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Abstract

A novel hybrid Model Predictive Control (MPC) algorithm has been designed for simultaneous safety factor (q)
profile and stored energy (W ) control while incorporating the pulse-width-modulation constraints associated with
the neutral beam injection system. Regulation of the q-profile has been extensively shown to be a key factor for
improved confinement as well as non-inductive sustainment of the plasma current. Simultaneous control of W is
necessary to prevent the triggering of pressure-driven magnetohydrodynamic instabilities as the controller shapes
the q profile. Conventional MPC schemes proposed for q-profile control have considered the NBI powers as
continuous-time signals, ignoring the discrete-time nature of these actuators and leading in some cases to perfor-
mance loss. The hybrid MPC scheme in this work has the capability of incorporating the discrete-time actuator
dynamics as additional constraints. In nonlinear simulations, the proposed hybrid MPC scheme demonstrates
improved q-profile+W control performance for NSTX-U operating scenarios.

1. INTRODUCTION

Successful operation of reactor-grade tokamaks for long-pulse and steady-state scenarios requires improved
plasma confinement and high non-inductive current drive fraction. Achieving these scenarios necessitates careful
regulation of the safety factor (q) profile, which is closely related to the poloidal magnetic flux. As the q-profile
is shaped it is important to avoid pressure-driven magnetohydrodynamic instabilities, which can be accomplished
by simultaneously controlling the stored energy (W ). Synchronous regulation of both the q-profile and W often
requires actuation methods such as neutral beam injection (NBI). As the name implies, NBI injects high energy
neutral particles into the core of the plasma. Due to their neutral charge, these particles can penetrate deep
into the plasma, simultaneously adding current, heating, and torque. Consequently, NBI can be used to regulate
both the magnetic and kinetic properties of the plasma, making it an effective actuator for simultaneous control
of the q-profile and W . During a tokamak shot, the NBI’s power level behaves in an on/off boolean style of
operation. However many existing control schemes used for the safety factor profile control, such as Lyapunov
control [1], optimal control [2], and robust control [3], [4], assume that the input power level is a continuous
variable. This inconsistency is overcome using a continuous-to-discrete signal conversion process known as pulse-
width modulation (PWM). However, in certain cases neglecting the discrete on/off actuator dynamics in the control
synthesis can lead to a loss of control performance.

One control scheme that could possibly integrate the discrete nature of NBI operation is model predictive con-
trol (MPC). The MPC algorithm uses a model of the plasma dynamics to solve a real-time optimization problem
that determines the optimal actuator trajectories to achieve a specific target state. One of the benefits of MPC
is that it can handle time-variant actuator and state constraints. This gives it an advantage over other types of
control schemes when dealing with complex systems such as tokamak plasmas. Consequently, MPC has been
applied to a variety of plasma applications, from position and shape control [5], to plasma density control [6].
There have already been significant efforts to use MPC to control the safety factor profile or a related plasma
property [7], [8], [9], [10], [11]. However, like many other controllers, these efforts have relied on optimization
methods that assume continuous-time input and state variables. There has not been a significant effort to modify
this general MPC scheme in order to incorporate the discrete-time nature of the NBI actuators and avoid the PWM
conversion process. And yet, in other fields of engineering, MPC has been demonstrated to be an effective control
method for similar systems. This type of MPC, known as hybrid MPC, has modified the conventional MPC algo-
rithm to regulate systems that have both continuous-time and discrete-time components [12], [13], [14]. Hybrid
MPC has been successfully employed to various applications, from self driving cars [15], to energy management
for buildings [16]. There have been recent efforts to adapt this control method to density control in fusion plasma,
because it is particularly suited to handle the discrete nature of pellet injection [17], [18]. However, hybrid MPC
schemes have not been employed to deal with discrete NBI actuator constraints. This work seeks to use these
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methods to design a hybrid MPC that incorporates the discrete-time nature of the NBI powers into the controller
synthesis for simultaneous regulation of the safety factor profile and stored energy.

This paper is organized as follows. Section 2 details the control-oriented model used by the hybrid MPC to
predict the evolution of the safety factor profile and stored energy. Section 3 reviews the design of a traditional
MPC algorithm. Section 4 discusses the discrete constraints inherent to NBI actuators and the process of pulse-
width modulation. Section 5 describes the design of the hybrid MPC. Section 6 compares the performance of the
hybrid MPC to a continuous MPC in an NSTX-U scenario. Section 7 summarizes the work and discusses potential
future developments.

2. CONTROL-ORIENTED MODELING OF THE POLOIDAL MAGNETIC FLUX AND STORED ENERGY

In this section, a nonlinear model of the evolution of the poloidal magnetic flux and stored energy is introduced.
This model will serve as the basis for developing MPC algorithms discussed in subsequent sections.

The safety factor profile is closely related to the poloidal magnetic flux Ψ,
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where, Φ is the toroidal magnetic flux, Bφ ,0 represents the vacuum toroidal magnetic field at the tokamak’s major
radius R0, and ψ(t, ρ̂) is the poloidal stream function, i.e. ψ(t, ρ̂) = Ψ(t, ρ̂)/(2π). The variable θ is defined as the
spatial gradient of the poloidal magnetic flux, θ , ∂ψ

∂ ρ̂
. The symbol ρ̂ designates the normalized mean effective

minor radius, ρ̂ , ρ/ρb, where ρ ,
√

Φ/(Bφ ,0π) is the mean effective minor radius, and ρb is ρ at the plasma
boundary. Shown by (1), it is possible to control the evolution of the safety factor profile by controlling the spatial
gradient of the poloidal magnetic flux θ .

The evolution of the poloidal magnetic flux is modeled by a one-dimensional partial differential equation (PDE)
known as the magnetic diffusion equation (MDE). This equation is derived by combining Ampere’s law, Faraday’s
law, and Ohm’s law, while assuming that plasma properties are toroidally axisymmetric and constant along flux
surfaces [19]. Any variable that indexes the flux coordinate can be used as a spatial coordinate. In this work, the
normalized mean effective minor radius ρ̂ is the spatial coordinate. The MDE is represented as,

∂ψ

∂ t
=

η(Te)

µ0ρ2
b F̂2

1
ρ̂

∂

∂ ρ̂

(
ρ̂F̂ĜĤ
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+R0Ĥη(Te)

〈 j̄ni · B̄〉
Bφ ,0

,
∂ψ

∂ ρ̂
(t,0) = 0,

∂ψ

∂ ρ̂
(t,1) =−kI pIp(t), (2)

where, η(t, ρ̂) is the plasma resistivity, µ0 is the vacuum permeability, Te(t, ρ̂) is the electron temperature, B̄ is
the magnetic field, F̂(ρ̂), Ĝ(ρ̂), and Ĥ(ρ̂) are equilibrium parameters, j̄ni(t, ρ̂) is the noninductive current drive,
and 〈 〉 denotes the flux surface average. The term kI p is a constant defined as, kI p ,

−µ0
2π

R0Ĝ(1)Ĥ(1), and Ip is
the plasma current. The noninductive current drive is composed of the current source from the actuators (in this
case the NBIs) and the self-generated bootstrap current, jni = jnb + jbs. This equation is closed with a series of
control-oriented models for the plasma resistivity η , the electron temperature Te, the beam generated current jnb,
and the bootstrap current jbs. Details on these models can be found in [20]. By incorporating these equations and
taking the spatial derivative of the MDE, it is possible to obtain an equation for the evolution of the poloidal flux
gradient,
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subject to the boundary conditions θ(t,0) = 0, θ(t,1) =−kI pIp(t). In the above equation, C f1 , C f2 , C jl and C jbs are
functions of ρ̂ . The variables ũdi f f , ũ jl , and ũbs are time-dependent functions of Ip, the line averaged density (n̄e),
and the NBI powers Pnb,l , where the index l denotes the number of the NBI, with L being the total number of
available NBIs. These terms are explictly defined in [21], however in this work the relationship is succinctly
expressed as

ũ = g(up), (4)

where ũ= [ũdi f f , ũ j1, . . . ũ jL, ũbs]
T and up = [Ip, n̄e, Pnb,1, . . . Pnb,L]

T . Note that while both Ip and n̄e are time vary-
ing and could be used as inputs to control the q-profile, in this work these values are prescribed by a feedforward
controller, and only the NBI powers will be used for real-time feedback control.

The model in (3) is a PDE. To simplify, the model is discretized spatially using the finite difference method.
Define M spatial nodes at ρ̂m = (m− 1)/(M− 1), m ∈ [1,2, . . .M], where the variable θm denotes θ at ρ̂m. The
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FIG. 1. Schematic showing a state and input evolution that are chosen by the MPC over a given prediction horizon.

boundary conditions are used to directly solve for the exterior nodes θ1 and θM . The variable θθθ is a vector
containing θm at all interior nodes, i.e θθθ , [θ2,θ3, . . .θM−1]

T . By using the finite difference approximations of
derivatives, (3) is reduced from a PDE to a series of coupled ordinary differential equations (ODE’s), concisely
written as

θ̇θθ = fθ (θθθ ,u), (5)

where u , [Pnb,1, Pnb,2 . . . , Pnb,L]
T is the input vector and the notation ˙(·) denotes a time derivative. Note that the

feedforward terms Ip and n̄e are assumed to be constant, rendering the above equation autonomous.
The evolution of the plasma stored energy is modeled as an ODE of the form

Ẇ =− W
τe(t)

+Ptot(t), fw, (6)

where τe is the energy confinement time, which is calculated based on the IPB98(y,2) scaling law found in [22].
Additionally the total power is computed as,

Ptot =
L

∑
l=1

Pnb,l +Pohm−Prad , (7)

where, Pohm is the ohmic power, and Prad is the radiated power. By combining the discretized poloidal flux gradient
states and the total energy into a single vector, Z = [θ2, θ3, . . . , θM−1, W ], it is possible to succinctly write (5)
and (6) as

Ż = F(Z,u), (8)

where F = [ f T
θ
, fw]

T .

3. CONVENTIONAL MPC DESIGN

The model predictive control scheme uses finite-time optimization to achieve the desired target. As already men-
tioned, it is particularly suited to handle complex systems that contain time-varying constraints. The general
MPC algorithm contains three subroutines: prediction, optimization, and receding horizon implementation. The
prediction subroutine calculates the response of the system for a predetermined sequence of inputs over a finite
time frame, referred to as the prediction horizon. The optimization subroutine iterates on the system response
obtained from the prediction routine to solve a constrained optimization problem on a user-defined cost function
to determine the optimal sequence of inputs over the prediction horizon. In the receding horizon subroutine, the
input value corresponding to the first time step of the optimal input sequence is implemented in the system. At
each time step, the MPC algorithm employs these three interconnected subroutines to approach the target state,
a process illustrated in Figure 1. Note that in the figure, during the prediction subroutine the inputs are modified
over a period of time known as a control horizon, which can be either equal or shorter than the prediction horizon,
and then are kept constant.

The nonlinear model derived in Section 2 can be used to predict the states while implementing MPC. How-
ever, optimization using nonlinear models can be computationally expensive and therefore are often difficult to
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FIG. 2. Pulse-width modulation dynamics: (a) Conversion of a power request from the controller to a pulse time
request for one cycle time, (b) Conversion of a continuous signal to a discrete signal over an extended time period.

implement in a real-time optimization algorithm. To reduce the computational time of the optimization process,
the nonlinear system (8) can be linearized around a reference trajectory by employing first-order taylor series
expansion,

Ż ≈ F(Zre f ,ure f )+
∂F
∂Z

∣∣∣∣
Zre f ,ure f︸ ︷︷ ︸
Ã

(Z−Zre f )+
∂F
∂u

∣∣∣∣
Zre f ,ure f︸ ︷︷ ︸
B̃

(u−ure f ), (9)

where ure f and Zre f are constant reference vectors satisfying Żre f = F(Zre f ,ure f ) = 0. This gives a linear time-
invariant (LTI) model for the plasma dynamics. New variables ∆Z , Z− Zre f , and ∆u , u− ure f are defined.
Substituting these variables into (9) results in a linear system of the form

∆Ż = Ã∆Z(t)+ B̃∆u(t). (10)

The plasma control system for NSTX-U deals with discrete time steps. Therefore, for practical implementation,
the system is discretized on a temporal grid, tk = k∆t, k ∈ [0,1, . . . ], with ∆t being a constant time interval. This
converts the continuous-time system to

∆Zk+1 = A∆Zk +B∆uk, (11)

where A = ∆tÃ+ I and B = ∆tB̃. To avoid steady-state error, the system is converted into velocity form. This is
done by defining the following variables, d∆Zk+1 = ∆Zk+1−∆Zk, and d∆uk = ∆uk−∆uk−1 and then transforming
the system (11) to,

d∆Zk+1 = A d∆Zk +B d∆uk. (12)

The fixed-horizon optimal control problem formulation can now be written as follows,

min
d∆ui

J =
Np+k−1

∑
i=k

(d∆Zi+1−d∆Zi+1
tar )

T Q(d∆Zi+1−d∆Zi+1
tar )+(d∆ui)T R (d∆ui) (13)

s.t d∆Zi+1 = A d∆Zi +B d∆ui, d∆ui ≤ d∆ui ≤ d∆ūi, (14)

where i = k, . . . ,Np + k−1, and Np is the number of time steps in the prediction horizon. The goal is to minimize
the user defined cost function J that evaluates the deviation between the state d∆Zi+1 and the target state d∆Zi+1

tar
while simultaneously minimizing control effort. This cost function is subject to the state dynamics and each
control input is bounded between a minimum d∆ui and a maximum d∆ūi, which are known as the saturation
limits. Note that since these saturation limits depend on the input at the previous time-step, they are varying in
time. The variables Q and R are user-defined, positive definite weighting matrices. This constrained optimization
problem is solved in real-time using quadratic programming, which is overviewed in [7]. The solution to (13-14)
determines the optimal inputs at a specific time step tk.
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FIG. 3. The PWM filtering converts a continuous power level Pnb to a request time tpw. However, due to mechan-
ical constraints of NBIs, if tpw falls in either the yellow and dark blue region or the orange and light blue region,
it must be rounded to one of two discrete values. This introduces a piecewise nature to the range of tpw.

4. PULSE-WIDTH MODULATION

While it is possible to vary the power level of an NBI by varying the supplied voltage, an NBI can only take two
discrete actions, on or off, during a plasma shot. As previously stated, conventional MPC as well as other control
schemes do not consider this boolean nature of NBI operation, and the conversion of continuous-time value signals
from the controller to the discrete-time value signals used by the actuator is achieved by a process known as pulse
width modulation. Over a prescribed time interval known as a cycling time (tc), the NBI actuator is turned on for
a period of time within this interval (called the pulse width request time (tpw)) and turned off for the remaining
time. This is done in a way so that the average power within the cycling time equals the power level requested by
the controller. In this way, PWM converts a power level request into a time request for a power pulse,

tpw =
Pnb tc
Pmax

nb
, (15)

where Pnb is the requested power by the controller and Pmax
nb is the constant operational power level of the NBI.

Figure 2 shows the conversion of a continuous signal to a discrete signal through PWM. Note that, due to me-
chanical limitations of the NBIs, tpw can not take any value between 0 and tc. There are minimum on and off
times (ton

min, to f f
min ) for each NBI actuator, which limit the domain of tpw. Therefore, the request time is subject to

the piecewise dynamics shown in Figure 3. In this work, the minimum on and off times are assumed to be equal
to one-fourth of the cycle time,

tmin , ton
min = to f f

min =
tc
4
. (16)

Due to the PWM conversion as well as the restricted range of the request time due to tmin, there can be a significant
deviation between the power waveform requested by the controller and the power waveform of the actuator. In
some cases this can lead to reduced control effectiveness. Therefore, avoiding this PWM conversion process by
modifying the MPC algorithm into a hybrid MPC could potentially improve overall performance of the controller.

5. HYBRID MPC DESIGN

The hybrid MPC scheme works similarly to the conventional MPC scheme, with the addition of discrete con-
straints that correspond to the NBI actuator limitations. However, the inclusion of these constraints necessitates
the modification of the online optimization method. The model (11) is used to design the hybrid MPC. However,
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in this case, at a specific time step, each component ∆uk
l , for l = 1, . . . ,L, in the input vector ∆uk can take only one

of two values, i.e.,

∆uk
l ∈ {0−ure f ,l ,Pmax

nb −ure f ,l}, (17)

where ure f ,l represents the lth value in the reference input vector ure f . This input restriction imposes significant
limitations on the controller versatility, potentially reducing the possible target trajectories achievable by the con-
troller. However, this restriction can be utilized by the control scheme to reduce the computational effort during
the optimization. Now, instead of a region of continuous input variables possible at each time step, only two
possible values exist at each time step that require evaluation.

As previously discussed, along with the boolean operation of the inputs there is a minimum time an actuator
must remain on or off. Since the inputs to our equation is the NBI power level and not the request time, this
minimum time can be formulated as a constraint that depends on the previous values of the inputs. This requires the
controller to have memory of the previous inputs to the system. Specifically, the controller must have knowledge
of tsw

l , which is defined as the last time step where the controller switched the lth NBI on or off. Before optimizing

the inputs, the controller checks the condition tk− tsw
l < ton/o f f

min for each NBI. If the condition is valid, then the
controller assigns the input ∆uk

l = ∆uk−1
l , and ∆uk

l is removed from the optimization problem at time step tk.
Otherwise, the NBI input is incorporated into the finite-horizon optimal control problem, which can be formulated
as follows,

min
∆ui

J =
Np+k−1

∑
i=k

(∆Zi+1−∆Zi+1
tar )

T Q(∆Zi+1−∆Zi+1
tar )+(∆ui)T R (∆ui) (18)

s.t ∆Zi = A∆Zi +B∆ui, (19)

∆ui
l ∈ {0−ure f ,l ,Pmax

nb −ure f ,l}, (20)

if tk− tsw
l < ton/o f f

min , then ∆uk
l = ∆uk−1

l . (21)

This is similar to the traditional MPC problem formulation where a cost function (18) is minimized while con-
strained by the system dynamics (19). However, the inputs are now subject to a discrete constraint (20), and a
constraint based on previous inputs (21). These constraints account for the discrete nature of the NBIs. Conven-
tional optimization techniques, such as quadratic programming, cannot handle discrete variables in the system.
It is possible to implement minimization techniques that incorporate both discrete and continuous variables. In
this work, since all the inputs are discrete, a systemic search method was employed to identify the optimal input
combinations. The prediction horizon is assumed to be less than the minimum on/off time, i.e. tk+Np − tk ≤ tmin.
This is used to expedite the optimization process, since now each NBI is restricted to one on/off switch over the
prediction horizon. To simplify further, the control horizon Nc is chosen to be only one time step. The result of
this limitation is that the range of possible input combinations to be evaluated reduces to 2L. At each time step,
the linear model (11) was used to predict the state evolution for possible input combinations. The combination
of inputs that corresponded to the lowest cost function value was implemented for that time step, and then the
process was repeated at the following time step. This proved to be a simple and effective method at determining
the optimal input trajectories while maintaining acceptable computation times.

6. SIMULATION TESTING IN COTSIM

The hybrid MPC was evaluated against the continuous MPC algorithm in simulation studies carried out using the
Control Oriented Tokamak SIMulator (COTSIM). COTSIM combines the magnetic diffusion equation with the
heat-transport equation to model the evolution of both kinetic and magnetic properties of a tokamak plasma. These
simulations were run in H-mode with a fixed temperature pedestal, and the plasma equilibrium was assumed to
be constant. The tests were conducted on an NSTX-U scenario based on TRANSP shot 142301K91. All six of
NSTX-U’s NBIs were used in this simulation. The minimum on/off time for each NBI actuator was chosen to
be tmin = 0.1 seconds, and the cycle time was chosen as tc = 0.4 seconds. The feedback controllers were turned on
after 0.5 seconds. Figure 4 shows the safety factor and stored energy evolutions for the simulation, and Figure 5
shows a selection of actuator powers. In Figures 4 and 5, the red line indicates the feedforward trajectories (where
no feedback controller is employed) and the black line designates the target. The blue line shows the system
response using a continuous MPC operated on a hypothetically continuous NBI, while the pink line represents
the MPC performance on a realistic NBI using PWM. Finally, the green line indicates the hybrid MPC response.
The hybrid MPC achieves the target q-profile and W with minimal error while the target is rapidly changing in
time and when it is relatively constant, indicating it’s effectiveness throughout a tokamak shot. The conventional
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MPC is able to follow the target with almost no error. However, once PWM is applied, the conventional MPC is
noticeably less effective, having a delayed response to the target and in some cases exhibiting steady state error.
Additionally, the conventional MPC+PWM has significant oscillatory behavior, which is greatly reduced by the
hybrid MPC. The performance of this conventional MPC+PWM approach is highly sensitive to the constraints
assumed for the PWM algorithm. Overall, the hybrid MPC demonstrates that it is able to reach both targets, and
has noticeably improved performance compared to a conventional MPC after the PWM conversion.

7. CONCLUSIONS AND FUTURE WORK

A hybrid MPC scheme was developed to regulate the safety factor profile and stored energy. The proposed MPC
improves upon the traditional MPC schemes by incorporating discrete constraints that account for the boolean na-
ture of the neutral beam injectors into the problem formulation. These discrete constraints required new techniques
to be developed to determine the optimal inputs. In simulation testing on an NSTX-U scenario using COTSIM,
the hybrid MPC demonstrated significant improvement over a traditional continous MPC once pulse-width mod-
ulation was applied. Future work can include simulation testing on a version of COTSIM that incorporates more
plasma dynamics such as a time-varying plasma equilibrium and the addition of a neural-network surrogate model
for MMM to model the anomalous diffusivities. Additionally, the hybrid MPC can be expanded to include the
plasma current as an input. Furthermore, other optimization techniques for hybrid systems such as cutting plane
methods or multiparametric programming can be pursued to potentially improve the optimization process or move
the bulk of the computation offline. This could enable lengthening the control horizon. Finally, this hybrid MPC
scheme could be modified to control other plasma profiles such as the rotation profile or temperature profile.
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