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Abstract

A coupling architecture has been developed to integrate the free-boundary equilibrium (FBE) and transport solvers
in COTSIM (Control-Oriented Transport SIMulator). The coupling strategy employs different techniques to make the 2D
equilibrium and 1D transport partial differential equations (PDEs) work in a self-consistent way. Sophisticated approaches
are employed not only to accelerate the iterations for the FBE solver but also to compensate for deviations in the poloidal
flux function at the plasma boundary between the equilibrium and transport solvers. Scaling laws and surrogate models for
non-linear current density and heating sources make it possible to calculate transport equations in a fast way. As an illustration
of a potential application, a dedicated simulation based on the integrated scheme is performed to study the EAST scenario
from ramp-up to flat-top phases. The simulation results demonstrate that self-consistent parameters and profiles are achieved
between the equilibrium and transport solvers. The integration of various dimensional solvers within COTSIM makes this
platform uniquely qualified for two purposes: firstly, for model-based optimization of advanced scenarios, characterized by
specific plasma shapes and core profiles achievable within actuator limits; and secondly, for model-based design and testing of
integrated equilibrium and scenario feedback control solutions.

1. INTRODUCTION

The tokamak represents a promising path toward achieving controllable nuclear fusion as a clean and environmentally friendly
power source for the grid in the coming decades [1]. In order to enable the ignition condition of fusion in a tokamak reactor,
i.e. the triple product of ion temperature (Ti), plasma density (n) and confinement time (τe) larger than 3× 1021keV·m−3 · s,
external auxiliary heating sources such as neutral beam injection (NBI), low hybrid wave (LHW) as well as ion or electron
cyclotron resonant heating and current drive (I/ECRH and I/ECCD) are needed. Furthermore, in a tokamak reactor, it is
essential to simultaneously maintain the plasma current (Ip) and a specific plasma shape, like the X-point configuration. This
requires the magnetic field, characterized by toroidal (Bϕ) and poloidal (Bp) components, induced by external coil currents.
This magnetic field configuration is crucial to ensure compatibility with high confinement and to facilitate the exhaust of
particles and power from the plasma boundary to plasma wall. Failure to synchronize the control of the auxiliary heating
sources and magnetic field in a tokamak reactor can have serious consequences. It not only prevents the plasma from reaching
the desired burning state but also increases the risk of off-normal events, such as major disruptions. These events could pose
safety challenges for large-scale machines like ITER and FPP, designed for nuclear fusion research.
Reliable integrated simulations of control-oriented plasma scenarios are among the top priorities in the design of the next
generation of fusion reactors within the tokamak community. For example, future ITER operations cannot tolerate even a
single major disruption [2]. These controls are dominantly categorized into two types, i.e. magnetic control and kinetic control.
Magnetic control mainly focuses on the plasma current and plasma shape, from ramp-up (right after the formation of closed
magnetic surface) to flat-top and finally to plasma ramp-down phases, where the model is based on the Grad-Shafranov (G-S)
equilibrium equation [3]. Whereas the objective of magnetic control is to maintain the specified safety factor (q) profile, e.g.,
qmin > 1.5 to avoid certain magnetohyrdodynamics (MHD) modes, and the objective of kinetic control is to reduce transport
and produce edge and internal transport barriers in plasma profiles such as electron temperature (Te) profiles, where an internal
electron transport barrier (e-ITB) found on recent EAST campaign to enable one thousand seconds “super” improved mode
(I-mode) operation [4]. The calculation of the q-profile relies on the Magnetic Diffusion Equation (MDE) as detailed in [5],
while the evolution of electron temperature is determined by the Electron Heat Transport Equation (EHTE) as explained
in [6]. Predictive integrated modeling involves the integration of equilibrium, MDE, and transport solvers, along with their
associated sources and sinks. This integration enables simulations for the simultaneous application of magnetic and kinetic
controls, a task known for its inherent complexity. The complexity of this task primarily arises from dealing with different
dimensional aspects. For instance, the free-boundary equilibrium (FBE) involves a 2D problem in (R,Z) coordinates, which
requires iterative solutions due to the non-linearity of the toroidal plasma current density in the G-S equation. On the other
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hand, the MDE and transport equations are 1D problems, based on the normalized toroidal flux radius (ρ̂), and they involve
non-linear heating and non-inductive current sources from other complex methods. This is why some current model-based
control-oriented simulations tend to focus either on magnetic control with simplified transport coefficient profiles or on kinetic
control with simplified equilibrium parameters. Importantly, these integrated simulations rely heavily on intensive calculations
performed by integrated modeling codes like TRANSP [7], ASTRA [8], CORSICA [9], JINTRAC [10], and DINA [11].
However, this heavy computational burden often hinders the ability to conduct fast control-oriented scenario designs and
developments.
In this study, a fast coupling architecture is developed to integrate the FBE and transport solvers, including MDE. This architec-
ture is designed for model-based, control-oriented simulations focused on EAST. The coupling process involves the exchange
of profiles and parameters between the equilibrium and transport solvers. To address deviations in the boundary poloidal flux
function between the FBE and MDE, flux components decoupled from coils currents are used to offset these discrepancies. The
transport equations have been efficiently solved using COTSIM’s library of models, which encompass various complexities
designed to suit different control applications. These models include analytical, scaling laws, empirical, and neural network
models trained from physics-based codes. Finally, the integrated scheme is applied to study the EAST scenario from ramp-up
to flat-top phases, demonstrating self-consistent results between the FBE and transport solvers. The organization of this paper
is as follows. Section 2 presents the equilibrium and transport equations and their couplings. The simulation of ramp-up to
flat-top for the EAST scenario using the coupling scheme is detailed in Section 3. In Section 4, the conclusion is provided, and
potential future work is outlined.

2. EQUATIONS FOR EQUILIBRIUM AND TRANSPORT AND THEIR COUPLINGS

A synthetic model based on the FBE and transport equations is needed to develop the control algorithm for integrated magnetic
and kinetic controls. The solvers to calculate those PDEs with different dimensions in a fast way should use similar numer-
ical methods within certain computational environments. More importantly, this synthetic model must contain the necessary
physical issues, including inductive Ip consumption, vertical displacement events (VDEs), ITB, and pedestal properties.

2.1. G-S Equilibrium Equation

Because of the toroidally axisymmetric assumption in tokamak geometry, only the cylindrical coordinate system consisting
of (R,Z) is taken into account. The G-S equation for the FBE problem, which is derived from the force balance equation, is
expressed as stated in [12].

∆∗ψ(R,Z) = −µ0RJϕ(R,Z), (1a)

∆∗ ≡ R ∂
∂R

(
1
R

∂
∂R

)
+ ∂2

∂Z2 . (1b)

The poloidal flux function ψ, which represents the poloidal magnetic flux per radian, is defined as ψ(R,Z) ≡ RAϕ based on
the equation B = ∇× A (with ∇ · B = 0). Here, µ0 represents the permeability in a vacuum region. The term Jϕ(R,Z) in
(1a) represents the toroidal current density and varies depending on different regions.

Jϕ(R,Z) =


Rp′(ψ) + ff ′(ψ)

µ0R
in plasma area Ωpl

Ii
Si

in coil number i
0 elsewhere

(2)

Here p represents plasma kinetic pressure, f is the diamagnetic function defined as f(ψ) ≡ RBϕ, and Ii and Si denote the
current and cross-section of external conductor coil i, both p and f are functions dependent on ψ. It is beneficial to introduce
the normalized poloidal flux function, denoted as ψN = (ψ − ψax)/(ψbd − ψax), ensuring it ranges from 0 at the magnetic
axis (ψax) to 1 at the plasma boundary (ψbd). It is worth noting that a similar approach can be applied to calculate the toroidal
current density (Jϕ) induced on passive plates and the vacuum vessel due to plasma vertical excursions or disruptions, akin to
the treatment of Jϕ in external coils. To expedite the execution of the FBE solver, we use the equilibrium results from previous
runs, including coil currents and the ψ map, as the initial guess for the next FBE calculation.
Recently, a numerical solver based on the finite difference method (FDM) with Picard iteration has been developed for solving
the FBE problem [13]. This solver operates within a Matlab/Simulink environment1 and can run in either direct mode, where
external coil currents are prescribed, or inverse mode, where the targeted plasma boundary, with or without an X-point, is
pre-specified to find the required coil currents. The boundary condition for this solver is defined as

B.C. : ψgrid,bd (Rbd, Zbd) =

∫
Ωpl

G(Rbd, Zbd;R
′′, Z′′)Jϕ,pl(R

′′, Z′′) dR′′dZ′′ +

Ncoil∑
i=1

G(Rbd, Zbd;Ri, Zi) · Ii (3)

1www.mathworks.com
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whereRbd, Zbd are boundary points of the computational mesh,G is the Green’s function, (R′′, Z′′) and (Ri, Zi) are the mesh
points (except those on mesh boundary) and coordinates of coils areas, respectively.
In this work, the objective of inverse mode with targeted plasma separatrix (Rrefj , Zrefj ) is considered by

min
∆Icoil

[
Nbnd∑
j=1

{
Ncoil∑
i=1

(
G
(
Rrefj , Zrefj ;Ri, Zi

)
·∆Icoil,i

)
−∆ψ

(
Rrefj , Zrefj

)}2

+ γ2

Ncoil∑
i=1

(
∆Icoil,i

)2]
(4)

in which ∆ψ(Rrefj , Zrefj ) = ψbd − ψ(Rrefj , Zrefj ) is the error of poloidal flux on prescribed plasma boundary points
(Rrefj , Zrefj ), γ is a Tikhonov parameter for regularization term in an ill-posed problem [14].

2.2. Magnetic Diffusion Equation

Unlike the FBE, which is determined in terms of (R,Z) coordinates, the transport equations are performed using the effective
minor radius, ρ, with the toroidal flux, Φ.

Φ ≡ πB0ρ
2 , ρb ≡

√
Φb
πB0

, ρ̂ ≡ ρ

ρb
∈ [0, 1], (5)

where, Φb represents Φ at the plasma boundary, B0 is the toroidal magnetic field at the major radius R0, ρ̂ is the normalized
effective minor radius, and ρb is the effective minor radius at the plasma boundary.
The MDE and its boundary conditions are defined as follows

∂ψ

∂t
=

η(Te)

µ0ρ2bF
2

1

ρ̂

∂

∂ρ̂

(
ρ̂FGH

∂ψ

∂ρ̂

)
+
R0Hη(Te)

B0
⟨jNI ·B⟩ (6a)

B.C. :
∂ψ

∂ρ̂

∣∣∣
ρ̂=0

= 0;
∂ψ

∂ρ̂

∣∣∣t
ρ̂=1

= − µ0R0

2πGH
Ip(t). (6b)

Here, η(Te) represents plasma resistivity, which is dependent on the electron temperature Te, and jNI stands for non-inductive
plasma current, encompassing contributions from bootstrap and auxiliary current drive methods such as E/ICCD, LHCD, and
NBCD. The flux-averaged < · > quantities F , G, and H are equilibrium parameters that are defined as follows.

F =
R0B0

f
, G = ⟨R

2
0|∇ρ|2

R2
⟩ , H =

F

⟨R2
0/R

2⟩ (7)

The transport equation solvers in COTSIM [15] utilize FDM within the Matlab/Simulink environment, a widely adopted plat-
form for control design across development stages. COTSIM provides an extensive library of models with varying complexities
to suit diverse control applications, including analytical models, scaling laws, empirical models, and neural-network models
trained from physics-based codes [16].

2.3. Coupling Between Free Boundary Equilibrium and Transport Solvers

The scheme, as illustrated in Fig.1, designed to couple the 2D FBE and 1D transport solvers, is achieved by reducing the 2D
(R,Z) FBE into a 1D equation based on ψN . With the initial transport profiles, the equilibrium (1) is solved by computing
the right-hand side of Jϕ, which is a function of p′(ψN ) and ff ′(ψN ) [17], derived from ψ, Ti, Te, ni, ne. Initial equilibrium
parameters in terms of F,G,H must be provided to calculate p′(ψN ) and ff ′(ψN ), as defined by

p′(ψN ) =
∂p

∂ρ̂

∂ρ̂

∂ψN
= kB

∂(ne · Te + ni · Ti)
∂ρ̂

∂ρ̂

∂ψN
; ff ′(ψN ) = − 1〈

1
R2

〉( ∂ρ̂

∂V

∂

∂ρ̂

(∂ψ
∂ρ̂

· ∂V
∂ρ̂

G

R2
0ρ

2
b

)
+ µ0p

′(ψN )

)
,

(8)
where kB represents the Boltzmann constant and V signifies the plasma volume. After solving the FBE, which yields a new
equilibrium configuration represented by flux-averaged quantities, this configuration is then passed to the transport solvers for
the next time step.
The boundary condition for this coupling requires that the ψ values at the plasma boundary, as predicted by both solvers, should
be self-consistent. In other words, ψEqψN=1 should match ψTrρ̂=1 when both equilibrium and transport solvers are converged. Any
deviations in ψ between the FBE and MDE can be compensated by adjusting a set of coil currents referred to as IPFOhm. These

currents are computed through a minimization process
n∑
k=1

(
1−G(Rk, Zk, Rcoils, Zcoils)IPF

)2

. Here, (Rk, Zk) represents

mesh points within the plasma region [18]. IPFOhm contributes solely to the ψ value without affecting the plasma shape (i.e.,
no Bp contribution), maintaining constant ψ values across all plasma nodes for inductive consumption. Finally, the total coil
currents for scenario development are determined as the sum of IPFShp obtained from the inverse mode of FBE and IPFOhm,

i.e.,
·

IPF = aIPFOhm + IPFShp, where the scaling factor a adjusts for the deviation in boundary ψ between the equilibrium and
transport solvers.

3
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FIG. 1. Coupling scheme between the equilibrium and transport solvers.

3. SIMULATION FROM RAMP-UP TO FLAT-TOP PHASES

While it is essential to assess stable equilibrium states and transport profiles at flat-top, the simulation of the ramp-up phase
and its transition to flat-top is even more crucial, albeit more challenging, for developing realistic plasma scenarios. During
ramp-up, various key parameters such as Jϕ, q, Te, and ne, as well as plasma equilibrium parameters, undergo significant
and intricate interactions, potentially leading to disturbances and instabilities. For this reason, it is of utmost importance to
comprehensively assess the dynamics between equilibrium and transport properties from the ramp-up to the flat-top phase using
an integrated scheme. Such an approach provides invaluable insights necessary for designing control-oriented strategies and
advanced scenarios to effectively schedule the whole machine operation. In this work, the EHTE and its boundary conditions
are written as

3

2

∂

∂t

(
neTe

)
=

1

ρ2bH

1

ρ̂

∂

∂ρ̂

[
ρ̂
GH2

F

(
χe(·)ne

∂Te
∂ρ̂

)]
+Qe-dep (9a)

B.C. :
∂Te
∂ρ̂

∣∣∣
ρ̂=0

= 0; Te

∣∣∣t
ρ̂=1

= T bdrye (t). (9b)

Here, thermal diffusivity (χe) and the total power density deposited into electrons (Qe-dep) play crucial roles. Notably, our
approach assumes equal electron and ion temperatures (Te = Ti) and does not incorporate an ion heat transport equation.
Additionally, the electron density profile (ne) is determined by the line-averaged electron density (ne).

ne(ρ̂, t) = nprofe ne(t), (10)

where nprofe is typically read from experiment.

3.1. Simulation Settings

Simulations were conducted using the coupling scheme, with settings derived from experimental data obtained during the
EAST pulse. The plasma current (Ip) ramp-up rate was set to 0.15 MA/s, and the fraction of the Greenward limit (fg) for the
line-averaged electron density (ne) was kept constant at 0.7 throughout the entire simulation. Power inputs of 2 MW for PLH
and 1 MW for PNBI were employed. The prescribed plasma boundary was determined from experimental data, and detailed
parameters are provided in Table 1. The simulation covered a 1-second ramp-up phase and a 1-second flat-top phase, with
0.1-second intervals. A visual representation of the prescribed settings and the trajectory of the plasma boundary can be found
in Fig. 2. Four vertical dashed lines therein indicate the locations of various profiles obtained from equilibrium and transport
results at different time steps, which are presented in subsequent subsections.

TABLE 1. PLASMA BOUNDARY PARAMETERS

R0 (m) a (m) κ δ (RXpt , ZXpt) (m , m) B0 (T)
1.8 0.45 1.42 0.5 (1.66 , -0.88) 2.5

3.2. Evolution of Equilibrium Quantities

The calculation of the FBE equation constitutes the most time-consuming aspect of the coupling process because the solver
relies entirely on iterations. As introduced in Section 2.3, a scheme enables all subsequent time evolution FBE solvers, except
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FIG. 2. Prescribed trajectories of Ip, PLH, PNBI and ne, (left) and plasma boundary (right) for ramp-up to
flat-top integrated simulation.

for the initial one, to converge in less than 20 iterations with a tolerance of 10−2, whereas the initial solver may require
approximately 60 to 70 iterations before reaching convergence.
The decision to use the same prescribed plasma boundary in the inverse FBE solver is primarily driven by the need to calculate
IPFOhm. When there are changes in the plasma shape, it leads to corresponding variations in IPFOhm, making it challenging
to offset the deviation of ψbd between the equilibrium and transport solvers effectively. It is important to emphasize that
maintaining the constraint IPFT

Ohm·IPFShp = 0 is crucial. This constraint must be satisfied to minimize coupling with the plasma
current drive performed by IPFOhm [18].
Figure 3 presents the evolution of the plasma boundary at selected time steps, along with the coil currents obtained from the
FBE solver, where Jϕ is determined by the transport solvers. Notably, the plasma boundaries are effectively maintained by
the inverse mode of the FBE solver, as indicated in the reference shown in the right panel of Fig. 2. In the context of coil
currents, the dominant components of IPFOhm, specifically the currents in coils PF1 to PF6, are reduced to provide energy
for inductive plasma current consumption (Ip). Conversely, the remaining currents in coils PF7 to PF14, which constitute
the primary components of IPFShp, responsible for generating the necessary vertical magnetic field to maintain equilibrium,
remain nearly constant. Additionally, it is worth noting that coils PF6, PF8, and PF10 exhibit substantial currents, as they play
a critical role in sustaining the X-point.

3.3. Evolution of Transport Profiles

The transport equations, described in terms of MDE and EHTE, are efficiently solved in COTSIM by utilizing scaling laws.
These scaling laws involve fixed profiles for non-inductive current density and power deposition, which are derived from
experimental data [19]. To initiate the transport solvers, the initial equilibrium quantities, such as F , G, and H , are provided
by an inverse FBE solver, where the Jϕ is parameterized using polynomials based on ψN [20].
Fig.4 displays selected profiles from the transport solvers associated with time-evolving equilibrium quantities. In COTSIM,
jLHCD and jNBCD depend on (Te/ne) (PLH, PNB), respectively. Consequently, during the ramp-up phase (blue and cyan), jLHCD

and jNBCD are higher due to the elevated Te/ne compared to the flat-top phase (purple and magenta), as observed in the top-left
plot of Fig.4. This indicates that more injected power or lower ne is required to maintain a high fraction of non-inductive Ip
during the flat-top phase.
Conversely, in the bottom-left plot of Fig.4, we observe that the total deposited power density, Qe-dep, which encompasses both
Ohmic and auxiliary contributions, is reduced during the ramp-up phase. This reduction is primarily attributed to a decrease
in the Ohmic power component, driven by the smaller value of η during this phase. Meanwhile, the auxiliary power remains
constant. As a result, this reduction in power deposition leads to a lower p profile (Te ·ne), as illustrated in the left plot of Fig.6.
For the calculation of χe, this work employs the 1D Coppi-Tang transport model [21]. The similarity in χe values observed at
different time steps implies that changes in electron heat transport will likely have a minimal effect on profile variations.

3.4. Cross-checking of Parameters and Profiles Between Equilibrium and Transport Solvers

The validation of parameters and profiles across the FBE, MDE, and EHTE solvers plays a crucial role in the coupling process.
It is important to note that deviations in profiles can occur, particularly in regions near the plasma axis and boundary. This is

5
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FIG. 3. Selected evolutions of plasma boundaries (left) and coil currents (right).
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due to the requirement for a smooth Jϕ profile in the FBE solver and potential numerical errors resulting from approximations
with FDM at ρ̂ = 0 and ρ̂ = 1.
Fig.5 displays the selected q and θ values. It is evident that q values are well-matched for ρ̂ < 0.4, but a noticeable deviation
emerges from ρ̂ = 0.4 to the plasma boundary. This deviation aligns with the differences in θ values, as depicted in the right
panel of Fig.5. While the deviation in ψbd between FBE and MDE is compensated for as described in Section 2.3, it is worth
noting that the ψ value at ψN = 0 is unconstrained in the FBE solver, whereas the θ value at ρ̂ = 0 for the transport solver
is fixed at 0. This highlights the importance of deriving the targeted q95 from MDE rather than the FBE solver, as the latter
may potentially lose essential information at ψN = 1 under specific circumstances, such as the pedestal with high confinement
mode (H mode).
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FIG. 5. Evolution of q (left) and θ, i.e., −dψ
dρ̂ (right), compared between FBE and transport solvers.

Fig. 6 provides the selected p profiles for the FBE, MDE, and EHTE solvers. The inconsistencies observed in the p profiles
between the FBE and transport solvers are likely attributed to the smoothed p′(ψN ) in Jϕ. This smoothed p′(ψN ) is essential
to ensure stable convergence during iterations in the FBE solver, particularly at the plasma axis and boundary. To address this
limitation, future work may explore options such as refining the mesh, although this would increase computational time. It is
clear that more approaches should be investigated to effectively manage these challenges. The Shafranov shift, represented by
βp+li/2, is shown in the right panel of Fig.6. The similarity in βp+li/2 values indicates that deviations in profiles and global
parameters between the equilibrium and transport solvers are minimal, particularly during the ramp-up phase from 2 seconds
to 3 seconds, as evident in Fig.6.
The alignment of parameters and profiles between the equilibrium and transport solvers signifies the successful integration of
magnetic and kinetic controls. This integration demonstrates self-consistent simulations from the ramp-up to flat-top phases
for EAST, with exceptions occurring primarily near ρ̂ = 0 and ρ̂ = 1 due to sharp profile changes resulting from FDM
approximations. Moreover, this fast integrated simulation holds promise not only for scenario development but also for experi-
mental analysis during the interval between two shots. It offers versatility and practicality in both simulation and experimental
contexts.
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4. CONCLUSION AND FUTURE WORK

In this study, an integrated architecture has been developed in COTSIM by coupling 2D FBE and 1D transport solvers (in
terms of MDE and EHTE). Simulations with plasma dynamics between equilibrium and transport properties can be run in just
a few minutes using this coupling scheme. FDM with boundary conditions is employed by all the FBE and transport solvers to
solve the PDEs within the Matlab environment, a platform broadly used for control design at all stages of development. The
boundary condition for combining the 2D FBE and 1D transport solvers ensures self-consistency of ψ at the plasma boundary,
where possible deviations can be easily offset by IPFOhm through a certain set of coil currents. The EAST scenario, covering
the ramp-up to flat-top phases with 2 MW LHCD and 1 MW NBI heating and current drive, is studied using this integrated
scheme. The simulation is analyzed by benchmarks on parameters and profiles from both the equilibrium and transport solvers.
Self-consistent parameters and profiles are found by coupling solvers with different dimensions, enabling magnetic and profile
controls to be synthetically enabled for the design of future reactors such as ITER and FPP.
The coupling process relies on intensive calculations with iterations to solve the equilibrium equation. Therefore, there is a
high demand for surrogate approaches, such as neural networks, in the next steps to accelerate the FBE solver. Additionally,
embedding circuit equations and models for the vacuum vessel and passive plates within the FBE solver would enable the use
of coil voltages as actuators for magnetic control. To further enhance the integrated scheme’s capabilities, it is essential to
replace fixed profiles with time evolution models for non-inductive current density and heating sources. This expansion allows
for more comprehensive physics considerations. Lastly, developing closed-loop simulations with various scales of feedback
control laws for both slow magnetic control and fast kinetic control, utilizing available actuators like coil voltages and different
heating and fueling sources, holds significant value.
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