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Abstract

The plasma control system (PCS) of next-generation tokamaks like ITER and the Fusion Pilot Plant (FPP) must
simultaneously regulate multiple plasma properties. Control solutions to drive individual plasma properties to their targets have
been and are being developed over the years. The input commands of each control algorithm must be translated into physical
actuator requests such as the auxiliary drive powers and deposition locations before implementation. Any such conversion
must account for the complex coupling between the different plasma properties. The possibility of having an individual
physical input affecting multiple plasma properties makes the input conversion even more challenging. This work proposes
a tokamak and scenario-agnostic actuator-sharing algorithm that can convert individual controller commands into physical
actuator requests while accounting for the constraints introduced by coupled plasma properties. The proposed algorithm
does not rely on real-time optimization, the most commonly used method for actuator sharing and allocation, which can be
computationally expensive. Furthermore, the algorithm is designed to handle real-time changes in controller objectives and
actuator availability. The effectiveness of the proposed algorithm has been demonstrated using nonlinear DIII-D tokamak
simulations in the Control Oriented Transport SIMulator (COTSIM).

1. INTRODUCTION

Advanced tokamak scenarios in next-generation tokamaks like ITER and Fusion Pilot Plant (FPP) will require
simultaneous regulation of multiple plasma properties by prescribing physical actuator requests, such as the auxil-
iary drive powers and deposition locations, to achieve pre-determined target values. Synthesizing a single control
algorithm to regulate all the plasma properties can be challenging due to the high dimensionality of the control
problem and the complex coupling between the different plasma properties. An alternative approach is to de-
sign multiple control algorithms, each regulating one or more plasma properties, and integrate them by using
an actuator-sharing algorithm (ASA). In this approach, each control algorithm prescribes a virtual command to
achieve its control objective. The ASA combines these virtual commands and converts them into physical actuator
requests. Figure 1 gives an illustration of the role of the ASA block in the PCS. This two-step approach consid-
erably simplifies the control synthesis since the coupling between the different properties and actuator constraints
is not incorporated into the individual control problem. Instead, these aspects are handled by the ASA. Further-
more, since the tokamak-specific constraints are incorporated into the ASA, certain control algorithms tested on
present-day tokamaks could be implemented on next-generation tokamak with an ASA. In addition, ASAs could
be designed to handle off-normal events and actuator failures, which is essential for next-generation tokamaks.
Thus, next-generation tokamaks could benefit from the development of robust ASAs.

Emphasis on actuator-sharing algorithms and management strategies has increased in recent years [1, 2, 3].
A review of existing solutions reveals two distinct classes of ASAs - static and dynamic. Static ASAs treat the
relation between virtual commands and physical actuator requests as algebraic equations [4, 5]. Most existing
static ASAs generally rely on real-time optimization to compute the physical actuator requests. For instance, the
algorithm given in [4] uses mixed-integer quadratic programming. Some existing works on simultaneous control
of plasma scalars and profiles have also implemented a static actuator-sharing algorithm, sometimes tailored to
a specific control problem [5, 6, 7]. For example, linear quadratic programming is used in [5] to convert virtual
commands into physical requests for the plasma burn control problem. Similarly, quadratic programming is also
used to integrate two specific plasma controllers in [6, 7]. Even though the optimization algorithms in these
articles are tailored to particular plasma control problems, they can be generalized and treated as static ASAs.
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FIG. 1. Illustration of the ASA block in the PCS.

Unlike static ASAs, dynamic algorithms use differential equations to prescribe physical actuator requests. An
example of dynamic ASA available in the plasma control literature is [5].

Both static and dynamic ASAs offer unique sets of advantages. Static ASAs are much simpler to develop since
they rely on algebraic constraints. Furthermore, static ASAs can be adapted to a broad class of plasma control
problems and designed to handle events like actuator failure. However, depending on the optimization algorithm
used and the number of available physical actuators, static ASAs can be computationally expensive. On the other
hand, dynamic ASAs are more computationally efficient, as their implementation relies on solving differential
equations at every time step. Further, dynamic ASAs can be designed to be optimal over the entire discharge
rather than a single-time instant. However, dynamic ASAs are much more challenging to design and implement
for a broad class of plasma control problems. The development of an ASA combining the flexibility of static
ASAs with the computational efficiency of dynamic ASAs could prove beneficial for next-generation tokamaks.

In this work, an improved static actuator-sharing algorithm (ASA) has been developed to prescribe physical
actuator requests based on individual input commands generated by multiple controllers designed to regulate
different plasma properties. The proposed ASA is designed to (i) handle a wide variety of plasma controllers and
tokamaks, (ii) not rely on solving an optimization problem in real-time, (iii) account for the coupling between
different plasma parameters and actuators, and (iv) deal with control objective & actuator availability changes.
The ability to handle multiple combinations of plasma controllers while being tokamak-independent allows the
algorithm to be implementable in different scenarios across distinct machines. Thus, a new ASA does not need to
be designed each time the scenario objective is changed. Also, the proposed ASA relies on evaluating at each time
step a closed-form equation that represents the solution of an optimization problem. In the optimization problem,
the cost function measures the total physical actuators’ effort, and the constraints are the equations that account
for the coupling between the different virtual and physical inputs. During the optimization problem formulation,
it is assumed that the coupling between virtual and physical inputs can be represented in the form of linear or
linearizable algebraic equations. To ensure the resulting physical input values computed by the ASA satisfy the
saturation limits, the algorithm iteratively evaluates a modified version of the closed-form equation until a feasible
solution is achieved. The resulting solution may be suboptimal; however, the algorithm is computationally efficient
because the number of iterations is bounded by the number of physical actuators. In addition, the ASA accounts for
the coupling of plasma properties (or the virtual inputs) and physical actuators. For instance, a heating and current
drive simultaneously affects the evolution of the safety factor profile and the electron temperature profile. The
algorithm accounts for such coupling by treating the coupling relation as algebraic constraints in the optimization
problem. Besides accounting for coupling, the ASA is designed to accommodate changes in the number of virtual
commands and physical actuators. Such a design allows the ASA to be implementable in a scenario where the
control objectives and actuator availability can change in real time.

The sections in this paper are organized as follows. Section 2 explains the static actuator allocation problem
and formulates the corresponding optimization problem. The closed-form solution to the optimization problem
when the actuator saturation limits are ignored is derived. The methodology and the algorithm to incorporate
saturation limits is discussed. Section 3 goes over the modifications necessary to the algorithm proposed in
Section 2 to handle changes in control objectives or actuator availability. The simulations results of three different
test cases are presented in Section 4. Finally, Section 5 summarizes the contributions of this work.
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2. ACTUATOR ALLOCATION PROBLEM FORMULATION AND ALGORITHM DESIGN

2.1. Problem Formulation

Consider a tokamak scenario in which there are multiple controllers that are trying to regulate n different plasma
states. Suppose that the control algorithms prescribe a vector v ∈ Rm of virtual commands to regulate the n
plasma states at each time step tk. Furthermore, suppose that there are l physical actuators, whose physical values
are represented by the vector p ∈ Rl, available for control at time instant tk. Each physical actuator request pi,
where i represents the index of the vector p, must satisfy the saturation limits defined by the set

[
p
i
, p̄i

]
. Suppose

the relation between the virtual commands v and physical actuator requests p is given by the nonlinear equation

A(v)p = b(v), (1)

where A : v 7→ A(v) ∈ Rm×l is a nonlinear matrix function and b : v 7→ b(v) ∈ Rm is a nonlinear vector
function. Note that the number of algebraic constraints in (1) is equal to the number of virtual commands. Then,
the problem of actuator sharing can be expressed as the selection of the physical actuator request vector p in
order to minimize the total actuator effort, subject to the constraints of satisfying the saturation limits and the
constraint (1). Mathematically, this can be formulated as an optimization problem as follows. At each time t,
given a vector of virtual inputs v(t),

argmin
p(t)

f(p(t)) = argmin
p(t)

pT (t)Qp(t) (2)

subject to the constraints

A(v(t))p(t) = b(v(t)), (3)

p(t) ∈
[
p
1
, p̄1

]
× . . .×

[
p
l
, p̄l

]
. (4)

In the above formulation, the term Q = diag(q1, . . . , ql) is a diagonal matrix of weights q1, . . . , ql. Thus, the cost
function f is a measure of the actuator efforts with the relative importance of each actuator defined by Q.

Remark 1 The command-request relation presented in (1) assumes that this relation is linear in the physical
actuator request vector p. In cases where this relation is nonlinear, it can be linearized with respect to the
reference vector ptk−1

, which represents the physical actuator requests computed at the previous time step. This
linearization results in an equation of the form (1). It is important to note that this linearized relationship is
updated at each time step to account for changes in the reference values. This approach is effective because it
aligns with the nature of static ASA proposed in this work, which handles instantaneous values.

2.2. Actuator Allocation Without Saturation Limits

In the optimization problem formulated above, the command-request relation (1) defines an equality constraint
while the saturation limits define a series of inequality constraints. Ignoring the inequality constraints simplifies
the optimization problem to a form where the solution can be explicitly derived. The following analysis dis-
cusses the derivation of this solution, which will serve as the basis for solving the original problem formulated in
Subsection 2.1.

For a given vector v(t) at time t, define g as g(p) = Ap − b and gi as the ith component of the vector.
Define the Lagrangian as L(p,λ) = f(p)− λT g(p), where λ = [λ1, . . . , λm]

T ∈ Rm is the vector of Lagrange
multipliers. According to the theory of Lagrange multipliers [8], if a local minimum p∗ exists, and the vectors
∇pg1, . . . ,∇pgm are linearly independent, then there exists λ∗ such that

∇pf(p
∗)−∇g(p∗)

T
λ∗ = 0, (5)

g(p∗) = 0. (6)

In the above discussion, the notation ∇p denotes the gradient vector with respect to p, and ∇g(p∗) is matrix
whose rows are the gradient vectors ∇pg1(p

∗), . . . ,∇pgm(p∗), i.e.,

∇g(p∗) =
[
∇pg1(p

∗) . . . ∇pgm(p∗)
]T

. (7)

From the definitions of f and g given above, it is evident that ∇pf(p
∗) = 2Qp∗ and ∇g(p∗) = A. Sub-

stituting these terms into (5) yields p∗ = 1
2Q

−1ATλ∗. Substituting the expression for p∗ into (6) results in
λ∗ = 2

(
AQ−1AT

)−1
b. Substituting the expression for λ into the expression for p∗ gives

p∗ = Q−1AT
(
AQ−1AT

)−1
b, (8)

which is the optimal vector physical actuator values that satisfy the command-request relation (1).

3
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2.3. Incorporating Saturation Limits Using Iterative Approach

To incorporate saturation limits, analysis can be carried out with inequality constraints. However, this makes the
overall analysis convoluted. Alternatively, a simple iterative algorithm, that is suitable for PCS implementation,
is proposed in this section. Before proceeding further, note that the optimization problem formulated in Subsec-
tion 2.1 may not have a feasible solution. In other words, no combination of physical actuator values p satisfies the
constraint (3) while staying within the saturation limits. To relax the constraints and avoid such cases, slack vari-
ables s = [s1, . . . , sm]T are introduced into the optimization problem. Define Q̂ = diag(q1, . . . , ql, qs1 , . . . , qsm)
with qsj >> qi > 0 for i = 1, . . . , l and j = 1, . . . ,m. In addition, define Â = [A, I], where I ∈ Rm×m is
an identity matrix, and pa = [pTsT ]T . The modified optimization problem is framed as follows. At each time t,
given a vector of virtual inputs v(t),

argmin
pa(t)

f(pa(t)) = argmin
pa(t)

pT
a (t)Q̂pa(t) (9)

subject to the constraints

Â(v(t))pa(t) = b(v(t)), (10)

pa(t) ∈
[
p
1
, p̄1

]
× . . .×

[
p
l
, p̄l

]
× (−∞,∞)× . . .× (−∞,∞). (11)

In the above formulation, one slack variable is added to the left hand side of each constraint equations prescribed
by the controller. Unlike the problem given in Subsection 2.1, a solution always exists for the above optimization
problem since the slack variables are allowed to take any value in (−∞,∞). The closed-form equivalent of (8)
for the minimization of 9 while satisfying 10 is given by

p∗
a = Q̂−1ÂT

(
ÂQ̂−1ÂT

)−1

b, (12)

To ensure p∗
a satisfies the saturation limits given by (11), an iterative approach, summarized below, is used.

While the resulting solution may sometimes be suboptimal, the iterative algorithm is computationally efficient
and straightforward, relying solely on evaluating closed-form equations, with maximum iterations limited to the
number of physical actuators.

(i) Determine the physical actuator values by solving an unconstrained optimization problem defined in (12).
This provides us with an initial solution candidate for p∗

a.

(ii) The candidate solution is then checked to determine whether any of the computed values exceed the satu-
ration limits. If any actuator value breaches these limits, their respective value is set to its corresponding
saturation limit, ensuring that it does not exceed the prescribed constraints.

(iii) After adjusting the over-limit values, the optimization problem is redefined. In this revised problem, only the
physical actuator requests corresponding to the unsaturated terms are taken into account in the optimization,
excluding those set to their saturation limits.

(iv) The optimization process is continued iteratively until a solution that satisfies both the optimization objective
and the saturation constraints is reached.

Remark 2 The value of the slack variable si obtained from the above algorithm can be viewed as the extent to
which the ith constraint equation in (1) is violated. By default, the optimization problem tries to set the slack
variable values as low as possible because of their high cost. However, if the algorithm generates high values of
slack variables, then it can be concluded that the individual controllers are placing demands that are beyond the
capabilities of the physical actuators.

3. HANDLING CHANGES IN CONTROL OBJECTIVES AND ACTUATOR AVAILABILITY

The algorithm described in Subsection 2.3 does not accommodate changes in control objectives or actuator avail-
ability. However, the ensuing discussion demonstrates that such variations can be effectively managed by updating
the terms within the original optimization problem presented in Subsection 2.1 in certain plasma control scenarios.
Intuitively, this update process involves eliminating terms in Q, A, b and p that correspond to inactive objectives
and actuators using the control objective adjustment matrix C and actuator status matrix S. The following discus-
sion describes how these matrices are constructed.
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Suppose that the term r represents the maximal set of controllers available in a tokamak scenario. Each
controller prescribes mi virtual commands vmi

(i = 1, . . . , r) such that m1 + . . .+mr = m ≥ r. Also, assume
that the command-request relation corresponding to each controller does not depend on commands prescribed by
other controllers. In other words, the command-request relation in (1) has the form

A(v)p =

Am1
(vm1

)
...

Amr (vmr )

p =


bm1

(vm1
)

...
bmr (vmr )

 = b(v). (13)

Define the diagonal matrix Ĉ as Ĉ = diag(c1Im1
, . . . , crImr

) ∈ Rm×m, where ci is a scalar and Imi
is an

identity matrix of dimension mi. Specifically, the scalar ci assumes a value of 1 when the controller is active and
0 when it is not. The control objective adjustment matrix C is then constructed by combining only the non-zero
rows of Ĉ without changing their order. Thus, if the number of control objectives at time tk is equal to mk ≤ m,
then C is a mk ×m dimensional matrix.

The actuator status matrix is built using a similar method. Recall that the term l defined in Subsection 2.1 is
the maximum number of actuators available for control. Define the matrix Ŝ as Ŝ = diag(s1, . . . , sl) ∈ Rl×l,
where sj = 1 when the actuator j is available, and sj = 0 otherwise. The actuator status matrix S is built by
combining non-zero columns of the matrix Ŝ without changing the column order. Thus, if the number of active
actuators at time tk is lk ≤ l, the matrix S has dimensions l × lk.

To incorporate the effects accounted for by the control objective adjustment matrix and actuator status matrix
into the static ASA, we introduce new terms denoted as Ǎ, Q̌, b̌, and p̌, defined as follows:

Ǎ = CAS, Q̌ = STQS, b̌ = Cb, p̌ = Sp. (14)

By solving the optimization problem defined with the above set of new terms, the ASA can effectively adapt to
changes in control objectives and actuator availability. Note that the matrices C and S are updated whenever there
is a change in control objectives or actuator availability. Thus, the transformation defined in the above equations
is not carried out at every time step.

4. ALGORITHM TESTING USING NUMERICAL SIMULATIONS

The effectiveness of the ASA has been demonstrated using nonlinear DIII-D tokamak simulations in the Control
Oriented Transport SIMulator (COTSIM) [9]. Three cases were considered: (i) simultaneous control of the safety
factor gradient at a rational surface and total thermal energy of the plasma [10], (ii) simultaneous control of the
safety factor minimum and total thermal energy [11], (iii) simultaneous control of the safety factor minimum and
total thermal energy with an arbitrary actuator failure. The following discussion presents the simulations results.

4.1. Case 1: Safety Factor Gradient and Total Energy Control

The first case considers the problem of simultaneous control of the safety factor q profile gradient at a given rational
surface and the total thermal energy W of the plasma. It is well known that instabilities like neoclassical tearing
modes can appear at regions where the q profile takes rational values. In scenarios where rational values cannot
be avoided, controlling the slope of the safety factor profile might prevent or delay the onset of such instabilities
[12]. Similarly, total energy is another plasma property that is related to the MHD stability of the plasma. The
evolution of both properties is coupled. Using the ASA proposed in this work, the simultaneous control of these
two plasma properties can be made possible.

FIG. 2. Illustration of the safety factor minimum and safety factor gradient approximation

5
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FIG. 3. Case 1: (a) - Virtual inputs (left), (b) - Actuator requests (center), (c) - Closed-loop trajectories (right).

The safety factor gradient at a given rational surface can be controlled by regulating two points around the
surface [10]. Figure 2 gives a graphical illustration of this idea. Suppose the gradient has to be controlled at q = 2.
It can be achieved by controlling the difference qD = qR − qL, where qR and qL are the safety factor values at the
right and left control points ρR and ρL respectively. Given a target gradient q̄D, the error q̃D = qD − q̄D satisfies

˙̃qD = ĉR(t, Ptot, qR)− ĉL(t, Ptot, qL)− ˙̄qD︸ ︷︷ ︸
čq

+gD(t, Ptot)
Tufb(t), (15)

where ĉi, i = R,L, are nonlinear functions of total power Ptot and corresponding safety factor value qi, ufb

is the vector of feedback auxiliary drive powers, gD is the vector that account for the spatial deposition of the
auxiliary drives. A detailed discussion on the derivation of the above model can be found in [10]. Suppose
there are two NBI and two EC clusters available for control, then ufb = [PNBI,1, PNBI,2, PEC,1, PEC,2]

T and
Ptot = PNBI,1 + PNBI,2 + PEC,1 + PEC,2 is the feedback total power. On the other hand, given a target total
energy W̄ , the model for total energy error W̃ is given by

˙̃
W = − W

τE(t, Ptot)
+ Ptot,ff − Ẇ︸ ︷︷ ︸
čW

+Ptot, (16)

where τE is the energy confinement time and Ptot,ff is the feedforward total power. A detailed discussion of the
above model can be found in [13]. Define virtual inputs v1 and v2 as v1 = gD(t, Ptot)

Tufb(t) and v2 = Ptot,fb.
The command-request relation can be written as

[
gD,1(t, v2) gD,2(t, v2) gD,3(t, v2) gD,4(t, v2)

1 1 1 1

]
PNBI,1(t)
PNBI,2(t)
PEC,1(t)
PEC,2(t)

 =

{
v1(t)
v2(t)

}
, (17)

which has the form shown in (1). To drive the errors q̃ and W̃ to 0, feedback linearization is used [13], a control
approach where the virtual inputs are selected such that the nonlinear terms in (15) and (16) are canceled while
stable linear terms are added. The choice of feedback linearizing inputs that drive the error to 0 is given by

v1 = −čq − kq,pq̃D − kq,I

∫ t

0

q̃D, v2 = −čW − kW,pW̃ − kW,I

∫ t

t0

W̃dt, (18)

where kq,p, kq,i, kW,p, kW,i > 0 are controller gains. Substitution of the above virtual inputs into (15) and (16)
cancels the nonlinear terms čq and q̌W and introduces stable linear terms. Lyapunov analysis can be used to prove
that the closed-loop system is stable [14].

Closed-loop simulations were carried out in COTSIM for a DIII-D tokamak scenario using the controllers de-
fined in (18) and the static ASA proposed in Subsection 2.3. The DIII-D configuration information corresponding
to shot number 147634 was used. To evaluate the controller and ASA’s capacity to handle large errors, the satura-
tion limits of the auxiliary powers PNBI,1, PNBI,2, PEC,1, PEC,2 were set as 12 MW, 6 MW, 3.5 MW, 3.5 MW,
respectively. Figure 3 presents the simulation results for this case. The gray background in the subfigures denotes
the period of plasma discharge when the feedback controller and the ASA are active. Figure 3 (a) shows the virtual
inputs v1, v2 generated (independently) by the safety factor gradient and total energy controllers, respectively. The
actuator requests (NBI and EC H&CD powers) that are computed from the virtual inputs by the ASA are shown in
Figure 3 (b). Finally, Figure 3 (c) shows the performance of closed-loop trajectories (safety factor gradient qD and
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FIG. 4. Case 2: (a) - Virtual inputs (left), (b) - Actuator requests (center), (c) - Closed-loop trajectories (right).

total energy W ) when the actuator requests generated by the ASA are implemented. The simulation results show
that the ASA is effective in allocating the necessary actuation to achieve both control objectives. However, the
steady-state error in the closed-loop trajectories shows that the integral gains kq,i and kW,i could be tuned further.

4.2. Case 2: Safety Factor Minimum and Total Energy Control

This case considers the simultaneous control of qmin and W . The safety factor minimum qmin is another plasma
property that is linked to the MHD stability of the plasma [11]. Figure 2 gives a illustration of the safety factor
minimum qmin and its location ρmin. Safety factor minimum control can be achieved by regulating θqmin , the
poloidal flux gradient value at ρmin, since both are related [11]. Thus, the model for safety factor minimum is

˙̃
θqmin

(t) = ĉ(t, Ptot, θqmin
)− ˙̄θqmin

(t) + h(t, Ptot)
Tufb(t), (19)

where θ̄qmin is the target, θ̃qmin = θqmin − θ̄qmin , ĉ is a nonlinear function of Ptot, θqmin . In this case, 2 NBI
clusters and 1 EC cluster were used. Thus, ufb is defined as ufb = [PNBI,1, PNBI,2, PEC ]

T and h(t, Ptot) is the
vector that accounts for the current drive deposition profiles. The derivation of the above model is given in [11].

Using the procedure discussed in Subsection 4.1, a feedback linearizing controller was designed for safety
factor minimum control. Detailed step-by-step procedure can be found in [11]. Nonlinear simulations were carried
out using COTSIM. The DIII-D configuration utilized for the simulations discussed in Subsection 4.1 was used. In
the simulations, the saturation limits for PNBI,1, PNBI,2, PEC were set as 13 MW, 13 MW, 4.5 MW, respectively,
to test the closed-loop performance in scenarios with significant deviations from the target. Figure 4 (a) and (b)
show the virtual inputs computed by the controller and the physical inputs computed by the proposed ASA,
respectively. Figure 4 (c) shows the closed-loop trajectories of the safety factor minimum and the total energy.
The gray background depicts the period of active feedback control. As evident, the controllers and the static ASA
are able to achieve the desired targets.

4.3. Case 3: Safety Factor Minimum and Total Energy Control With Actuator Failure

The ability of the proposed ASA to handle the actuator failure was tested for the safety factor minimum and
total energy control problem. All model and control parameters used for carrying the simulations discussed in
Subsection 4.2 were used for this case. An artificial EC failure is introduced at 3.5 seconds. The simulations
results obtained from COTSIM are shown in Figure 5. The gray background in the figure shows the time when
the controller is active. The light gray background corresponds to the period when all actuators are available. On
the other hand, the dark gray background corresponds to the period when the EC is inactive. Figure 5 (a) and (b)
show the virtual inputs generated by the controller and the phyical powers generated by the ASA, respectively.
The figures show that the ASA compensates for EC failure by increasing the NBI powers. Figure 5 (c) shows the
closed-loop safety factor minimum and total energy trajectories. It is clear that the safety factor minimum follows
the target even when the actuator fails. On the other hand, actuator failure causes deviation of the total energy
from the target. However, the closed-loop trajectory immediately recovers and converges to the target.

5. CONCLUSION

An enhanced static actuator-sharing algorithm (ASA) has been developed to prescribe physical actuator requests
based on individual input commands generated by multiple plasma controllers. The proposed ASA is computa-
tionally efficient and can accommodate various plasma controllers and tokamak configurations. Furthermore, the
ASA can also handle real-time changes in control objectives and actuator availability. The capabilities of the ASA

7
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FIG. 5. Case 3: (a) - Virtual inputs (left), (b) - Actuator requests (center), (c) - Closed-loop trajectories (right).

have been demonstrated using nonlinear simulations. Future studies can focus on incorporating actuator lag and
experimental testing of the proposed ASA.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy
Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-SC0010661,
DE-SC0021385 and DE-FC02-04ER54698.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

REFERENCES

[1] KUDLACEK, O., TREUTTERER, W., JANKY, F., SIEGLIN, B., and MARASCHEK, M., Actuator management devel-
opment on ASDEX-Upgrade, SI:SOFT-30 146 (2019) 1145.

[2] VU, N. T., BLANKEN, T., FELICI, F., et al., Tokamak-agnostic actuator management for multi-task integrated control
with application to TCV and ITER, Fusion Engineering and Design 147 (2019) 111260.

[3] TREUTTERER, W., HUMPHREYS, D., RAUPP, G., et al., Architectural concept for the ITER Plasma Control System,
Proceedings of the 9th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion
Research 89 (2014) 512.

[4] MALJAARS, E. and FELICI, F., Actuator allocation for integrated control in tokamaks: Architectural design and a
mixed-integer programming algorithm, Fusion Engineering and Design 122 (2017) 94.

[5] GRABER, V. and SCHUSTER, E., Nonlinear burn control in ITER using adaptive allocation of actuators with uncertain
dynamics, Nuclear Fusion 62 (2022) 026016.

[6] PAJARES, A. and SCHUSTER, E., Integrated robust control of the global toroidal rotation and total plasma energy in
tokamaks, IEEE Transactions on Plasma Science 48 (2020) 1606.

[7] PAJARES, A., SCHUSTER, E., THOME, K. E., et al., Integrated control of individual plasma scalars with simultaneous
neoclassical tearing-mode suppression, Nuclear Fusion 62 (2022) 036018.

[8] HESTENES, M. R., Optimization Theory: The Finite Dimensional Case, 1975.
[9] PAJARES, A., Integrated Control in Tokamaks Using Nonlinear Robust Techniques and Actuator Sharing Strategies,

PhD thesis, Lehigh University, Bethlehem, PA, USA, 2019.
[10] PARUCHURI, S. T. and SCHUSTER, E., Nonlinear control of safety factor gradient in tokamaks using spatially variable

electron cyclotron current drives, Fusion Engineering and Design 194 (2023) 113914.
[11] PAJARES, A. and SCHUSTER, E., Robust nonlinear control of the minimum safety factor in tokamaks, in 2021 IEEE

Conference on Control Technology and Applications (CCTA), pp. 753–758, 9.
[12] TURCO, F., LUCE, T., SOLOMON, W., et al., The causes of the disruptive tearing instabilities of the ITER baseline

scenario in DIII-D, Nuclear Fusion 58 (2018) 106043.
[13] PAJARES, A. and SCHUSTER, E., Current profile and normalized beta control via feedback linearization and Lyapunov

techniques, Nuclear Fusion 61 (2021) 036006.
[14] KHALIL, H. K., Nonlinear Systems, Pearson, 3rd edition, 2002.


	Introduction
	Actuator Allocation Problem Formulation and Algorithm Design
	Problem Formulation
	Actuator Allocation Without Saturation Limits
	Incorporating Saturation Limits Using Iterative Approach

	Handling Changes in Control Objectives and Actuator Availability
	Algorithm Testing Using Numerical Simulations
	Case 1: Safety Factor Gradient and Total Energy Control
	Case 2: Safety Factor Minimum and Total Energy Control
	Case 3: Safety Factor Minimum and Total Energy Control With Actuator Failure

	Conclusion

