - (Q+PBRB Pe considered as the physical actuators of the system. The
SinceQ andR are positive definite (€) is negative definite. spatial functiongf°""® and T denote the non-inductive
Therefore, the closed-loop system (29) is asymptoticallgurrent drive and electron temperature reference profiles.
stable. Note that stability does not depend on the optignalif,G,H are geometric factorg) = p/pv is the normalized
of the solution but on the convergence of the quasi-lineaadius, p, is the radius of last closed flux surfacg, is
approximation scheme. m the plasma geometric centqy, is t/he vacuum permeabil-
ity, keff = 4.2702-10°8 (Qm(keV®?), Zess = 1.5, kye =
VI. SIMULATION STUDY 1.7295. 101 (m-3A-W~Y/2), and kyipar = 1.2139- 108
In this section, the proposed approach is applied to tr@nf9/2Afl/2Wf5/4),

current profile control problem in tokamak plasmas and its gjyce the current density in tokamak is proportional to the

effectiveness is demonstrated in simulations. spatial derivative of the magnetic fluy, we define the to-
: . ; p 9 i
A. Current Profile Evolution Model be-controlled variable a8(p,t) = 7%. The control objective

A key goal in the control of a magnetic fusion reactorjS to drive 6(p,t) from any arbitrary initial profile to a

is to maintain current profiles that are compatible with rescnb_ed target or_deswab!e profﬂées(p_) at some “’T‘eT
high fraction of the self-generated non-inductive curren ytrackAmg_a predefined trajectory._To simplify notatiore w
as well as with magnetohydrodynamic (MHD) stability atreplacep with x hereafter. We rewrite (31) as

high plasma pressure. This enables high fusion gain and j .

noninductive sustainment of the plasma current for steady- 5 = 91(X)us(t) (G200 8(x, 1)) + gs(x)ua(t) (38)
state operation. It is possible to use the poloidal compbnen

Bpol Of the helicoidal magnetic lines confining the plasma iwith gy (X) = f1(x)1, ga(x) = xfa(x), ga(x) = f2(X).
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for the cost functional (18), whemmax’') stands for the
maximum value of the open-loop controf'(t). We use

the proposed quasi-linear approximation scheme to compute
the optimal control. After several iterations, the solatiof

the Riccati matrix equation converges, and the controller
is implemented according to (26). In order to test the
infinite-horizon nonlinear MPC scheme, we use- 0.1s as

the measurement sampling time. Each of these intervals is
discretized in steps of.01s to solve the algebraic Riccati

K - = . disturbed em
o equation (25).
% 02 02 o5 03 1 We consider now a disturbed initial profiéi,;;, as shown
X in Fig. 1 (dashed green line), and compare the performances

of both open-loop and closed-loop controllers in the presen
of this disturbance. In addition, a process disturbahoet)

By differentiating both sides of equation (38) wx,twe is added to test the performance of the nonlinear MPC
scheme. The disturbed PDE model is given as,

Fig. 1. Comparison of initiaB profiles.

obtain
P00 g1 0032 0 ()8 (1) + (6h (X020 90D —ho(x)8" (6 )un(t) + (8’ (x s 1)
+201 ()G (X)) ur (1) 8 (x,1) + (g () gp(x) B9 +ha(X)8(x,t)us (t) + ha()ua(t) + d(x,t)
+01(X)g2 (X)) u (1) B (x,t) + gg(x)uz(t), whered(x,t) = 0.1 sin(7x) cost).

with boundary conditions (32) rewritten a#(0,t) = For our particular problem, the convergence rate of the
0, 6(1,t) = kaus(t). By defining ho(x) = g1(X)g2(x), quasi-linear approximation scheme is quite fast. Simorfesti
hi(x) = g1(¥)82(X) + 291(X)05(X), ha(X) = gL (X)g5(X) + indicate that given an initial erra(0) € X, the scheme will
91(X)g5(x), ha(X) = ds(x), we recover (1)-(2). converge after 2-3 iterations. Fig. 3-(c) shows the diffiess
) i between the final-time profile&(x, T), for T = 1.2s, obtained
B. Simulations with both the open-loop and the closed-loop controllers and
In this section, we present simulation results showing thine desired target profil89(x). Both final-time profiles are
effectiveness of the proposed optimal control algorithm imbtained considering disturbances in both the initial peofi
a disturbance rejection problem. The nominal initial peofil and the state. In the case of the open-loop controller, the
Bnit shown in Fig. 1 (solid blue line) has been considered fotontrol input trajectories shown in Fig. 2, and computed for
the synthesis of an off-line optimal controller via Extremu the nominal initial profile, are used. In the case of the dese
Seeking [21]. The time evolution of the control inpwi§t) loop controller, the control input trajectories are shown i
obtained from the off-line optimization procedure are showFig. 2. It is possible to note from Fig. 3-(c) that the closed-
in Fig. 2 (blue dashed lines). Fig. 3-(a) illustrates the m@h loop controller can reduce the matching error caused by the
space-time profile 08(t, p), which is driven by the control disturbances. It is also possible to note that the matchyng b
inputsv°(t) without any disturbance. the closed-loop controller is not perfect. However, thigslo
We first simulate the original PDE system (1) by usinghot imply a limitation of the closed-loop controller but a
a finite difference scheme on the grighj = (x;,t;), where consequence of the imposed constraints for the actuatas (t
i,j are integers with Ki<m1<j<n(m=101,n= matrix Ris selected to keep the actuator trajectories within
121), and then a data ensemble is created with snapshotspbisical ranges) and the final tinte If the constraints of
6(t,p). We next extract POD modes from the created datactuators can be reduced or the actuators are allowed to act
ensemble. With the eight most dominant POD modes, wenger, (e.gT > 1.2s), the control effect is more observable.
construct a low dimensional dynamical system governed [§ig 3-(c) shows that better performance could be achieved
the ordinary differential equation (ODE) system (13). Befo by settingT equal to 48s (longer plasma discharge).
computing the nonlinear MPC scheme based on the reduced-
order model, we assess the effectiveness of the reduced-ord  V!- CONCLUSIONS AND FUTURE WORKS
model in approximating the original PDE system. Fig. 3-(b) In this paper, we consider a nonlinear parabolic PDE
shows the approximation error as function of time and spacsystem with nonhomogeneous Dirichlet boundary conditions
The order of the error demonstrates that the reduced-orddsing this PDE model, and the POD/Garlekin technique
model based on only eight POD modes can successfullpmbined with the end-point-separation approach, we deriv
approximate the PDE system. a low dimensional dynamical system which integrates the
In each open-loop optimal control problem of the nonlinDirichlet boundary control. To overcome the disturbances i
ear MPC scheme, we choo¥t) = Q =100 (I is an the system, we propose a nonlinear MPC scheme using the
identity matrix,| = 8), and convergent successive approach to solve on-line an opn-lo
R(D) = R— di { 200 2 200 } infinite-horizon optimal tracking control problem based on
(t) = R=diag , , , x . ) .
ma>(vg') ma>(v‘2") ma>(vg') the reduced order system. A simulation study is carried out
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