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Abstract 

The DIII-D tokamak has elucidated crucial physics and developed projectable solutions for ITER and fusion power 

plants in the key areas of core performance, boundary heat and particle transport, and integrated scenario operation. New 

experimental validation of high-fidelity, multi-channel, non-linear gyrokinetic turbulent transport models for the ITER baseline 

scenario (IBS) provides strong confidence in predicted ITER Q10 operation. Experiments in hydrogen identify options for 

easing H-mode access and give new insight into the isotopic dependence of transport. Analysis of 2,1 islands in unoptimized 

low-torque IBS demonstration discharges suggests their onset occurs randomly in the constant  phase, often by non-linear 3-

wave coupling, thus identifying an NTM seeding mechanism to avoid. At the boundary, measured neutral density and 

ionization source fluxes are strongly poloidally asymmetric, implying a 2D treatment is needed to model detachment and 

pedestal fuelling. Deep detachment experiments in ballooning-limited pedestals largely validate predicted trends of pedestal 

pressure, width and divertor detachment versus pedestal density, using new self-consistent “pedestal-to-divertor” modelling. 

Measurements of Tungsten (W) sourcing and leakage from a slot divertor with and without ELM control shows ELMs 

dominate W sourcing and high performance can be maintained without ELMs. Advances have been made in type-1 ELM-free 

operation in integrated scenarios for ITER and power plants, including negative triangularity. Wide pedestal QH-modes are 

produced with more ITER-relevant safety factor and shape, and novel feedback-adaptive RMP ELM suppression improves 

confinement. IBS with W-equivalent radiators can exhibit predator-prey oscillations in Te and radiation which need control. 

High-P scenarios with qmin>2, N>4, and H98y2>1.5 are sustained with high density (𝑛̅=7E19m-3, fG~1) for 6 E, improving 

confidence in steady-state tokamak reactors. 

1. INTRODUCTION 

The DIII-D tokamak research program utilizes a favourable combination of fusion-relevant size, flexible and 

varied actuators, and outstanding diagnostics to provide scientific solutions for ITER and fusion pilot plants 

(FPPs). Program achievements in the last two years discussed in the paper range from focused and detailed physics 

model validation studies to broad scope integrated operational scenario development, and address processes from 

the core plasma to divertor surfaces and the main chamber walls. Results fall into three general categories that are 

the organizational basis for the paper: (1) investigations of requirements for high core plasma performance, 

including transport, confinement, and stability; (2) boundary heat and particle transport studies, including 

understanding and optimizing the pedestal, fuelling, divertors, and impurity influx; and (3) integrated operational 

scenarios for ITER and FPPs, including ELM control solutions, burn control, high-performance steady states, and 

negative triangularity. 

2. REQUIREMENTS FOR HIGH CORE PERFORMANCE 

Accurate prediction of ITER’s potential fusion performance is needed, and recent DIII-D experiments shed light 

on transport and stability important for ITER and fusion energy. Extensive high-resolution measurements of 

kinetic profiles (ne, Te, Ti), turbulence fluctuations (low-wavenumber (low-k) ne and Te), and impurity transport 

(Li, C, and Ca) were collected in ITER-similar shaped plasmas designed to examine multi-channel transport in 

relevant conditions (q95=3.45, low rotation, and ELM-suppressed H-mode). These data showed excellent 

agreement with machine-learning-assisted nonlinear gyrokinetic CGRYO [1] predictive simulations. [2]. Figure 

1 shows the Ti, Te, ne, and nC (carbon) profiles were all reproduced within the scatter of the experimental 

measurements by the ion-scale nonlinear gyrokinetic simulation that matches experimental heat and particle 

fluxes, and there is good agreement between predicted and measured low-k density fluctuations. This validation 

motivated the use of these new techniques to project and optimize performance in ITER conditions. The same 

modeling framework predicts ITER should achieve the primary goal of Q~10 with ~500 MW of fusion power and 

suggests paths for further enhancement. Additional simulations predict ITER should still be able to achieve 

burning plasma conditions with RMP ELM suppression and degraded pedestal conditions. 
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Before ITER can achieve Q~10 it must progress through 

non-nuclear commissioning phases, so DIII-D has 

developed better solutions for H-mode access in 

hydrogen and deepened understanding of energy 

confinement isotope scaling. Experiments in ITER-

similar shaped hydrogen plasmas with edge 

collisionality less than one have demonstrated that the 

L-H power threshold PLH can be reduced via applied n=3 

non-resonant magnetic perturbations (NRMP using the 

external C-coil [3]. NRMF produces counter-current 

torque in the plasma edge via Neoclassical Toroidal 

Viscosity (NTV), driving edge toroidal rotation that 

increases the local ExB shear inside the separatrix, 

reducing PLH by 25-30%. This reduction is observed for 

plasmas with balanced neutral beam injection 

(simulating ITER) as well as for finite NBI torque. 

MARS-F plasma response calculations for low density 

ITER hydrogen plasmas predict that significant counter-

Ip torque can be generated with optimum phasing of the 

ITER 3-D coil system just inside the ITER last closed 

flux surface. PLH is also found to decrease 20-50% by 

initiating H-mode at lower IP; the observed hysteresis 

between L-H and H-L power thresholds in hydrogen 

suggests ITER could trigger H-mode in the IP-ramp-up 

and sustain it into flattop. Impurity seeding has also been 

shown to reduce PLH using Helium in DIII-D, with up to 

15% seeding reducing PLH by 10-20%, and up to 25% 

seeding reducing PLH by 30-35% (Fig. 2) [3]. Intrinsic 

carbon impurity dilution also reduces PLH in hydrogen 

and deuterium plasmas at low edge collisionality 

compared to “pure” hydrogen plasmas with very low Zeff~1.25 (Fig. 3) [4]. TGLF [5] gyro-fluid and CGYRO 

gyrokinetic simulations indicate main ion carbon dilution causes an upshift in the ITG critical gradient. In addition, 

electron non-adiabaticity effects contribute to the higher power threshold in hydrogen, compared to deuterium. 

The dependence of the ITG critical gradient on ion dilution potentially allows the reduction of PLH during ITER’s 

early operation with  hydrogen plasmas via N or Ne light impurity seeding. 

New measurements of 

the detailed turbulence 

characteristics in 

dimensionally similar 

hydrogen and 

deuterium plasmas 

partially explain the 

significant differences 

in transport and energy 

confinement time with 

isotope mass [6]. 

Energy confinement E 

is well known to be 

higher in deuterium 

(D) than hydrogen (H); in the specific ITER-shaped ELMing H-mode plasmas heated by NBI and ECH in this 

study, E of the D plasmas exceeded that in H by a factor of ~1.8. The D and H plasmas had well matched , safety 

factor q, and Te/Ti, while normalized gyroradius * and collisionality * varied. The factor of 1.8 implies a E-

scaling with mass to the power 0.8, which is much stronger than the 98,y2 mass scaling to the power of 0.19. In 

contrast, Beam Emission Spectroscopy (BES) measurements of low wavenumber (k⊥i < 1) turbulent density 

fluctuations show the amplitude is higher in D than H, with similar spectral structure, in the radial range 

0.35<<0.8. While this is consistent with gyroBohm predictions of normalized fluctuation amplitude scaling as 

* ~ square root of mass [7], it is apparently at odds with the observed higher E with mass. However, the BES 

measurements show H has significantly higher radial correlation length than D, ~3.8 cm compared to ~2.4 cm 

(Fig. 4). This contradicts the gyroBohm prediction that the correlation length should also scale as *, and it offers 

 

 
Fig. 1. Gyrokinetic models well reproduce the profiles and 

turbulence spectrum of ITER relevant plasmas. 

 
 

Fig. 2. Reduction in PLH compared to 

reference case using different techniques. 

Fig. 3. Intrinsic C-impurity reduces PLH. 
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a potential explanation for enhanced transport and reduced confinement with lower ion mass because random 

walk diffusivity scales as the square of the correlation length. BES measurements also show H but not D has a 

low-to-intermediate wavenumber mode with longer poloidal correlation length but lower amplitude (Fig. 4d). 

These transport physics insights will help validate nonlinear simulations and confinement projections of D-T 

plasmas in ITER and other future devices.  

MHD stability and disruption avoidance 

is a fundamental requirement for ITER 

and all tokamak-based power plants. 

Analysis of m/n=2/1 tearing mode onset 

time distributions relative to the start time 

of constant N in a wide range of 

discharge classes indicates most such 

modes are subject to temporally random 

processes. A particular focus is DIII-D 

demonstration low-torque ITER Baseline 

Scenario (IBS) discharges. Scenario 

control sequences that reliably and 

systematically favor either stable or 

unstable 2/1 operation for the duration of 

the IP flattop exist [8]. The stable 

sequence includes delayed heating and 

gas flow to regularize ELMs, resulting in 

a different current profile at the start of the 

N=1.8 phase that modeling predicts is 

farther from ideal kink and classical 

tearing limits. For IBS discharges that develop a 2/1 mode, the unstable database onset time distribution in the N 

flattop is well fit by an exponential, meaning 2/1 mode onsets follow Poisson point-process statistics and have a 

constant onset rate =-(dN/dt)/N, where N is the number of surviving discharges up to time t. (Fig. 5) [9]. Such 

an onset time distribution is inconsistent with the modes being triggered by purely classical effects the same way 

in all discharges, i.e., classical stability index ’ evolving above a critical value in ~1 resistive diffusion time, 

because modeling predicts this would result in  peaking at some time, which isn’t observed. Poisson statistics 

imply seeding is happening at random times, and this is consistent with the observation of 3-wave coupling [10] 

in a majority of 2/1-unstable IBS discharges, whereby 2/1’s are triggered by sawtooth precursors coupling to 3/2 

islands when differential rotation between rational surfaces approaches zero. Rotation flattening occurs with 

temporally uniform probability due to n>1 activity. This shows the importance of properly controlling multiple 

quantities to help avoid 2/1 modes in ITER.  

 
Fig, 5. 2,1 mode onset distribution analysis for unstable  ITER Baseline Scenario demonstration discharges. 

 

In experiments with ~10 keV thermal ions minor disruptions are triggered by multi-scale chirping modes 

associated with the q=1 surface when Ti exceeds a threshold, which is well below the predicted ideal N limit [11]. 

Analysis of magnetic and density fluctuation spectra indicates a strong nonlinear interaction between medium-k 

and low-k waves. Linear analysis with CGYRO suggest the medium-k modes (cyan ellipse in Fig. 6a) are kinetic 

ballooning/electromagnetic Alfven ITG modes resonating with thermal ions on passing orbits. MARS-K [12] 

suggests the lowest-k mode (green ellipse in Fig. 6b) has a mix of kink and tearing eigenstructure, resonating with 

thermal ions on trapped orbits [13]. This initially local structure can expand from local to global in ~0.5 ms (faster 

than NTM growth) causing edge islands, current profile redistribution, a moderate drop in IP, a substantial density 

 
Fig. 4. BES measurements: (a) density fluctuation spectra, (b) fluctuation 

amplitude profile, (c) radial correlation length, and (d) poloidally 

separated spectra for hydrogen only showing secondary mode. 
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spike, impurity influx, and loss of edge temperature. These results confirm that mode resonances with hot thermal 

tail ions in reactors will be important, and further study is needed to assess mitigations. 

Experiments 

deploying shattered 

pellet injection (SPI) 

inform new 

optimizations of this 

technique for 

disruption mitigation 

on ITER. Previous 

studies indicated that 

mixed or staggered 

low- and high-Z 

injection may be 

required to 

effectively mitigate 

thermal loads and 

runaway electrons 

[14]. New 

experiments tested the staggered approach with spatially and temporally 

resolved density and temperature profiles after pure D2 injection, and 

mixed Ne/D2 injection. [15]. This used upgrades to the Thomson 

scattering diagnostic to enable measurements at ~1 eV (new narrow-band 

polychromators), asynchronous triggering by pellet ablation light, and 

“burst mode” close sequential firing of the lasers to capture fast dynamics. A single shattered pellet injector on 

the low field side close to the Thomson scattering measurements was used. Pure D2 SPI produces a favorable ten 

or more millisecond delay to the disruption, but very limited core fueling is observed before the disruption. Even 

during and after the disruption, when strong mixing of the injected material with the plasma is expected, the edge 

density significantly exceeds the core density. 1D INDEX [16] transport modeling suggests the poor assimilation 

is caused by strong outward B induced drift of the ablation cloud and predicts larger pellet shards and sizes will 

improve D2 assimilation (Fig. 7) whereas greater speed is less effective because it usually results in smaller 

fragments. The mixed (~50:50) Ne/D2 pellet impacts are dominated by Ne; these cause fast radiative collapse of 

the plasma in a few milliseconds and almost uniform density profile once Ne mixes during and after the thermal 

quench. 

New comparison of DIII-D infrared imaging measurements of 

the inner wall to Kinetic Orbit Runaway Electrons Code 

(KORC) modelling indicates that subcritical energetic electrons 

(SEEs) produced by the runaway electron (RE) avalanche source 

at energies below the runaway threshold energy are the primary 

contributor to transient surface heating of plasma-facing 

components (PFCs) during final loss events of RE mitigation 

[17]. The KORC simulations use an analytical first wall for 

modeling a non-axisymmetric first wall composed of individual 

tiles; a method was added to approximately include gyrophase 

to guiding center orbits intersecting PFCs to enable accurate 

calculations of angle of incidence needed to determine 

volumetric energy deposition. Simulations show initial REs with 

significant energy drifts remain confined, even when passing, in 

magnetic configurations connected to the first wall during the 

final loss event. But SEEs born at lower energies, below the 

runaway threshold energy, with little energy drift can be rapidly 

lost to the first wall (Fig. 8). Qualitative agreement between simulations and infrared imaging is obtained only 

when SEEs are included. Since typical predictions of PFC heating due to REs only consider high-energy REs, 

these results provide an important new guideline. 

 
Fig. 7. INDEX modeling (curves) 

compared to density measurements 

(points). 

 
Fig. 6. Fluctuation spectra for hot-ion-driven 

multiscale chirping modes. 

 
Fig. 8. KORC modelling of inner wall tile edge 

heating by energetic electrons matches only with 

inclusion of subcritical electrons. 
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3. BOUNDARY HEAT AND PARTICLE 

TRANSPORT 

Studies using DIII-D have elucidated important 

physics and developed new controls related to the 

plasma edge and first wall. Novel Lyman-alpha 

diagnostic measurements [18] show a significant 

poloidal variation of the main chamber edge 

ionization source. A one order of magnitude HFS-

LFS fueling asymmetry exists when operating 

with ion BxB drift towards the X-point. 

Operating with ion B×B drift out of the divertor 

eliminates the imbalance (Fig. 9) [19]. The 

ionization source asymmetries are related to 

asymmetric recycling fluxes at the inner and outer divertor targets due to directional parallel plasma flows in the 

scrape-off layer. Gyrokinetic-plasma and kinetic-neutral simulations using the XGC suite of total-f particle-in-

cell codes [20] and DEGAS2 Monte Carlo neutral transport calculations [21] reproduce these observations [22]. 

The parallel plasma flow in the scrape-off-layer is driven primarily by particle orbit and collisional physics, while 

turbulent transport across the separatrix determines the overall magnitude. That is, while neutral fueling 

asymmetries appear in ‘neoclassical’ simulations that exclude turbulence, quantitative agreement between 

simulations and experiment is only found when the turbulent particle losses are included. Analysis of these 

simulations indicate that a low-recycling edge plasma results in novel flow patterns, which cause neutrals to be 

dominantly produced on one or the other divertor plates. In a highly collisional scrape-off layer as expected in 

burning plasma devices with larger spatial scale and higher connection length a symmetrization of the parallel 

plasma fluxes is expected and, therefore, recycling fluxes and main chamber ionization source are expected to 

become HFS-LFS symmetric. Still, these results motivate 2D modeling to understand fueling in present devices. 

DIII-D experimental validation of a new integrated 

model of the pedestal-to-divertor system enables 

prediction of pedestal pressures and heat flux widths in 

future devices. The combined EPED-SOLPS modeling 

framework was used to predict DIII-D pedestal pressure 

and width, ion flux to the divertor, and the electron 

temperature at the divertor target over a range of 

pedestal density as the divertor was pushed into 

detachment (Fig. 10) [23]. Measurements of these 

quantities match the predicted trends with increasing 

density reasonably well. The model predicted pedestal 

pressure rate of decrease with density is captured, while 

pedestal width is nearly constant and quantitatively 

matched. Predicted and measured ion flux to the divertor 

reach their peak values at the onset of detachment at 

roughly the same pedestal density, and target 

temperatures agree quantitatively, indicating the model 

accurately predicts the detachment onset density. Accounting for both pedestal and SOL physics in the integrated 

modeling accurately predicts the pedestal pressure is ballooning limited throughout the density scans, consistent 

with the generally low pressure observed, while standalone EPED [24] calculations erroneously predict a 

transition from peeling-limited to ballooning-limited at high density. The key improvement is the integrated model 

uses an empirical relationship between the divertor temperature from SOLPS [25] and the ratio of pedestal to 

separatrix densities used by EPED. Similar agreement between experiment and modeling was achieved in three 

different divertor closure geometries on DIII-D. Bolstered by this validation, the integrated modeling framework 

is being used to predict pedestals and peak heat flux in proposed fusion pilot plants. 

Prediction of detachment in radiative divertor regimes requires validated models of mixed impurity transport and 

radiation dependence on density, temperature, and PSOL. New 2D multi-wavelength experimental data has been 

compared to 2D full-drift-physics modeling in single and mixed impurity plasmas with good agreement found 

[26]. For model validation, it is essential to match the charge state distributions of impurities, which depend on 

Te, to accurately predict radiated power density throughout the divertor region. A set of multiple absolutely 

calibrated spectroscopic and imaging diagnostics in visible and EUV/VUV spectral regions were combined to 

determine both carbon (C) and nitrogen (N) multi-charge-state divertor concentrations and  

 
Fig. 9 Ratio of measured neutral ionization source rates on high 

field side to low field side, minus 1, versus separatrix density. 

 
Fig. 10. Measurement and predictive EPED-SOLPS 

modeling of pedestal pressure and width, divertor ion 

flux and electron temperature. 
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radiative power constituents in conditions 

ranging from attached to fully detached. These 

were compared to 2D UEDGE [27] fluid 

simulations with full particle drifts and charge 

state resolved C and N impurities included. The 

UEDGE simulations match experimentally 

resolved 2D divertor Te and reproduced the 

dominant divertor radiated power sources from 

VUV resonance transitions of C II – C IV and N 

II – N V, as well as the relative contributions from 

C and N to the total divertor radiation (Fig. 11). 

These results provide confidence in the 

application of these models to design radiative 

divertor solutions for future devices. 

A new feedback-adaptive RMP ELM suppression control 

algorithm was tested on DIII-D that provides a new solution for 

ELM control in reactors (Fig. 12) [28]. Typically, open loop RMP 

ELM control with fixed 3D coil currents sufficient for suppressing 

Type-I ELMs results in degraded pedestal pressure and E. After 

first achieving ELM suppression with a predetermined coil current 

IRMP, the new algorithm reduces IRMP while monitoring deuterium-

alpha signals for ELMs. In KSTAR, ELM precursor events are 

detected [29], but so far these have not been seen in DIII-D. Upon 

detection of a precursor or an ELM, the controller sets a new lower 

limit for IRMP, increases IRMP to recover suppression, and then 

attempts to lower it again. Minimization of IRMP increases E in DIII-D test cases by ~18% relative to the start of 

suppression at full current. The same feedback applied to KSTAR has achieved ~60% E recovery. 

Separately, pedestal control and performance has 

been expanded in two novel regimes [30]. A 

robust range of counter-Ip edge rotation was 

found in which density increases with applied n=2 

RMP still below the suppression threshold. This 

is opposite to the well-known density pump out 

usually observed with RMP that tends to reduce 

global performance. The greatest line-density 

increase is about 15% and occurs with a counter-

Ip pedestal rotation of ~40 km/s. (Fig. 13). 

Doppler back scattering measurements show the 

prompt increase in particle confinement is due to 

a drop in inter-ELM pedestal turbulence 

amplitude and a switch from an ion- to electron-mode at the pedestal top. The other new development is the 

application of counter-Ip ECCD at the pedestal to reduce the required RMP amplitude for ELM suppression. This 

results in a higher pedestal pressure with the same E and is a useful tool for pedestal physics exploration.  

Other experiments have evaluated the impacts of ELM control on H-mode plasmas with q95=3.75 and an outer 

strike point in a Tungsten (W) coated small angle slot divertor not connected to a cryopump [31], [32]. Without 

any ELM control, ELMs dominate the W source that contaminates the core plasma. The ELMs, and therefore the 

W source, tend to be larger with greater plasma stored energy WMHD and lower pedestal collisionality *ped. ELM 

mitigation and in some cases full suppression (Fig. 14) with n=3 RMPs significantly reduce or eliminate the W 

source per ELM at high WMHD and low *ped (Fig. 15). Higher WMHD and lower *ped are observed to be 

approximately constant for the duration of the ELM suppressed phase in the IP flattop (~1.5 seconds), indicating 

that W transport out of the core is still sufficiently high to avoid W build-up despite loss of ELMs, which are also 

 
Fig. 11. UEDGE modeling matches measured Te (top) and C and 

N emission (bottom) in the divertor region. 

 
Fig. 12. Feedback adaptive ELM suppression 

reduces confinement degradation. 

 
Fig. 13. RMP with edge counter-Ip rotation (orange) raises 

particle confinement. 
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known to flush impurities. These results suggest RMP ELM suppression integrated with a W slot divertor is a 

solution capable of maintaining high fusion performance with minimal PFC damage in future reactors. 

  

Fig. 14. N=3 RMP ELM suppression with 

outer strike point in W-coated small angle 

slot divertor. 

Fig. 15. Measured Tungsten source per ELM versus pedestal collisionality and 

plasma stored energy. Inset shows the upper divertor geometry with an OSP 

in a W-coated small angle slot. Legend indicates ELM control method. 

 

4. INTEGRATED OPERATIONAL SCENARIOS 

A high-level program goal is to put core and edge solutions 

together for sustained high performance with sufficient heat and 

particle exhaust and without damaging transients like ELMs. 

Several paths are being pursued to provide such operational 

scenarios for ITER and FPPs along with discerning the key 

physics requirements of each. Significant progress has been made 

in expanding the operational space and physics understanding of 

Wide-Pedestal Quiescent H-mode (WPQH-mode) as a promising 

naturally ELM-stable high-performance scenario for reactors 

(Fig. 16) [33]. The range of q95 of WPQH-mode operating at low 

torque (<1.5Nm) has recently been reduced to 4.2, which is the 

lowest yet achieved for this scenario in a quasi-stationary state. 

Power handling capability has also been increased from 5.5MW 

to 7.5MW, limited by the available balanced NBI power to keep 

the net torque small. WPQH at net-zero injected torque has been 

achieved in both directions of IP, with both favorable and 

unfavorable ion BxB drift directions, and in different plasma 

shapes including the ITER similar shape. WPQH-modes are observed to lack the standard H-mode ion-channel 

power degradation of E [34]. Extensive transport modeling using TGYRO/TGLF shows that this could be 

explained by the large Shafranov shift in these plasmas stabilizing core drift-wave instabilities and enabling high-

confinement ELM-stable plasmas [35]. A low ExB shear region in the middle of the pedestal is thought to allow 

the destabilization of broadband MHD and/or turbulence observed there. Detailed analyses and numerical 

modeling of pedestal instabilities identify one mild peeling-ballooning mode and one drift-Alfven wave that 

compete to produce the wide pedestal [36]. The divertor heat width q of WPQH-mode plasmas is observed to 

increase with edge broadband MHD/turbulence with cases where q exceeds the neoclassical Eich scaling [37]. 

Modeling indicates this is associated with turbulence spreading across the separatrix. [38] 

DIII-D tested the impacts of W radiation on the burn phase of the ITER Baseline Scenario (IBS) by using W-

equivalent radiators [40]. Kr and Xe mixtures have the same radiative loss rates Lz in the DIII-D core as W in the 

hotter ITER core, so they are injected as proxies to simulate the impacts of W radiation in ITER. IBS 

demonstration plasmas were generated with these radiators (Fig. 17) spanning the range of expected impurity  

 
Fig. 16. Spider plot showing key metrics for IBS 

(Q=10), ARC reactor [39], and achieved DIII-

D QH- and WPQH-mode discharges. 
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concentration and W radiated fraction with net NBI 

torque scanned between 0 and 5 Nm. Impurity 

concentrations of nKr/ne~210-4 and nXe/ne~610-5 

correspond to ITER expected nW/ne~1e-5 and frad~30% 

(given DIII-D’s lower density than ITER). In the range of 

frad=0.25-0.35, a bifurcation is observed, which either 

allows the scenario to be stationary, or trigger an 

oscillatory regime with Te and frad oscillating out of phase, 

and the core oscillating out of phase from the 

edge/pedestal. A Lotka-Volterra predator-prey model 

with full profiles, diffusion, and noise was designed to 

gain insight into the dynamics of the system, and its 

results show that this model can reproduce the 

experimental Te and frad profiles. To explore the more 

specific physics of a tokamak plasma and extrapolate to 

ITER, a physics-based model not constrained to oscillate 

was designed that successfully reproduces the oscillatory 

behavior of the experiment, with the correct range of 

amplitude and phase difference observed, remaining robustly stable to variations in inputs. This indicates a 

reasonable understanding of the drivers of this phenomenon for projecting to ITER, as well as mimicking alpha 

power and burn dynamics in DIII-D, demonstrating the relevance of carbon-wall machines for fusion energy 

physics. Future DIII-D experiments will aim at controlling burn phase oscillations.  

The High-P Scenario for steady-state operation with 

high fusion gain and high bootstrap current fraction 

(fBS) has been optimized for improved MHD stability. 

One advance is the use of a novel variable-poloidal-

spectrum mode control with internal non-axisymmetic 

coils (I-coils) [41]. A high-P regime is often 

investigated on DIII-D using slow continued ramps of 

IP and/or BT throughout the discharge, resulting in 

varying q95. The new feedback scheme configures the 

upper and lower I-coil rows in two independent 

feedback loops, allowing the feedback field poloidal 

spectrum to vary and track changes in the plasma 

mode structure over a range of q95 from 6 to 11. The 

q95 dependence of the observed phase difference 

between the coil rows during feedback is qualitatively 

compatible with ideal MHD simulations of the least-

stable plasma kink mode. This feedback facilitated 

high N operation in excess of the ideal MHD n=1 no-

wall kink stability limit, with a broad current profile and low internal inductance, P=3%, and fBS60%. Such 

performance extensions, particularly to lower internal inductance ℓi (Fig. 18), are not obtained using coupled coil 

rows. Variable-spectrum feedback helps avoid beta collapses caused by marginally stable resistive wall mode 

(RWM) activity. These results underscore the utility of MHD mode control for accessing high- fusion-relevant 

regimes. The variable spectrum feedback approach is a straightforward way to improve resilience to variations in 

mode structure that occur as plasma parameters change. The extension to lower ℓi is expected to improve the 

coupling of the plasma kink mode to external (i.e., feedback) fields and beneficial wall eddy currents, and is 

compatible with high-fBS operation. 

In a few High-P Scenario discharges, further tuning of the ramp-up sequence has resulted in higher performance 

sustained for longer [42]. N~4.2~6ℓi, T~3.3%, and qmin>2 was sustained for ~0.7 of a current profile relaxation 

time (more than 6 E), with fBS~80%, a large-radius internal transport barrier, H98y2~1.7, fGr~1, and stationary 

impurity levels (Fig. 19). The high-performance phase is terminated by fast growing modes destabilized at the 

n=1 ideal MHD, ideal-wall kink stability limit, following transient N excursions above the feedback-controlled 

target. Limitations of the N feedback control algorithm enable transient excursions above the target. A rapidly 

growing n=1 mode appears as the limiting instability during one of these excursions, preventing stationary 

sustainment of high performance. GATO [43] calculations indicate that the plasma is crossing the ideal-wall n=1 

kink limit right before the disruption. New microwave and RF capabilities for off- 

 
Fig. 17. IBS radiation fraction versus impurity 

concentration using W-equivalent radiators. 

 
Fig. 18. In the High-P Scenario, RWM control using 

decoupled coil rows extends stable operation. 
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axis current drive (top launch EC [44], helicon 

[45], high field side lower hybrid [46]) could 

remove the need for a low-β-phase BT ramp 

down and high-β-phase slow IP ramp up to 

achieve fully noninductive operation with 

improved coupling between modes and the 

wall, thus increasing the ideal-wall βN limit. 

Improved βN feedback controls are being 

developed to avoid transient excursions. These 

results improve confidence that the High-P 

Scenario is an attractive option for steady-state 

operation in ITER and power plants. 

DIII-D carried out a multiple-week campaign 

in 2023 to investigate negative triangularity 

(NT) [47], building upon previous results from 

TCV [48] and DIII-D [49]. Graphite-tile armor 

was installed on the low-field-side lower outer 

wall to obtain high power diverted plasmas 

with strong NT (Fig. 20a). High confinement 

(H98y,2≥1), high current (q95<3), and high 

normalized pressure (N>2.5) plasmas were 

achieved at high-injected-power in a strong NT-shape with a lower outer divertor X-point that also demonstrated 

high normalized density (ne/nG≤2) and a detached divertor without ELMs. The L-H transition was inhibited at δavg 

= - 0.5 at all injected beam powers (up to 12 MW) and torques possibly due to restricted second stability access 

from infinite-n ballooning modes predicted in NT [50], [51]. However, while not an H-mode edge, there is a slight 

Te pedestal compared to L-mode plasmas, resulting in the so-called NT-edge. A range of discharges were studied 

from high gain cases with q95=2.7, to cases with q95=4 and 50-60% non-inductive current. Both cases achieved 

high performance (N>2.5 and H98y,2~1, Fig. 20b). In NBI-heated plasmas, high central densities up to 

ne0~1.4x1020m-3 and high Greenwald fractions fG approaching 2 were achieved, whereas in plasmas with only 

Ohmic heating fG was limited to 1 (Fig. 20c). Divertor detachment was obtained (Fig. 19d) in density ramps with 

only D2 injection in both favorable and unfavorable ion BxB drift directions [52]. This showed a more gradual 

L-mode-like detachment evolution with no detachment cliff [53]. These results demonstrate several key principles 

indicating the potential viability of NT as the basis for a fusion power plant [54]. 

 
Fig. 20. (a) NT shape with armored tiles. (b) and (c) show H98y2, N, and density limit fraction fG for a range of q95 averaged 

over 400 ms stationary periods. (d) N, H98y2, and outer strike point Te in NT detached discharge. 

 

5. FUTURE PLANS AND CONCLUSIONS 

The DIII-D program plans several hardware upgrades between now and 2028 that will better enable it to close 

key knowledge gaps for a successful ITER program and design of fusion pilot plants. These include increases in 

flexible heating and current drive power in parallel with testing a series of new divertor designs and new 

technologies. Raising electron cyclotron heating and current drive delivered power from 5 MW in 2024 to 14 MW 

in 2028 is key for testing ITER and FPP integrated scenario physics with relevant higher Te/Ti, lower torque, 

lower fast ion fraction, lower collisionality, and higher density in a range of inductive and non-inductive equilibria. 

New high harmonic fast wave (Helicon) and high-field-side launched Lower Hybrid systems coming online will 

further enhance DIII-D’s ability to achieve and test advanced scenarios with broad current and pressure profiles 

 
Fig. 19. Time histories and profiles for High-P scenario optimized 

for higher performance. 
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for high N steady-state operation in higher density plasmas. The divertor stages will start with a new relatively 

small-volume closed divertor optimized for a large volume highly shaped core plasma predicted to enable high 

peeling-limited pedestal pressures at low collisionality and reactor-relevant pedestal neutral opacity. This will be 

succeeded by a larger Stage-2 slot-like divertor with sufficient volume for detailed radiative heat dissipation and 

detachment studies with moderate shaping. Divertor Stage 3 will be optimized to integrate high core performance 

with efficient and capable heat and particle exhaust. Stage-3 will arrive in 2028 when upgrades to ECH, RF, and 

NBI systems are complete, providing up to ~43 MW total heating power. Along the way, DIII-D will develop 

technologies: an ECH gyrotron test socket is planned, along with dedicated vacuum ports to test new reactor-

relevant diagnostics and first wall materials. The novel Helicon and High-Field-Side Lower Hybrid systems will 

be further developed, as well as disruption mitigation systems like shell pellets designed to reach and cool the 

core from the inside out [55], and a passive 3D coil designed to deconfine and render harmless runaway electrons 

[56].  

In conclusion, DIII-D research is finding solutions for fusion energy. It has provided tools and identified essential 

requirements for achieving high core fusion performance. These include validated turbulent transport models 

capable of predicting kinetic profiles, new understanding of the isotopic dependence of turbulence, and the 

demonstration of methods to ease H-mode access in ITER’s non-nuclear phases. Harmful MHD instability causes 

have been diagnosed and new guidance for instability avoidance and disruption mitigation provided. DIII-D 

research has elucidated boundary heat dissipation and particle fuelling processes that need to be understood and 

controlled for successful fusion energy. These include assessments of ionization source asymmetries, validation 

of a model for pedestal and heat flux behaviours during detachment, and characterization of mixed impurity 

concentrations needed to dissipate power into the SOL. Also, RMP ELM control was shown to mitigate Tungsten 

contamination, and feedback controlled RMPs were shown to minimize confinement degradation during 

suppression. Finally, DIII-D has put a range of integrated operational scenarios on a firmer basis. Naturally ELM-

free wide pedestal quiescent H-mode operation has been extended to a larger range of reactor relevant conditions, 

and ITER Baseline Scenarios have been tested with Tungsten equivalent radiators to study and control stationary- 

and oscillating-temperature regimes that result. For steady-state operation, the High-P Scenario has reached 

higher N with lower ℓi using new scenario controls. Negative triangularity has been shown to be capable of high 

performance with a non-ELMing edge and divertor detachment, offering a novel option for future fusion reactors. 
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