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Abstract

We discuss the stability of the linearized Kapchinskij-
Vladimirskij (KV) equation around a matched solution,
which is a linear periodic Hamiltonian system. By using
the averaging method and asymptotic analysis, we find sta-
bility boundaries for the linearized beam envelope system
without integrating the KV equation numerically.

INTRODUCTION
The transport of a charged particle beam in an

alternating-gradient focusing magnetic field has a wide
spectrum of applications, ranging from scientific research
to industrial processes. Stability of the envelope profile of
the particle beam is an important problem in particle trans-
port (e.g., [1]). In this paper we study the linear stability of
the Kapchinskij-Vladimirskij (KV) equations [1],

a′′ + κ(s)a− 2K(a+ b)−1 − ε2xa
−3 = 0, (1)

b′′ − κ(s)b− 2K(a+ b)−1 − ε2yb
−3 = 0, (2)

where a and b represent the semi-axes of the elliptical beam
envelope in the transverse plane. The variable s represents
the axial displacement along the beam propagation direc-
tion. We assume an alternating-gradient quadrupole focus-
ing lattice through which the ion beam propagates and is
transported. The periodicity of the quadrupole focusing lat-
tice function κ(s) is S. The normalized beam emittances
are denoted as εx and εy , and the self-field perveance asK.
When a = b = r, the KV equations degenerate to the 1D
case (εx = εy = ε)

r′′ + κ(s)r −Kr−1 − ε2r−3 = 0. (3)

LINEARIZATION
We denote the periodic matched solutions byX0 and Y0,

which satisfy

X ′′
0 + κX0 − 2K(X0 + Y0)−1 − ε2xX

−3
0 = 0, (4)

Y ′′0 − κY0 − 2K(X0 + Y0)−1 − ε2yY
−3
0 = 0. (5)

We write a(s) = X0(s) + x(s) and b(s) = Y0(s) + y(s),
where x(s) and y(s) represent small deviations from the
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matched solution. By substituting a(s) and b(s) into (1)-
(2), we can obtain the linear non-autonomous system

x′′ + a1x+ a0y = 0, y′′ + a0x+ a2y = 0, (6)

where a0 = 2K(X0 + Y0)−2, a1 = κ+ 3ε2xX
−4
0 + a0 and

a2 = −κ+3ε2yY
−4
0 +a0. The linearized version of the 1D

KV equation (3) can be obtained by the same procedure.
We let ζ(s) = [x(s), y(s), x′(s), y′(s)]T , and rewrite (6)

in the following matrix form

ζ ′ =
dζ

ds
= JH(s)ζ(s), (7)

J =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 ,H =


a1 a0 0 0
a0 a2 0 0
0 0 1 0
0 0 0 1

 .

The state transition matrix Φ(s, s0) of the linear system
(7) solves Φ′(s, s0) = JH(s)Φ(s, s0), Φ(s0, s0) = I.

STABILITY BY AVERAGING
In this section, we use some stability results of Hamil-

tonian systems (e.g., [2]) to obtain stability conditions for
the linearized KV equation without computing the transi-
tion matrix. The stability conditions are expressed in terms
of the averaged system.

Definition 1 Given the non-autonomous linear system (7),
we define the associated averaged system as ζ ′ = JHavζ,
ζ(0) = ζ0, where JHav = 1

S

∫ S

0
JH(s)ds.

Definition 2 A matrix H(s), (0 ≤ s ≤ S) of degree 2n is
said to be of positive type if the following two conditions
are satisfied: a. for each s ∈ [0, S], the corresponding
Hermitian form is nonnegative, i.e., ξ∗H(s)ξ ≥ 0, ∀ξ ∈
R2n; b. the average of this form over the entire interval is
a positive form, i.e.,

∫ S

0
ξ∗H(s)ξds > 0,∀ξ 6= 0.

It is straightforward to show that the matrixH has eigen-

values at 1 (multiplicity 2) and a1+a2±
√

(a1−a2)2+4a2
0

2 , re-
spectively. There exists a positive constant κ̂, such that for
all κ ≤ κ̂, H(s) is of the positive type (i.e., a1a2 ≥ a2

0). In
the rest of this section, we first introduce Krien’s stability
result and then we use it to obtain a sufficient condition for
stability of the linearized KV equation.

Lemma 1 (Krein [2]) All the solutions of the Hamilton
system (7) of positive type are stably bounded whenever
(ω1 ≥ ω2 ≥ · · · ≥ ωn > 0)

∑m
j=1

ωj

2j−1 <
π
2 , m = n/2,

where ±iωj are the imaginary eigenvalues of the matrix
JHav.



Corollary 2 The linearized system (7) is Lyapunov stable
if ω1 + 1

3ω2 <
π
2 , where

ω1,2 =

√
2ā1 + 2ā2 ± 2

√
(ā1 − ā2)2 + 4ā2

0

2
.

Proof : Due to the fact that ā1ā2 > ā2
0, the eigenvalues λk

of JHav, k = 1, 2, 3, 4 are pure complex numbers, λ1,2 =
± i

2ω1 and λ3,4 = ± i
2ω2. Therefore, the eigenvalues of the

linearized system all reside on the pure complex axis. By
using Lemma 1, we have ω1 + 1

3ω2 <
π
2 . �

Remark 1 This result is easy to check and one does not
have to compute the transition matrix to determine system
stability, but it is only a sufficient condition for stability
and does not give precise information about the boundary
of the stability region. Additionally, in order to satisfy the
positive type assumption, κ(s) must be bounded by a value
κ̂ that may not be practical.

STABILITY BY ASYMPTOTIC ANALYSIS
In this section, we focus on the 1D KV equation. We first

give a quick review of stability results for 1D linear sys-
tems with periodic coefficients, then we apply Simakhina’s
novel method [3] to study the stability boundaries in terms
of the system parameters.

Known Results
The 1D linearized KV equation (3) can be writen as one

of the following scalar periodic systems:

I : r′′ + p(s)r = 0, (8)
II : r′′ + [δ + εp(s)]r = 0, (9)

which have been extensively studied in the literature. Some
of the available results are listed below.

Theorem 3 (Barnes [4]) The equation (8) is strongly sta-
ble, if there exists some integer n such that p(s) > n2π2

S2

and S
∫ S

0
p(s)ds < n2π2 + nπ2.

Remark 2 Theorem 3 is also a sufficient condition for the
stability of the scalar Hill equation (8). Other studies and
results are available in [5].

Theorem 4 (O.Haupt [5]) For equation (9), the whole
εδ–plane is divided into alternate zones of stability and in-
stability. Let K = 1

2 [r(S) + r′′(S)], then the points sat-
isfying |K(δ, ε)| = 1 define curves in the δε–plane which
separate the plane into regions where the solution of (9) is
either stable or unstable.

Remark 3 Theorem 4 can provide the critical stability
boundaries in the parameter space (δ, ε), but it is numeri-
cally challenging to compute enough pairs of (δ, ε) to gen-
erate these stability boundaries.

Figure 1: The Ince-Strutt diagram (parameters in the
shaded region is the stable) (top); K–ε2 diagram (bottom).

Stability Regions
In this subsection, we will apply Simakhina’s novel

method [3] based on asymptotic analysis to consider the
stability regions of the 1D linearized KV equation. We con-
sider the linearized form of the 1D KV equation (3),

r′′+ψ(s)r = 0, ψ = κ(s)+3ε2r−4
0 (s)+Kr−2

0 (s), (10)

where the focusing function κ and the matched solutions
r0 are periodic functions of period S. We first con-
sider the Fourier series expression of the periodic coeffi-
cient ψ = a0+

∑∞
n=1

(
an cos 2πn

S s+ bn sin 2πn
S s

)
,where

an(κ, ε,K) and bn(κ, ε,K) are Fourier coefficients. We
assume ψ(−s) = ψ(s), and truncate the Fourier series to
make ψ ≈ ψ1 = a0 + a1 cos 2s. Thus, the 1D linearized
KV equation becomes

r′′ + (a0 + a1 cos 2s) r = 0. (11)

By the Floquet theory (e.g., [5]), the periodic system (11)
at least has solutions of period π and 2π. The solution r(s)
can be given by Fourier series expansions if the solutions
of (10) are all bounded. Let r = r1 + r2, where r1(s) =
c0 +

∑∞
n=1 cn cos 2ns and r2(s) =

∑∞
n=1 dn sin 2ns. We

substitute r and r′′ into (11) and we can obtain the follow-
ing linear equations by considering the linear independency
of the different harmonics

a0c0 +
a1

2
c1 = 0

a1c0 + (a0 − 4)c1 +
a1

2
c2 = 0

a1

2
cn−1 + (a0 − 4n2)cn +

a1

2
cn+1 = 0, n ≥ 2

(12)

 (a0 − 4)d1 +
a1

2
d2 = 0

a1

2
dn−1 + (a0 − 4n2)dn +

a1

2
dn+1 = 0, n ≥ 2.

(13)
For the pure 2π-periodic solution (without π-periodic
component), we have r =

∑∞
n=1 cn cos(2n − 1)s +∑∞

n=1 dn sin(2n − 1)s. Substituting r and r′′ in (11), we
obtain (a0 − 1 +

a1

2
)c1 +

a1

2
c2 = 0

a1

2
cn−1 + (a0 − (2n− 1)2)cn +

a1

2
cn+1 = 0, n ≥ 2

(14)



No. K ε2 a0 a1 Sim Ince Ave
1 .18 .75 15.77 17.72 S S F
2 .20 .66 13.99 15.78 S U F
3 .30 .09 2.64 3.42 S S F
4 .40 .01 1.25 1.82 U U F
5 .50 .10 3.32 3.94 S S F
6 .91 .00 2.26 2.37 S S S
7 1.00 .20 6.54 6.89 S S F

Figure 2: Study cases (Sim: simulation; Ince: Ince-Strutt
diagram (asymptotic analysis) (Figure 1); Ave: averaging).
U denotes “unstable”, S denotes “stable”, and F denotes
“fail to check.” (a0 − 1− a1

2
)d1 +

a1

2
d2 = 0

a1

2
dn−1 + (a0 − (2n− 1)2)dn +

a1

2
dn+1 = 0, n ≥ 2.

(15)
We rewrite the linear equations (12)–(15) into matrix

forms: M1c1 = 0, M2c2 = 0, N1d1 = 0, N2d2 =
0, where M1, M2 are the coefficient matrices in (12)
and (14), and N1, N2 are the coefficient matrices in (13)
and (15). The unknown vectors are defined as c1 =
(c0, · · · , cn, · · · )T , c2 = (c1, · · · , cn, · · · )T , correspond-
ing to (12) and (14), and d1 = d2 = (d1, · · · , dn, · · · )T ,
corresponding to (13) and (15). We can note that the linear
equations in (12)–(15) are infinite dimensional. We trun-
cate the linear systems by a finite integer number (N ≥ 3
in this case) to be able to implement a practical computa-
tion of the solution.

In order to ensure the existence of periodic solutions, we
obtain the stability boundary equations for (a0, a1) by mak-
ing detM1,2 = detN1,2 = 0. The stability boundary
diagram is shown at the top of Figure 1, which is called
the Ince-Strutt diagram in the literature. Systems with pa-
rameters (a0, a1) in the shaded regions of the Ince-Strutt
diagram (Figure 1-top) have bounded periodic solutions.
Additionally, the stability boundaries in the Ince-Strutt di-
agram show very little change for more precise truncations
(N ≥ 4) of the linear systems.

RESULTS

As an example, we let κ = 1
10 + cos 2s and r0 =

1
3
2+ 1

2 cos 2s
. We then compute the Fourier coefficients, a0 =

2601
128 ε

2 + 1
10 + 19

8 K, a1 = 3
2K + 1 + 351

16 ε
2 (or ε2 =

608
5535a1− 2848

27675 −
128
1845a0 and K = 208

205a0 + 2578
3075 −

578
615a1).

We note that there exists a linear transformation between
(a0, a1)T and (K, ε2)T . By using this linear transforma-
tion, we can obtain the stability regions in terms of the
system parameters (K, ε2) (Figure 1-bottom) based on the
Ince-Strutt diagram (Figure 1-top). Several cases were con-
sidered to compare the different stability criteria: averag-
ing method, asymptotic analysis, and numerical simulation.
These cases are summarized in Figure 2, and also marked
in Figure 1. The beam envelope deviation profiles for Case
1 (K = .18, ε2 = .75) and Case 4 (K = .40, ε2 = .01) are
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Figure 3: Case 1 (K = .18, ε2 = .75).
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Figure 4: Case 4 (K = .40, ε2 = .01).

shown in Figure 3 and Figure 4 respectively.

CONCLUSIONS
By using Fourier analysis and asymptotic analysis, we

can determine the stability of the 1D linearized KV equa-
tion. Unfortunately, truncating the Fourier series of the pe-
riodic coefficient of the linear KV equation influences the
stability conclusion around the boundary of stability (e.g.,
case 2 in the table above and also in Figure 1). To study
stability of the 1D KV equation without truncation of the
periodic coefficient, we will consider in the future the inte-
gral operator method introduced in [3].
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