
 
 

  

Abstract-- Control of plasma density and temperature 
magnitudes, as well as their profiles, are among the most 
fundamental problems in fusion reactors. Unfortunately, the 
economy of fusion reactors often requires the reactor to operate 
under conditions in which the rate of thermonuclear reaction 
increases as the plasma temperature rises. In this thermally 
unstable zone, an active control system is necessary to stabilize 
the thermonuclear reaction. Existing efforts use control 
techniques for linear models. In this work, a zero-dimensional 
nonlinear model involving approximate conservation equations 
for the energy and the densities of the species was used to 
synthesize a nonlinear feedback controller for stabilizing the 
burn condition of a fusion reactor. The controller makes use 
simultaneously of the modulation of auxiliary power, the 
modulation of fueling rate and the controlled injection of 
impurities as actuators. A computer simulation study was 
performed to show the capability of the controller and compare 
it with previous linear controllers. 

   

I. INTRODUCTION 

N order to be commercially competitive, a fusion reactor 
needs to run long periods of time in a stable burning plasma 

mode at working points which are characterized by a high Q, 
where Q is the ratio of fusion power to auxiliary power. 
Active burn control is often required to maintain these near-
ignited or ignited conditions. Although operating points with 
these characteristics that are inherently stable exist for most 
confinement scalings, they are found in a region of high 
temperature and low density. Unfortunately, economical and 
technological constraints make these operating points 
unattractive and require the fusion reactor to operate in a zone 
of low temperature and high density where the thermonuclear 
reaction is inherently thermally unstable. In this thermally 
unstable zone, a small increase of temperature leads to an 
increase of power that results in thermal excursion. Although 
the excursion reaches a stable uneconomical working point at 
a higher temperature, the plasma can be led to beta or density 
limit disruptions before reaching this point. On the other hand, 
a small decrease of temperature leads to a decrease of power 
and quenching. Even during a quenching, a disruptive 
instability can be reached, causing wall damage. 

The prior efforts on active burn control have led to a 
consensus in the community that the control system should 
take into account the nonlinear nature of the dynamic model, 
be robust against uncertainties of some parameters of the 
dynamic model and operate under different operating 
conditions allowing change in fusion power. 

Over the years, the physical and technological feasibility of 
 
 

different methods for controlling the burn condition have been 
studied [1], [2], [3]. In these studies, mainly three different 
types of actuation have been considered: modulation of 
auxiliary power, modulation of fueling rate and controlled 
injection of impurities. 

The common denominator of existing works is the 
approximation of the nonlinear model of the fusion reactor by 
a linearized one and in most of the cases the utilization of only 
one among the actuation concepts (single-input control). To 
expand operability, we are seeking a systematic procedure for 
synthesis of burn controllers that are able to stabilize the 
system against large initial conditions, can work as well for 
suppressing thermal excursions as for preventing quenches, 
can operate at subignition or ignition points indistinctly, show 
robustness against uncertainties in parameters of the model 
such as the confinement times of the species, can drive the 
system from an operating point to another and can change the 
fusion power during the reactor operation. Such controllers 
should be based on a full nonlinear model and should make 
use simultaneously of all the potential actuators: auxiliary 
power, refueling rate and impurities injection.  

The paper is organized as follows. In Section 2 a zero-
dimensional model for the fusion reactor is described. The 
control objectives are stated in Section 3. A nonlinear 
feedback control law that achieves stabilization of the 
deviation state variables is presented in Section 4.  In   Section 
5, a detailed simulation study is provided. Finally, the 
conclusions and some suggestions about future work are 
presented in Section 6. 

 

II. MODEL 
In this work we use a zero-dimensional model for a fusion 

reactor that employs approximate particle and energy balance 
equations. This is fundamentally the same model used by 
Bamieh, Hui and Miley and [5] but we introduce a new 
equation which allows the presence of impurities in the 
reactor. The alpha-particle balance is given by 
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where αn  and DTn  are the alpha and deuterium-tritium 
(DT) densities respectively, and ατ  is the confinement time 
for the alpha particles. The deuterium-tritium (DT) fuel 
particle balance is given by 
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where S  is the refueling rate (input) and DTτ  is the 
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confinement time for the fuel particles. The impurity presence 
is determined by the balance equation 
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where In  is the impurity density, Iτ  is the confinement 
time for the impurity particles and IS  is the impurity injection 
rate (input). The energy balance is given by 
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where E is the plasma energy, auxP  is the auxiliary power 
(input), αQ =3.52 MeV is the energy of the alpha particles and 
the radiation loss Prad  is given by TnZAP eeffbrad

2=  where 
 KeV/Wm .A -

b
3371055=  is the Bremsstrahlung radiation 

coefficient. The DT reactivity vσ  is a highly nonlinear, 
positive and bounded function of the plasma temperature T 
given by 
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and its constant parameters ai and r are taken from [6]. No 
explicit evolution equation is provided for the electron density 
ne since we can obtain it from the neutrality condition 

IIDTe nZnnn ++= α2 , whereas the effective atomic 
number effZ , the total density and the energy are written as 
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The energy confinement scaling used in this work is 
ITER90H-P [7] because it allows the comparison with 
previous linear controllers based on this scaling. However, it 
will be clear from the synthesis procedure that the results can 
be extended to newer scalings.  

47.047.019.05.015.06.102.1082.0 −−− == kPPABRIf iE χκτ  (10) 

where the isotopic number Ai is 2.5 for the 50:50 DT 
mixture, k is a constant that depends on the ITER machine 
parameters which are defined in table I and the factor scale f 
which in turn depends on the confinement mode. The net 
plasma heating power P is defined as 
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The confinement times for the different species are scaled 
with the energy confinement time Eτ  as 

.,, EIIEE kkk ττττττ αααα ===            (12) 
 

III. CONTROL OBJECTIVE 
The possible operating points of the reactor are given by the 

equilibria of the dynamic equations. The density state 
variables αn , DTn , 0=In , energy state variable E  and 

inputs auxP , S , 0=IS  at the equilibrium, are calculated as 
solutions of the nonlinear algebraic equations obtained by 
setting the left hand sides in (1)-(4) to zero when two of the 
plasma parameters such as T and β, for example, are chosen 
arbitrarily. 

Defining the deviations from the desired equilibrium values 
as ααα nnn −=~ , DTDTDT nnn −=~ , IIII nnnn =−=~ , 

EEE −=
~ , auxauxaux PPP −=

~ , SSS −=
~ , IIII SSSS =−=

~ , 
we write the dynamic equations for the deviations as 
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The control objective is to drive the initial perturbations in 

αn~ , DTn~ , In~ , E~  to zero using actuation through auxP~ , S~ and 
IS~ . All the states are assumed to be available for feedback 

from measurement or estimation. 
 
 

TABLE I: ITER MACHINE PARAMETERS  [8] 

Symbol Quantity Value 
I Plasma Current 22.0 MA 
R Major Radius 6.0 m 
A  Minor Radius 2.15 m 
B Magnetic Field 4.85 T 
κχ Elongation at χ 2.2 
Kα Alpha particle confinement cte. 7 
kDT DT particle confinement cte. 3 
kI Impurity particle confinement cte. 10 
βmax Beta limit 2.5I/aB=5.3% 
V Plasma Volume 1100 m3  

 

IV. CONTROLLER DESIGN 
We start by looking for a control that stabilizes E~ . We 

choose u such that 
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This means that we choose auxP  and In  such that 
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From the equilibrium equation for the energy E, 
PE E +−= τ0 , and the expression (10) for the energy 

confinement time, we note that the solution for (18) is PP = . 
Therefore, the control strategy will be to adjust auxP and In , if 
necessary, to make P constant and equal to P  satisfying  (18) 
and reducing (16) to 

E

E
dt
Ed

τ

~~
−=   

The subsystem E~  is exponential stable since 0>Eτ . The 
controller that implements (18) is synthesized in two steps: 

 
First Step: We compute 
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If 0≥auxP  then we keep this value for auxP  and let 0=IS . 
If 0<auxP  then we take 0=auxP  and go to the Second 

Step, 
 

Second Step: Noting that en , effZ  and T are functions of 
In , we follow a singular perturbation approach and we look 

for the least 0* >= II nn  such that  
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In  as the reference to follow for the 

positive valued proportional controller: 
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We note from (15) that In~  is input-state stable (ISS) ([10], 
section 5.3) with respect to IS . This ensures that In~  will be 
bounded as long as IS  is bounded, and it will be 
exponentially stable once IS  becomes zero. After stabilizing 
E~  and In~  using auxP  and IS  as controllers, we must focus on 
(13) and (14) to achieve stability for DTn~  and αn~ . Choosing 
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we can reduce (14) to 
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Since σvnτ DTDT +1 is positive, the subsystem DTn~  is 
exponential stable. 

In order to finish our stability analysis we examine the 
expression (13) for αn~ . We note that αn~  is ISS with respect to 

DTn~  and αu . Therefore, since DTn~  is bounded (because it is 
exponentially stable), and αu  is bounded (because E~  is 
exponentially stable and vσ  is a bounded function), αn~  will 
be bounded for all time. In addition, once E converges to E  
( 0~

→E ) and DTn  converges to DTn  ( 0~ →DTn ) this equation 

reduces to 

v
nn

uu
n

dt
nd DT σ

ττ α

α
αα

α

αα
2

**

2
          ,

~~








+=+−=  (22) 

The function vσ  is a function of 
( )αnnET DT 3232 += , once II nn ~=  converges to zero, 

and has a positive derivative in the region of interest. 
Consequently *

αu  has the same sign as αα τn~−  and vanishes 
when αn~  vanishes ( vv σσ = ). This allows us to conclude 
exponential stability for αn~ . 

 

V. SIMULATION RESULTS 
The objective of the controller is to keep the plasma at a 

desired equilibrium or operating point. The controller must be 
able to reject perturbations in initial conditions, forcing the 
plasma back to the equilibrium.  For all the simulations 
presented here we have used impurities with 8=IZ . This 
relatively low Z and the fusion reactor temperature justify the 
absence of the term corresponding to the line radiation due to 
impurities in the energy balance equation of our model [9]. In 
addition, a controller gain 05.0=IK  and a scale factor f=0.85 
for the energy confinement time (10) have been used. It 
should be noted that our controller does not depend on Ik  and 
consequently it tolerates any size of uncertainty in this 
parameter. Therefore the choice of 10=Ik  can be considered 
completely arbitrary and with the only purpose of the 
simulation. 

The controller designed shows capability of rejecting 
different types of large perturbations in initial conditions. 
Figure 1 compares its performance with other two controllers 
synthesized by linear pole placement [4] and linear robust [5] 
techniques which use the same dynamical model presented 
here. This study is carried out generating initial perturbations 
around the equilibrium (T =8.28 KeV, en =9.80 1019 m-3, 

αf =6.41%, β =2.65%, αn =6.28 1018 m-3, DTn =8.55 1019 m-

3, E =3.78 105 Jm-3, auxP =0 Wm-3, S =4.04 1018 m-3 sec-1.) 
for T and en , keeping the alpha-particle fraction ennf αα =  
equal to that of the equilibrium. While the boundaries shown 
for the linear controllers are absolute, for the nonlinear 
controller they only indicate the limits within which we 
performed our tests. 

The robustness of our controller was also studied against 
those of the linear controllers. Figure 2 shows the regions of 
stability against uncertainty in the parameter αk  whose 
nominal value is equal to 7 when the system suffers 
perturbations in the initial temperature. Again, the region 
shown for the nonlinear controller is not a limit. With the sole 
objective to show its performance we tested it against 
uncertainties up to 400 % and perturbations for initial T 
between -90 % and 100 %. 
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Fig. 1.  Stability Comparison.  
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Fig. 2.  Robustness Comparison. 
 

VI. CONCLUSIONS AND FUTURE WORK 
This new approach to the problem of burn control allows us 

to deal with perturbations in initial conditions that were 
unmanageable until now. On the other hand, the multi-input 
nature of the controller allows it to reject large perturbations 
in initial conditions leading to both thermal excursion and 
quenching. In addition, the effectiveness of the controller does 
not depend on whether the operating point is an ignition or a 
subignition point. 

Since the nonlinear controller depends parametrically on 
the equilibrium point, it can drive the system from one 
equilibrium point to another allowing in this way the change 
of power, other plasma parameters and ignition conditions. No 

scheduled controllers are necessary and the same control law 
is valid for every equilibrium point. 

Simulation results show good robustness properties against 
uncertainties in the confinement times. The control laws (19), 
(20) and (21) are only functions of DTk  and even this 
dependence in (21) can be avoided with a slight modification 
in the design that is not presented in this work. The 
boundedness of the system solutions is achieved for any kind 
and size of perturbation in initial conditions regardless of the 
size and nature of the uncertainty. The controller is always 
robust against uncertainties in Ik , is always able to drive 

EE →  regardless of the uncertainty type and, in addition, is 
able to drive DTDT nn →  when there is no uncertainty in DTk . 
In order to drive the system to the equilibrium point 
corresponding to the actual values of the confinement times, 
and to avoid spending control effort on handling the 
uncertainties in an unstructured (non-parametric) manner, a 
nonlinear adaptive control law should be synthesized. 

It must be noted that this approach can be extended to the 
use of any other energy confinement time scaling based on the 
net heating power.  

One possible extension of this work involves developing a 
more accurate model which includes radiation terms for 
higher Z impurities and other phenomena like injected fuel 
diffusion. Finally, in order to approach a more relevant 
problem in the fusion context as the control of the kinetic 
profiles, a one-dimensional dynamic model should be 
introduced and a nonlinear distributed controller should be 
synthesized. 
  

REFERENCES 
[1] J. Mandrekas and W. M. Stacey, “Evaluation of different burn control 

methods for the international thermonuclear experimental reactor”, 
Proceedings of the 13th IEEE/NPSS Symposium on Fusion Engineering, 
vol.1, pp. 404-7, 1990. 

[2] S. W. Haney, L. J. Perkins, J. Mandrekas and W. M. Stacey, Jr., “Active 
control of burn conditions for the international thermonuclear 
experimental reactor”, Fusion Technology, vol.18, (no.4), pp. 606-17, 
Dec. 1990. 

[3] D. Anderson, T. Elevant, H. Hamen, M. Lisak and H.Persson, “Studies 
of fusion burn control”, Fusion Technology, vol.23, (no.1), pp. 5-41, 
Jan. 1993. 

[4] W. Hui and  G. H. Miley, “Burn control by refueling”, Bull. Am. Phys. 
Soc., vol.37, (no.6), p. 1399, 1992. 

[5] B. A. Bamieh, W. Hui and  G. H. Miley, “Robust burn control of a 
fusion reactor by modulation of the refueling rate”, Fusion Technology, 
vol.25, (no.3), pp. 318-25, May 1994. 

[6] L. M. Hively, “Convenient Computational Forms for Maxwellian 
Reactivities”, Nuclear Fusion, vol.17, (no.4), pp. 873, 1977. 

[7] N. A. Uckan, “Confinement Capability of ITER-EDA Design”,  
Proceedings of the 15th IEEE/NPSS Symposium on Fusion Engineering, 
vol.1, pp. 183-6, 1994. 

[8] N. A. Uckan, J. Hogan, W. Houlberg, J. Galambos, L. J. Perkins, S. 
Haney D. Post and S. Kaye, “ITER design: physics basis for size, 
confinement capability power levels and burn control”, Fusion 
Technology, vol.26, (no.3, pt.2), pp. 327-30, Nov 1994. 

[9] J. Wesson, “Tokamaks”, Second Edition, Oxford Engineering Science 
Series - 48, Clarendon Press, Oxford, 1997. 

[10] H. K. Khalil, “Nonlinear Systems”, Second Edition, Prentice Hall, 1996.  


