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Abstract

ITER will be the first tokamak to sustain a fusion-producing, or burning, plasma. If the plasma temperature were to inadver-
tently rise in this burning regime, the positive correlation between temperature and the fusion reaction rate could establish a
destabilizing positive feedback loop. Careful regulation of the plasma’s temperature and density, or burn control, is required
to prevent these potentially reactor-damaging thermal excursions, neutralize disturbances and improve performance. In this
work, a Lyapunov-based burn controller is designed using a full zero-dimensional nonlinear model. An adaptive estimator
manages destabilizing model uncertainties in the plasma confinement properties and the particle recycling conditions (caused
by plasma-wall interactions). The controller regulates the plasma density with requests for deuterium and tritium particle
injections. In ITER-like plasmas, the fusion-born alpha particles (and neutral beam particles) will primarily heat the plasma
electrons, resulting in different electron and ion temperatures in the core. By considering separate response models for the
electron and ion energies, the proposed controller can independently regulate the electron and ion temperatures by requesting
that different amounts of auxiliary power be delivered to the electrons and ions. To meet the controller’s requested virtual
control efforts (the electron heating, ion heating, deuterium fueling and tritium fueling), ITER will have access to the following
six actuators: an ion cyclotron heating system, an electron cyclotron heating system, two neutral beam heating systems, a D
injector that fires 100% D pellets, and a DT injector that fires 10%D-90%T pellets. An optimal control allocation algorithm
is developed to map the four requested virtual control efforts to the six actuators. Adaptive estimation is employed to handle
uncertainties in the actuator efficiencies and the other actuator-specific parameters. Furthermore, the adaptive allocator is de-
signed to manage uncertain actuator dynamics. The proposed adaptive burn controller and control allocator are evaluated in a
simulation study.

1. Introduction
The regulation of temperature and density in a fusion-producing (burning) plasma in ITER will require the use
of burn control algorithms that request the correct amounts of external heating and fueling for equilibrium sta-
bilization. Because the fast ions introduced from neutral beam injection (NBI) and fusion reactions unevenly
heat the plasma ion and electron populations [1, 2], the ion and electron temperatures will be uncoupled. In
previous work [3], the authors used Lyapunov techniques [4] to design a nonlinear burn controller based on a
two-temperature plasma model. This model assumed that the ion and electron temperatures were proportional
through a constant parameter, and the burn controller regulated both temperatures with one control law for the
total auxiliary heating. Complex phenomena, such as the ion-electron temperature relationship, were modeled
with some level of uncertainty. Uncertainty is modeled by assuming that certain parameters are unknown to the
control scheme. This uncertainty can degrade the control performance. The adaptive estimation scheme presented
in [3] was designed to counter this hurtle. This prior work [3] was extended in [5] by basing the controller on a
two-temperature model with separate response models for the ion and electron energies. In contrast to [3], this
burn controller used two unique stabilizing control laws for the external ion and electron heating. In addition,
control laws for the external deuterium and tritium injection rates were used to regulate the plasma density.

A controller’s requests for external heating and fueling can be met with various actuators. Future ITER plasmas
will be fueled by two pellet injectors. One injector supplies pure deuterium (D) pellets, and the other injector sup-
plies a mixture of deuterium and tritium (T). The tritium concentration in the mixed DT pellets will be nominally
90%, but it can vary during plasma operations [6]. An ion cyclotron (IC) heating system, an electron cyclotron
(EC) heating system, and two neutral beam injectors (NBI) will be used for plasma heating in ITER [7]. With
six actuators (D pellet injector, DT pellet injector, IC, EC, NBI #1 and NBI #2) and four virtual control efforts
requested by the controller (D fueling, T fueling, ion heating and electron heating), a control allocation algorithm
can be used to optimally map the virtual control efforts to the available actuators. The mapping between the vir-
tual control efforts and the efforts produced by the actuators (i.e., actuator efforts) is known as the effector model.
There is an advantage to managing the actuators with a control allocator instead of including them directly in
the design of the burn controller. Because the control allocator is designed separately from the burn controller,
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reconfigurations in the set of actuators available for burn control do not require modification of the virtual control
laws [8]. This modularity allows the control allocator to be swapped for another without changing controllers. As
an example, a scenario could occur where only one NBI is available for burn control in ITER. The other NBI may
be needed for objectives outside the scope of burn control. Without changing the controller, ITER operators could
exchange a control allocator that considers two neutral beam injectors with a different one that considers only one
neutral beam injector.

In this work, the proposed burn controller and control allocator improve upon those presented in prior work [5]
in numerous aspects. First, the control allocation algorithm in this work is more computationally efficient. The
control allocator in [5] mapped the virtual control efforts for the ion and electron heating to the IC, EC and NBI
systems by solving a quadratic program at every time step. This is slower than the dynamic update laws [9] that
the control allocator in this work uses for the mapping. Second, unlike the prior work [5], the control allocator in
this work considers the plasma fueling and pellet injectors. Third, uncertainty is introduced into the effector model
by assuming that various constants in it are unknown. The uncertain constants in the effector model include the
actuator efficiency factors, the neutral beam heating fractions for the ions and electrons, and the tritium fraction of
the DT fueling pellets. This uncertainty is handled by including an adaptive estimation scheme within the control
allocator. In [5], the the nonadaptive allocator was based on an effector model that did not include any uncertainty.
Fourth, this work introduces actuator dynamics in the form of actuation lag. Actuation lag results from various
sources such as the thermalization delay of neutral beam particles. The effects of the actuators on the plasma were
assumed to be instantaneous in prior work [3, 5]. In this work, the actuation lag is considered to be uncertain,
and yet another adaptive estimator is employed. Finally, the burn controller that provides requested virtual control
efforts to the allocator was modified to consider more uncertainty in the plasma model. The proposed adaptive burn
controller estimates the uncertain plasma confinement, the DT recycling and impurity sputtering from plasma-wall
interactions [10], and the the alpha-particle heating fractions for the ions and electrons.

This paper is organized as follows. In Section 2, the plasma model is presented. Control objectives are considered
in Section 3. The stabilizing controller is synthesized in Section 4. In Section 5, both the effector model and
the actuator dynamics are discussed. The control allocator is covered in Section 6. With the simulation study
presented in Section 7, the performance of the adaptive controller and allocator is assessed. Conclusions and
future work are addressed in Section 8.

2. The Two-Temperature PlasmaModel

The presented volume-average model assumes that the ions and electrons have unique temperatures, Ti and Te,
respectively. As a result, the ion and electron energies, Ei and Ee, are governed by separate response models,

Ėi = −
Ei

τE,i
+ φαPα + Pei + Paux,i, Ėe = −

Ee

τE,e
+ (1−φα)Pα−Pei−Pbr + Poh + Paux,e, (1)

where Pα, Pbr, Poh and Pei are the alpha particle power from fusion, the bremsstrahlung radiation losses, the
ohmic heating and the collisional power exchange between the ions and electrons. The fraction of Pα deposited
into the plasma ions is φα. Energy transport out of the plasma is modeled with confinement times τE,i and τE,e.
The controlled heating deposited into the ions and electrons are Paux,i and Paux,e. The units of each term are Wm−3.

The ion and electron energies are related to particle densities such that E =Ei +Ee = 3
2 (nD +nT +nα+nI)Ti +

3
2 neTe,

where nD, nT , nα and nI are the deuterium, tritium, alpha particle and impurity densities. The assumption of
quasi-neutrality demands an equal number of protons and elections in the plasma. Therefore, the electron density
is ne = nD + nT + 2nα + ZInI where ZI is the average impurity atomic number. The density response models are

ṅD = −
nD

τD
− S α + S D + S R

D, ṅT = −
nT

τT
− S α + S T + S R

T , ṅα = −
nα
τα

+ S α, ṅI = −
nI

τI
+ S sp

I . (2)

Each term is expressed in units of m−3s−1. The particle confinement times are τα, τD, τT and τI . Deuterium and
tritium are be injected into the plasma at the controlled rates of S D and S T , respectively. The impurity sputtering
source due to plasma-wall interactions is given by S sp

I = f sp
I (n/τI + ṅ), where f sp

I is the sputtering fraction and
n = nD + nT + nα + nI + ne. The wall recycling sources for D and T particle, respectively, are modeled with

S R
D =

1
1 − fre f (1 − fe f f )

{
fre f

nD

τD
+

(nD

τD
+

nT

τT

)
(1 − γPFC)

[ (1 − fre f (1 − fe f f ))Re f f

1 − Re f f (1 − fe f f )
− fre f

]}
, (3)

S R
T =

1
1 − fre f (1 − fe f f )

{
fre f

nT

τT
+

(nD

τD
+

nT

τT

)
γPFC

[ (1 − fre f (1 − fe f f ))Re f f

1 − Re f f (1 − fe f f )
− fre f

]}
, (4)

2



V. Graber and E. Schuster

where fe f f is the fueling efficiency of recycled particles, fre f is the fraction of escaping particles reflected back into
the plasma, Re f f is the global recycling coefficient, and γPFC is the tritium fraction of the recycled particles [10].

The DT fusion reaction rate density is given by S α = nDnT 〈σν〉 where the DT reactivity, 〈σν〉, is

〈σν〉 = C1ω
√
ξ/(mrc2T 3

i )e−3ξ, ξ = (B2
G/4ω)1/3 ω= Ti

[
1 −

Ti(C2 + Ti(C4 + TiC6))
1 + Ti(C3 + Ti(C5 + TiC7))

]−1
, (5)

where Ti is expressed in keV and BG, mrc2 and C j for j ∈ {1, ..., 7} are constants [11]. Because every reaction
creates an alpha particle with Qα = 3.52 MeV of kinetic energy, the alpha particle power is Pα = QαS α. In
contrast to the DT reactivity, the bremsstrahlung radiation losses and the ohmic heating are determined by the
electron temperature. They are given by Pbr = 5.5 × 10−37Ze f f n2

e
√

Te and Poh = 2.8 × 10−9Ze f f I2
pa−4T−3/2

e where
Ze f f = (nD + nT + 4nα + Z2

I nI)/ne is the effective atomic number, Ip is the plasma current, and a is the plasma
minor radius. The power that is exchanged between the plasma ions and electrons through collisions is given by

Pei =
3
2

ne
Te − Ti

τei
, τei =

3π
√

2πε2
0T 3/2

e

e4m1/2
e ln Λe

∑
ions

mi

niZ2
i

, (6)

where τei is the relaxation time [12], me = 9.1096 × 10−31kg, e = 1.622 × 10−19C, ε0 = 8.854 × 10−12F/m, Te has
units of J, and the natural logarithm is Λk = 1.24 × 107T 3/2

k /(n1/2
e Z2

e f f ) for k ∈ {i, e}.

The global energy confinement time is determined from the IPB98(y,2) scaling law [13]. The scaling is

τE = Hτsc
E = H × 0.0562I0.93

p B0.15
T M0.19R1.97ε0.58κ0.78P−0.69V−0.69n0.41

e19
, (7)

where H is the H-factor which depends on quality of the plasma confinement, R is the plasma major radius, BT

is the toroidal magnetic field, ε = a/R, κ is the vertical elongation at 95% flux surface, V is the volume of the
plasma, ne19 is ne in 1019m−3, and M = 3γ + 2(1 − γ) [14]. The tritium fraction, γ, is equal to the ratio nT /nH

where nH = nD + nT . The total plasma power, P = Paux,i + Paux,e −Pbr + Pα + Poh, is expressed in MWm−3, The
machine parameters Ip, BT , R, a, κ and V , respectively, have values of 15 MA, 5.3 T, 6.2 m, 2 m, 1.7 and 837 m3

for ITER [14]. With uncoupled temperatures, ions and electrons have different energy transport rates. Therefore,
τE,i = ζiτE and τE,e = ζeτE where ζi and ζe are constants. Particle confinement times are similarly proportional to
(7) such that τr = krτE for r ∈ {α,D,T, I}.

Fusion reactions and neutral beam injection heat the plasma through the introduction of fast ions. Initially, these
fast ions primarily heat electrons. As their kinetic energy falls due to collisional events, increasingly more of their
energy goes into the plasma ions. Only at the critical energy, εc, do the fast ions evenly heat the plasma ions and
electrons. The ion-heating fraction is denoted φ f for f ∈ {α, nbi} to distinguish between alpha-particle heating and
neutral beam heating. In prior work [5], the ion-heating fraction was shown to be

φ f =
1
x0

[1
3

ln
1 − x

1/2
0 + x0

(1 + x
1/2
0 )2

+
2
√

3

(
tan−1 2x

1/2
0 − 1
√

3
+
π

6

)]
, εc =

A f Te

m1/3
e n2/3

e

∑
ions

niZ2
i

Ai

(3
√
π ln Λi

4 ln Λe

) 2
3

, (8)

where x0 = ε f0/εc, ε f0 is the initial kinetic energy of the fast ion, A f for f ∈ {α, nbi} is the atomic mass of the fast
ion, and Ai for i ∈ {α,D,T, I} is the atomic mass of the plasma ions [1, 15]. For the alpha particles produced from
fusion events, εα0 = Qα and Aα = 4. ITER’s neutral beam heating system injects 1 MeV deuterium particles into
the plasma [16]. Therefore, εnbi0 = 1 MeV and Anbi = 2. For the plasma temperatures and densities considered in
this work’s simulation study of ITER (Section 7), φα ≈ 15% and φnbi ≈ 25%.

The following parameters are considered to be constant and uncertain: H, ζi, ζe, φα, kD, kT , kα, kI , fe f f , fre f , Re f f ,
γPFC and f sp

I They are lumped into the nominal uncertainty vector θh such that (1) and (2) can be rewritten as

Ėi = − θh,1
Ei

τsc
E

+ θh,3Pα + Pei + Paux,i, ṅD = −θh,6
nD

τsc
E

+ θh,9
nT

τsc
E
− S α + S D,

Ėe = − θh,2
Ee

τsc
E

+θh,4Pα−Pei−Pbr +Poh +Paux,e, ṅT = −θh,7
nT

τsc
E

+ θh,10
nD

τsc
E
− S α + S T , (9)

ṅα = − θh,5
nα
τsc

E
+ S α, ṅI = −θh,8

nI

τsc
E

+ θh,11
n
τsc

E
+ θh,12ṅ,

where θh,i is the ith element of θh. The elements of θh can be easily inferred from (1), (2), (3), (4) and (9).
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3. Burn Control Objectives

The purpose of the high-level controller is to track equilibria defined by (9) at steady-state despite the uncertainty
in θh. The desired equilibrium values for the six states (Ēi, Ēe, n̄α, n̄D, n̄T , n̄I) and the four virtual control efforts
(P̄aux,i, P̄aux,e, S̄ D, S̄ T ) are determined by solving the system of six equations (9) at steady-state with predefined
values for Ēi, Ēe, n̄ and γ̄. The deviations of the states from desired values are denoted as Ẽi = Ei−Ēi, Ẽe = Ee−Ēe,
ñα = nα − n̄α, ñD = nD − n̄D, ñT = nT − n̄T and ñI = nI − n̄I . The control objective is to drive the following system to
its equilibrium at the origin (i.e., drive the deviations to zero) despite model uncertainties:

˙̃Ei = − θh,1
Ēi + Ẽi

τsc
E

+ θh,3Pα + Pei + Paux,i, ˙̃nD =−θh,6
n̄D + ñD

τsc
E

+θh,9
n̄T + ñT

τsc
E
−S α+S D,

˙̃Ee =−θh,2
Ēe + Ẽe

τsc
E

+θh,4Pα−Pei−Pbr +Poh +Paux,e, ˙̃nT =−θh,7
n̄T + ñT

τsc
E

+θh,10
n̄D + ñD

τsc
E
−S α+S T , (10)

˙̃nα = − θh,5
n̄α + ñα
τsc

E
+ S α, ˙̃nI = −θh,8

n̄I + ñI

τsc
E

+ θh,11
n̄ + ñ
τsc

E
+ θh,12 ˙̃n.

4. Adaptive Burn Control Algorithm

Control laws for Paux,i, Paux,e, S D and S T are developed using the following Lyapunov function:

V = k2
i Ẽ2

i + k2
e Ẽ2

e + k2
γγ̃

2 + ñ2 + θ̃T
h Γ−1

h θ̃h → V̇ = k2
i Ẽi

˙̃Ei + k2
e Ẽe

˙̃Ee + k2
γγ̃ ˙̃γ + ñ ˙̃n + θ̃T

h Γ−1
h

˙̃θh, (11)

where ki, ke and kγ are positive constants, Γh is a positive definite matrix, and the time derivative is denoted as V̇ .
The controller’s current estimate of nominal (uncertain) θh is θ̂h. The θ̃h vector is the controller’s estimation error
of θh such that θ̃h = θ̂h− θh. By substituting the expressions for the ˙̃Ei, ˙̃Ee, ˙̃n and ˙̃γ dynamics into V̇ and employing
the the certainty equivalence principle [17] (assume θ̂h = θh), the four control laws can be formulated as

Pstable
aux,i = θ̂h,1

Ēi

τsc
E
− θ̂h,3Pα − Pei, (12)

Pstable
aux,e = θ̂h,2

Ēe

τsc
E
− θ̂h,4Pα+ Pei + Pbr−Poh, (13)

S stable
D =

1
2

[
3θ̂h,5

nα
τsc

E
+ 2θ̂h,7

nT

τsc
E

+ 2θ̂h,6
nD

τsc
E

+ S α − 2S T − (ZI + 1)
(
− θ̂h,8

nI

τsc
E

)
− 2θ̂h,9

nT

τsc
E
− 2θ̂h,10

nD

τsc
E
− (ZI + 1)θ̂h,11

n
τsc

E
− (ZI + 1)θ̂h,12ṅ − KN ñ

]
, (14)

S stable
T = −KT γ̃ + θ̂h,7

nT

τsc
E

+ S α − θ̂h,10
nD

τsc
E

+ γ
(
θ̂h,5

3nα
2τsc

E
−

3
2

S α −
(ZI + 1)

2

(
− θ̂h,8

nI

τsc
E

)
−

(ZI + 1)
2

θ̂h,11
n
τsc

E
−

(ZI + 1)
2

θ̂h,12ṅ −
KN ñ

2

)
, (15)

where KN and KT are positive constants. The above procedure is shown in detail in prior work [3, 5]. Substitution
of (12), (13), (14) and (15) into V̇ gives

V̇ = −
k2

i Ẽ2
i

τsc
E
θh,1 −

k2
e Ẽ2

e

τsc
E
θh,2 + k2

i Ẽi
Ēi

τsc
E
θ̃h,1 + k2

e Ẽe
Ēe

τsc
E
θ̃h,2 − k2

i ẼiPαθ̃h,3 − k2
e ẼePαθ̃h,4

+

(
2ñ −

k2
γγ̃

nH
γ
) nD

τsc
E
θ̃h,6 +

(
2ñ − (γ − 1)

k2
γγ̃

nH

) nT

τsc
E
θ̃h,7 +

(k2
γγ̃

nH
γ − 2ñ

) nT

τsc
E
θ̃h,9 + (γ − 1)

k2
γγ̃

nH

nD

τsc
E
θ̃h,10

− ñ(ZI + 1)
n
τsc

E
θ̃h,11 − (ZI + 1)ñṅθ̃h,12 + 3ñ

nα
τsc

E
θ̃h,5 + ñ(ZI + 1)

nI

τsc
E
θ̃h,8 + θ̃T

h Γ−1
h

˙̃θh. (16)

If all parameters are known (θ̃h = 0), the stability condition

V̇ = −
k2

i Ẽ2
i

τsc
E
θh,1 −

k2
e Ẽ2

e

τsc
E
θh,2 − KT

k2
γγ̃

2

nH
− KN ñ2 ≤ 0. (17)

is attained. Since the uncertain parameters are generally unknown (θ̂h , θh), the stability condition (17) does not
hold with the control laws alone. Therefore, the control laws are augmented with an adaptive law for θh:
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˙̂
θh ≈

˙̃θh = Γh



−(Ēi/τ
sc
E )k2

i Ẽi

−(Ēe/τ
sc
E )k2

e Ẽe

Pαk2
i Ẽi

Pαk2
e Ẽe

−3ñ(nα/τsc
E )

−[2ñ − ((k2
γγ̃γ)/nH)](nD/τ

sc
E )

−[2ñ − (γ − 1)(k2
γγ̃)/nH](nT /τ

sc
E )

−ñ(ZI + 1)(nI/τ
sc
E )

−(((k2
γγ̃)/nH)γ − 2ñ)(nT /τ

sc
E )

−(γ − 1)((k2
γγ̃)/nH)(nD/τ

sc
E )

ñ(ZI + 1)(n/τsc
E )

(ZI + 1)ñṅ



, (18)

The adaptive law (18) reduces (16) to (17). Note that ˙̂θh ≈
˙̃θh because changes in the uncertain parameters are

considered to be negligible (θ̇h ≈ 0). The adaptive control laws (12), (13), (14), (15) and (18) track the equilibria of
the error system (10) despite the uncertainty in the model. The stability of ñα and ñI were proven in prior work [5].
The control laws derived in this section represent the requested virtual control efforts vs = [ Pstable

aux,i Pstable
aux,e S stable

D S stable
T ]T .

In a modular design, the requested virtual control efforts vs are sent from the controller to the control allocator.
The allocator attempts to achieve vs using the available actuators. The control efforts actually produced by the
actuators are denoted v = [ Paux,i Paux,e S D S T ]T . The allocator attempts to drive the allocation error |vs − v| to zero.

5. EffectorModel and Actuator Dynamics

For the purposes of burn control of the plasma core, ITER will have access to four external heating systems and
two external fueling systems. Respectively, the ion cyclotron (IC) and electron cyclotron (EC) systems deliver
powers Pic and Pec directly to the ions and electrons independently. The two neutral beam injection (NBI) systems
deliver powers Pnbi1 and Pnbi2 with ion-heating fraction φnbi and electron-heating fraction (1−φnbi). At an injection
rate of S DTpel , the DT injector fires pellets that have a nominal 90% T concentration. This T concentration γDTpel

can vary during long pulse operations. Therefore, it is considered to be an unknown in the effector model. The D
injector fuels the plasma at an injection rate of S Dpel with pellets that have no tritium (γDpel = 0). The actuators
u = [ Pic Pec Pnbi1 Pnbi2 S Dpel S DTpel ]T are mapped to the virtual control efforts v = [ Paux,i Paux,e S D S T ]T = Φ(u) through
the effector model:

Paux,i = ηicPic + ηnbi1φnbiPnbi1 + ηnbi2φnbiPnbi2 , S D = ηDTpel (1 − γDTpel )S DTpel + ηDpel S Dpel ,

Paux,e = ηecPec + ηnbi1 (1 − φnbi)Pnbi1 + ηnbi2 (1 − φnbi)Pnbi2 , S T = ηDTpelγDTpel S DTpel , (19)

where ηa for a ∈ {ic, ec, nbi1, nbi2, Dpel, DTpel} are actuator efficiency factors. These efficiency factors, the DT
pellet’s T concentration γDTpel , and the NBI ion-heating fraction φnbi are considered to be constant and uncertain.

Burn control of ITER will have to overcome actuator delays (e.g., the flight time of fueling pellets traveling through
guide tubes). The global plasma response times of the EC, IC, NBI and fueling pellet injection systems could be
up to 20 ms, 200 ms, 80 ms and 0.1 s, respectively, for ITER [7]. Therefore, the time between when the actuator
command is made by the control scheme and when the actuator efforts (u) influence (v) through the mapping (19)
is nonzero. The instantaneous actuator commands are denoted ucmd = [ Pcmd

ic Pcmd
ec Pcmd

nbi1
Pcmd

nbi2
S cmd

Dpel
S cmd

DTpel ]T , and u is the
vector of delayed actuation efforts used in (19). The actuator dynamics are modeled as first-order lag processes:

Tlagu̇ + u = ucmd, (20)

where Tlag = diag(τlag
ic , τ

lag
ec , τ

lag
nbi, τ

lag
nbi, τ

lag
pel, τ

lag
pel) is a diagonal matrix whose elements are time constants that

represent the lag in actuation. These time constants are considered to be uncertain.

All of the time constants are assumed to be proportional to the aforementioned plasma response times from [7]
except for τlag

nbi. The time constant for the NBI actuators is the sum of the plasma response time (∼80 ms) and the
more significant NBI thermalization delay. In the plasma, a NBI ion loses energy, εnbi, at a rate of

dεnbi

dt
= −Bεnbi − Bεnbi

(
εc/εnbi

)3/2 (21)
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where B = e4nem
1/2
e Z2

nbi ln Λe/(3
√

2π3/2ε2
0mnbiT

3/2
e ) [1, 12]. For ITER, the NBI ion’s charge Znbi and mass mnbi are

that of a D ion. The NBI thermalization delay can be found by integrating (21) from zero to the thermalization
delay. For the plasma conditions considered in Section 7, the NBI thermalization delay is approximately ∼0.5 s.

6. Adaptive Control Allocation Algorithm

To make the design of the allocation algorithm [9] easier, the high-level dynamics (1)-(2), the effector model (19),
and the actuator dynamics (20) are put into a more generalized form. The high-level dynamics are rewritten as
ẋ = f (x) + g(x)v where x = [ Ei Ee nα nD nT nI ]T . Both f (x) and g(x) are easily inferred (θh is incorporated into
f (x)). The effector model (19) and actuator dynamics (20) are rewritten as

v = Φ(u, θe) = Φθe (u)θe, u̇ = fθu (u, ucmd)θu, θu =
[
1/τlag

ic 1/τlag
ec 1/τlag

nbi 1/τlag
pel

]T
, (22)

θe =
[
ηic ηnbi1φnbi ηnbi2φnbi ηec ηnbi1 ηnbi2 ηDpel ηDTpel ηDTpelγDTpel

]T
.

The vectors θe and θu lump together the constant, uncertain parameters. The proposed allocator’s estimate of them
is denoted θ̂e and θ̂u. The Φ(u, θe), Φθe and fθu (u, ucmd) matrices can be easily inferred from the effector model (19)
and the actuator dynamics (20). In this generalized formulation, v is unknown, x and u are measured, and ucmd is
the controlled input.

The control allocation algorithm takes the desired virtual control reference vs as an input from the controller and
dynamically computes the desired actuator reference ud as an output. The desired virtual control reference vs is
the vector of stabilizing controls calculated by the high-level controller from (12)-(15). The goal of the allocation
algorithm is to get the actual virtual control efforts v from the effector model (19) to match the reference vs by
dynamically updating reference ud. The low-level control ucmd will attempt to bring the actual actuator efforts u to
the computed value of reference ud. The reference ud is the argument of the minimization problem:

minimize
ud

J(ud) = z(diag(ud)ud) subject to vs − Φ(ud + ũ, θ̂e) = 0,

where ũ = u − ud, J(ud) is a cost function for minimizing the actuation effort (ergo, the power consumption), and
zT is a column vector of weighting constants. The Lagrangian function with Lagrangian parameter vector λ is
introduced as

L(ud, ũ, λ, θ̂e, θ̂u) = J(ud) + (vs − Φ(ud + ũ, θ̂e))Tλ. (23)

In [9], update laws for ud, λ, θ̂e and θ̂u were developed to conserve the stability of the closed-loop system (1)-(2),
(19) and (20). Two observers are used for the adaptive estimation of the uncertain parameters (θu and θe). With
Hurwitz matrices (−Aû) and (−Ax̂), the two observers are

˙̂u = Aû(u − û) + fθu (u, ucmd)θ̂u, ˙̂x = Ax̂(x − x̂) + f (x) + g(x)Φ(u, θ̂e). (24)

The four update laws for the adaptive control algorithm [9] are defined by(
u̇d

λ̇

)
= −ΓH

(
∂L
∂ud
∂L
∂λ

)
− u f f , u f f = H−1

 ∂2L
∂ũ∂ud
∂2L
∂ũ∂λ

 fũ(ũ, ud, ucmd, θ̂u) + H−1

 ∂2L
∂θ̂∂ud
∂2L
∂θ̂∂λ

 ˙̂θ,

˙̂θT
e =ξT

x Γxg(x)Φθe (u)Γ−1
θe
, H =

 ∂2L
∂u2

d

∂2L
∂λ∂ud

∂2L
∂ud∂λ

0

, (25)

˙̂θT
u =

(
∂Vũ

∂ũ
+ ξT

u Γu

)
fθu (u, ucmd)Γ−1

θu
+

(
ξT

x Γx +
∂LT

∂ud

∂2L
∂ũ∂ud

+
∂LT

∂λ

∂2L
∂ũ∂λ

)
fθu (u, ucmd)Γ−1

θu
,

where θ̂ , (θ̂T
u , θ̂

T
e )T , ξu , u − û, ξx , x − x̂, and Γ, Γθu , Γθe , Γu and Γx are symmetric positive definite matrices.

Since the dynamics of all of the actuators take the same form (20), each actuator’s low-level control law will have
the same form. For brevity, only the low-level control law for u1 = Pic is shown here. For the dynamic equation

u̇1 = θu,1(ucmd,1 − u1) ←→ Ṗic = (1/τlag
ic )(Pcmd

ic − Pic),

the Lyapunov function is chosen to be Vũ,1 = ũ2
1/2. Recalling (20), taking the time derivative of Vũ,1 and substitut-

ing the change in variables ũ1 = (u1 − ud,1) gives

V̇ũ,1 = ũ1 ˙̃u1 = ũ1(θu,1(ucmd,1 − ũ1 − ud,1) − u̇d,1).

When θ̂u,1 = θu,1, the stability condition V̇ũ,1 = −ũ2
1θ̂u,1 < 0 ∀ ũ1 , 0 is achieved (for θu,1 > 0) with the control law

ucmd,1 = ud,1 + u̇d,1/θ̂u,1. (26)
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Figure 1: Despite the model uncertainty and actuation lag, the burn control and control allocation algorithms successfully
drive the plasma conditions to the desired reference values using ITER’s various heating and fueling actuators. The first four
plots show that the plasma’s ion energy, electron energy, density and tritium fraction are brought to their reference values. The
fifth and sixth plots show the commands for the ion cyclotron heating, the electron cyclotron heating, the neutral beam heating
(from both injectors), the D pellet fueling, and the DT pellet fueling that are sent by the control allocator to the actuators
before the actuator dynamics apply a lag to the actuation.

The low-level control ucmd,1 is manipulated in an attempt to force the actual actuator effort u1, which is determined
by the actuator dynamics (20), to the desired actuator effort ud,1 that is calculated using (25). The Lyapunov
functions and dynamics for each actuator is denoted Vũ,i and ˙̃ui = fũi (ũi, ud,i, ucmd,i, θ̂u) for i ∈ {1, ..., 6}. These are
put into vectors Vũ and fũ for use in (25). The remaining controls ucmd,i for i ∈ {2, ..., 6} take the same form of (26).

7. Simulation Study

The following simulation study is an assessment of the presented adaptive burn control and control allocation
algorithms. The simulation used nα = 2.6 × 1018m−3, nD = 4.2×1019m−3, nT = 4.5 × 1019m−3, nI = 1 × 1018m−3,
Ei = 2.05 × 105J/m3 and Ee = 2.4×105J/m3 as initial conditions (ZI = 4). The uncertain parameters in the plasma
model were set to H = 1.1, ζi = 1.15, ζe = 0.85, φα = 0.15, kD = 3, kT = 2.5, kα = 6, kI = 8.7, fe f f = 0.1,
fre f = 0.5, Re f f = 0.6, γPFC = 0.5 and f sp

I = 0.01. In the effector model, the uncertain parameters were set to
ηic = 0.9, ηec = 0.92, ηnbi,1 = 1, ηnbi,2 = 0.95, ηDpel = 0.93, ηDT pel = 1, γDT pel = 0.9 and φnbi = 0.25. Respectively,
the time constants τlag

ic , τlag
ec , τlag

nbi and τlag
pel were set to 5 × 0.2, 5 × 0.02, 5 × 0.58 and 5 × 0.1 seconds (a fivefold

increase of the nominal plasma response times). The initial estimate of the uncertain vector Θ̂ , (θ̂T
h , θ̂

T
e , θ̂

T
u )T

was calculated by multiplying the nominal values of each element, in order, with the following numbers: 1.09,
1.05, 0.95, 0.9, 0.92, 0.98, 1.07, 1.02, 1.10, 0.89, 0.91, 1.08, 1.16, 0.95, 0.89, 1.05, 1.11, 1.14, 0.89, 0.90, 0.95,
1.07, 1.18, 1.11 and 0.95. The upper saturation limits of ITERs actuators [7] are Pmax

ic = 20 MW, Pmax
ec = 20 MW,

Pmax
nbi,1 = 16.5 MW, Pmax

nbi,2 = 16.5 MW, S max
Dpel

= 120 Pa m3/s and S max
DTpel

= 111 Pa m3/s. The desired equilibrium point
sent to the controller was chosen to be the solution of (9) with d/dt = 0 when Ēi =1.83×105J/m3, Ēe =2.4×105J/m3,
n̄=2.1 × 1020m−3 and γ̄=0.5.

Fig. 1 demonstrates the competence of the control and allocation algorithms in tracking target equilibria. Despite
the uncertainty in the plasma confinement, wall recycling and φα, the adaptive burn controller successfully deter-
mines the four virtual control efforts (Paux,i, Paux,e, S D, S T ) using (12)-(15) that will drive the system to the desired
references. These virtual control efforts vs are then sent to the adaptive control allocator which maps them to the
six ITER actuators (Pic, Pec, Pnbi,1, Pnbi,2, S Dpel , S DT pel ). The control allocator successfully uses the six actuators to
reproduce the four stabilizing virtual control efforts despite the uncertainty introduced in the effector model (19),
the uncertainty in the actuator dynamics (20), and the nonzero actuation lag (Tlag). Fig. 1 shows the low-level
control ucmd, which is calculated using (26), that brings the actual (lagged) actuator efforts u, which are mapped
back to the virtual control efforts v in (19), to the desired actuator effort ud that is optimally calculated using the
dynamic update laws (25).

7



IAEA-CN-286/699

8. Conclusions and FutureWork

Actuation lag and the inclusion of uncertainty in the plasma model, effector model, and actuator dynamics make
the plasma control problem more difficult. Together, the proposed adaptive burn controller and control allocator
can overcome these challenges and force the nonlinear burning plasma system to desired equilibria. For future
work, the effector model (19) can be expanded to consider DT gas puffing and impurity injection (from gas
puffing and pellet injection). Since ITER’s neutral beam injectors (NBI) will heat the plasma by firing highly
kinetic deuterium particles into it, the fueling contribution from NBI can also be included in the effector model
(for the deuterium fueling S D specifically). Finally, future work may focus on modeling more specialized actuator
dynamics for ITER. These new dynamics would then be considered in the formulation of a new optimal control
allocation algorithm based on a possibly updated effector model.
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