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Abstract

In this work, a novel q profile control approach and recent DIII-D experimental results aimed at reaching
stationary plasmas characterized by a flat loop voltage profile are presented. The control approach combines commands
computed both offline (feedforward) and online (feedback). Both command components are computed via numerical
optimal control techniques. The key advantage of the numerical computation approach is that it allows for the explicit
incorporation of state and input constraints to prevent the controller from driving the plasma outside of stability limits
and obtain, as closely as possible, stationary conditions characterized by a flat loop voltage profile. Using a suitable
control-oriented model, the simulated plasma evolution in response to the actuators is embedded into a nonlinear
optimization problem that provides a feedforward control policy (set of actuator waveforms) that under ideal conditions
guides the plasma evolution to the desired state. The time trajectory of the plasma current, gyrotron power, and
neutral beam power are optimized to guide the plasma to stationary state characterized by a flat loop voltage profile. It
is shown in simulations that an overshoot in the plasma current during ramp-up combined with a particular timing of
the gyrotron and neutral beam injection can improve the uniformity of the loop voltage profile. The feedback controller
computes updates to the feedforward control law to account for variability in plasma conditions; optimizing in real-time
the model-predicted plasma evolution in response to the available actuator set.

1 Introduction

A primary goal for the DIII-D research program over the next five years is to develop the physics basis for a
high q (qmin > 1.5 − 2.0), high βN steady-state scenario1 that can serve as the basis for a steady-state ITER
scenario at (fusion gain) Q = 5. Various approaches are being considered to maximize the bootstrap current
contribution, so that fully noninductive (fNI = 1) discharges can be obtained for several resistive current
diffusion times. It is anticipated that the upgrades to DIII-D including an additional off-axis neutral beam
injection (NBI) system in 2019 will provide sufficient auxiliary current drive to maintain fully noninductive
plasmas at high βN . However, much work is necessary to investigate MHD stability, adequate confinement, and
early achievement and sustainment of the steady-state condition. Recent work in active control of the q profile
accomplished with a combination of offline (feedforward control) and online (feedback control) is playing a
crucial role at DIII-D in achieving and sustaining advanced scenarios of interest and in facilitating investigation
of their properties [1].

With the use of an appropriate control-oriented model, a feedforward (open-loop) control problem is formulated
as a nonlinear optimization problem and is solved using numerical optimization techniques. The result
comprises a sequence of feedforward control requests and a corresponding state evolution which evolves from
the anticipated initial plasma state to the desired target, which is defined by a flat loop voltage as early as
possible in the discharge. Previous works have considered feedforward control synthesis for profile control via
nonlinear optimization approaches [2–6] and extremum seeking [7].

Anticipating that the un-augmented feedforward control would be insufficient to reliably reach the target q
profile due to mismatch between the model and real system, the feedforward control sequence is combined with
a feedback controller, which computes updates to the feedforward control based on measurements of the plasma
state in real-time during the discharge. The feedback controller is based on a model-predictive control (MPC)
or receding-horizon control (RHC) framework, which continuously simulates the q profile evolution over a short
horizon (number of future control time-steps) to help inform the feedback controller of the best control action by

1Steady state scenario is characterized by a plasma state that is fully relaxed and the plasma current is composed entirely of
intrinsic (bootstrap) and noninductive auxiliary current drives.
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solving an optimization problem in real time. The primary motivation for the MPC feedback approach is that
it allows for explicit incorporation of constraints associated with the plasma state. This opens the possibility
of designing an aggressive profile tracking controller while restricting the controller from driving the plasma
outside of stability limits. Additionally, the MPC framework enables the inclusion of constraints associated
with the achievement of steady-state conditions defined by a zero loop voltage profile, or, less ambitiously,
stationary conditions defined by a flat loop voltage profile. Recent experimental tests have shown successful
testing of model predictive control of the tokamak q profile at DIII-D [8] and ASDEX upgrade [9].

This paper is organized as follows. In section 2, the structure of the control-oriented model describing the q
profile and plasma stored energy dynamics is briefly outlined. The discussion then proceeds to the model-based
control design process starting with feedforward control design via nonlinear optimization in section 3 and
following with MPC feedback design in section 4. The combined feedforward + feedback control system is
embedded into the DIII-D plasma control system (PCS), and initial tests are presented in Section 5.

2 Control-oriented Modeling of the Poloidal Magnetic Flux Profile and Plasma Stored Energy

A first-principles-driven (FPD) control-oriented model of the poloidal flux evolution developed for DIII-D
H-mode plasmas [10], is used as the basis for control design. Assuming an axisymmetric plasma and taking flux
surface averages of all quantities, Ampere’s law, Faraday’s law, and Ohm’s law can be combined to form a 1D
partial differential equation describing the evolution of the poloidal magnetic flux, referred to as the magnetic
diffusion equation (MDE) [11, 12]. To simplify the model to a control-oriented form, the MDE can be combined
with physics-based correlations for the electron temperature, plasma resistivity, and the efficiency of each of
the current drive sources including neutral beam injection (NBI), electron cyclotron current drive (ECCD), and
bootstrap current drive [10, 13]. In summary, the model describing the evolution of the poloidal magnetic flux
profile, Ψ(ρ̂, t), and the plasma stored energy, E(t), in response to the various heating and current drive sources
can be briefly written as
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where ψ(ρ̂, t) is the poloidal magnetic flux per radian, i.e. Ψ(ρ̂, t) = 2πψ(ρ̂, t), and ρ̂ is the normalized spatial
coordinate defined in terms of the toroidal magnetic flux, Φ, and the toroidal magnetic field strength at the
magnetic axis, Bφ,0, i.e. πBφ,0ρ

2 = Φ (ρ̂ = ρ/ρb), and the boundary conditions given by
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Of the parameters included in (1)-(2), η is the plasma resistivity, Te is the electron temperature, µ0 is the
vacuum permeability, R0 is the plasma major radius, F̂ , Ĝ, and Ĥ are spatially varying geometric factors
pertaining to the magnetic configuration of a particular plasma equilibrium, Ip is the total plasma current, jaux
is the noninductive current density from all sources, jbs is the bootstrap current density, and ρb is the value
of ρ at the boundary. The resistivity is modeled by a simplified Spitzer model, and the electron temperature,
which evolves much faster than the poloidal magnetic flux diffusion time, is modeled as a fixed profile shape
that scales with line averaged electron density, total plasma current, and total input power [10].

The bootstrap current density, jbs(ρ̂, t), which is calculated using the Sauter model [14, 15], is a function
of the electron temperature, electron density, and poloidal magnetic flux profiles and their gradients. The
auxiliary noninductive current drive, jaux, includes contributions from ECCD, jEC, and NBI, jNBI, i.e.
jaux(ρ̂, t) =

∑nEC

i=1 jEC,i(ρ̂, t) +
∑nNBI

ξ=1 jNBI,ξ(ρ̂, t), where nEC is the number of ECCD sources and nNBI is
the number of NBI sources.

The parameter τE represents the global energy confinement time, and is approximated by the ITER-98 ([16])
scaling law, τE ∝ I0.93p n̄0.41e P−0.69tot , where n̄e is the line averaged electron density, and the total absorbed power,
Ptot, is equal to the total injected power from auxiliary sources plus the power from the ohmic coil, Pohm, minus
the radiative power, Prad, i.e. Ptot = Paux + Pohm − Prad.

Plasma parameters important for control design include the safety factor profile, q, the normalized plasma β,
βN , and the plasma loop voltage, Vloop, which are given by

q(ρ̂, t) =
dΦ

dΨ
= − ∂Φ/∂ρ

2π∂ψ/∂ρ
= −Bφ,0ρ

2
bρ̂

∂ψ/∂ρ̂
, βN =

(2/3)(E/Vp)

B2
φ,0/2µ0

aBφ,0
Ip[MA]

, Vloop(ρ̂, t) = −2π
∂ψ

∂t
(ρ̂, t), (3)

where a is the plasma minor radius and Vp is the total plasma volume.
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3 Feedforward Control Design via Trajectory Optimization

To find a feedforward control policy, the time trajectories of the plasma current, ECCD power, and NBI power
are optimized so as to maximize the stationarity of the plasma in the flattop, i.e. flatten the loop voltage
profile as much as possible subject to various constraints. The problem is formulated as a constrained nonlinear
optimization problem, and solved with sequential quadratic programming (SQP). Actuator and physics-based
constraints are imposed such as limits on plasma current ramp rate, limits on available ECCD and NBI power,
shape of the q profile, and βN . It is generally found in the optimization results that an overshoot in the plasma
current during ramp-up combined with a certain EC and NBI timing can produce a nearly flat loop voltage
profile.

The system defined by (1) and (2) represents a PDE system for which it is very challenging and usually
impossible to design optimal feedback control laws due to the infinite dimensionality of the system that arises
from the continuous spatial domain. To transform the system to a finite dimensional state-space form, it can be
discretized in space using finite difference approximations to the spatial derivatives. Let the discretized system
be represented by

ψ̇ = fψ(ψ ,u), (4)

where ψ = [ψ2, ψ3, . . . , ψl−1]T , ψi are the values of ψ(ρ̂, t) at evenly spaced internal radial nodes, and the input,
u = [Ip, n̄e, PEC,1, . . . , PEC,nEC

, PNBI,1, . . . , PNBI,nNBI
]T , represents the set of actuators including, total plasma

current, line averaged electron density, individual ECCD sources, and individual NBI sources2. A state-space
model for the combined evolution of ψ and E can be written as

ẋ = f(x,u) =

[
fψ(ψ ,u)

− E
τE

+ Ptot,

]
, y = h(x), (5)

where the model state is x = [ψT , E]T , and the system output includes the q profile at
various ρ̂ locations, q = [qρ̂=0.05, qρ̂=0.01, . . . , qρ̂=.95]T , βN , and the loop voltage profile Vloop =
[Vloop,ρ̂=0.05, Vloop,ρ̂=0.01, . . . , Vloop,ρ̂=.95]T , i.e. y = [qT , βN ,V

T
loop]T .

The control objective is to design a set of actuator waveforms such that the plasma evolves to a stationary
condition characterized by a uniform loop voltage profile in the plasma flattop. A feedforward control
policy can be determined from an optimization problem involving the minimization of a scalar objective
over a set of constraints associated with the dynamics of the system (model of the ψ profile evolution),
actuator constraints (physical limits such as maximum NBI power), and other physics-based constraints,

minimize
u(t)

J(y(t))

subject to x(t0) = x0, ẋ = f(x,u), y = h(x,u),

gin(y(t),u(t)) ≤ 0,

geq(y(t),u(t)) = 0.

(P1)(P1)

Minimize Cost Function J

Impose System Dynamics Constraint

Impose Constraints for Allowable

Operating Space

}
This is often called a trajectory optimization problem because it involves the search for a state trajectory, x(t),
that starts from the initial state, x0, and reaches some goal state, which is consistent with the system dynamics
described by the equality constraints ẋ = f(x,u). Distance to the target state is quantified by the scalar cost
function J . Additionally, the optimization problem requires the state trajectory to avoid undesirable regions
of the state space, which are quantified by the constraints, gin and geq. The undesirable portion of the state
space equates to the regions of the tokamak operating space that are associated with MHD instabilities. The
most successful approach to solving an optimal control problem like (P1) is to parameterize the problem with
a finite set of decision variables, and then to solve it by using numerical optimization methods [17].

The simulated evolution of the plasma response to the actuators is embedded into the problem, and the
sensitivities of the cost function and constraints are computed with respect to each optimization variable
(actuator values during the discharge). The SQP algorithm begins with an initial guess solution, and iteratively
improves on the solution until reaching a feasible local minimum of the cost function [18]. On each iteration,
cost and constraint values and sensitivities with respect to the current iterate solution are passed to the SQP
algorithm which uses this information to improve on the guess solution. See [19] for more details associated with
solving the trajectory optimization problem with SQP as well as parameterizing the problem and computing
sensitivities.

2The end points, ψ1 and ψl, are not part of the state space description because they are fixed by the boundary conditions.
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(a) Case 1: flattop Ip = 1.04 MA. Nominal
(blue) and optimized (red).
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(c) Case 2: flattop Ip = 0.91 MA. Nominal
(blue) and optimized (green).

Figure 1: Results of the optimization. (a) Case 1 with flattop Ip fixed to 1.04 MA to align with reference shot 172538
(nominal case). (b) The simulated loop voltage profiles associated with nominal control solution (blue),
optimized control solution case 1 (red) and optimized control solution case 2 (green). (c) Case 2 with flattop
Ip fixed to 0.91 MA for a noninductive current fraction around 80% (found by predictive TRANSP runs).

Case 1 Case 2

3.1 Cost Function and Constraints

The cost function is chosen as

J(x(t)) =

∫ tF

0

Q(t)

∫ 1

0

(Vloop(t, ρ̂)− Vloop(t, 1))
2
dρ̂ dt, (6)

which takes the form of a path cost, i.e. it integrates over the entire trajectory (path of the temporal state
evolution). Initial work attempted to find a stationary state at the end of the discharge, by assigning cost

only at the final time (tF ), i.e. J = J(x(tF )) =
∫ 1

0
(Vloop(tF , ρ̂)− Vloop(tF , 1))

2
dρ̂. While this approach was

successful in obtaining a flat loop voltage profile at the target time, tF , it may only be flat momentarily. With
a time-integrated cost function, a profile can be obtained that remains flat, or as flat as possible, through
the entire flattop phase. This approach ensures, the optimization does not find a solution that simply passes
through a stationary state temporarily.

The integrand penalizes deviations of the loop voltage profile with respect to its edge value, and a time dependent
weight, Q(t), is introduced to focus the cost towards the flattop phase of the discharge, i.e. Q(t) is zero before

the flattop. In previous work [4], a cost function of the type, J =
∫ 1

0
(∂Vloop/∂ρ̂)

2
dρ̂, was used to penalize

deviations of the spatial derivative of the loop voltage profile from zero. The idea being that if its spatial
derivative is identically zero, then the loop voltage profile will be flat. However, cost functions of this type were
found to have local minimums at plasma states corresponding to monotonically increasing loop voltage profiles,
and, therefore, not suitable for local optimization approaches such as SQP [18].

The constraints include bounds and rate limits on the actuators as well as physics-based constraints. The
reference plasma current is treated as an actuator and it is assumed the inductive coil current is regulated via
a dedicated controller to meet the desired target current. A rate limit is imposed on the plasma current ramp
of 2 MA per second, ∣∣∣∣dIpdt

∣∣∣∣ ≤ 2 MA/s, (7)

and physical limits are imposed on the physical actuators. The counter-current beams are not considered to
avoid the possibility of triggering undesirable MHD, such as NTMs or locked modes. The neutral beams are
treated as continuously variable actuators, while in reality they function in an ON/OFF manner. During actual
experiments, appropriate modulation of the beams is necessary to deliver the desired power on average.

A limit on the q profile evolution is imposed to avoid the onset of sawtooth oscillations and other undesirable
MHD, a limit on density associated with the Greenwald density limit, and a lower bound on the total auxiliary
input power is imposed in order to prevent back transitions to L-mode, i.e.

q(ρ̂) > 1, n̄e[1020m−3] ≤ Ip[MA]

πa2
, Paux ≥ 2 MW. (8)

3.2 Optimization Results

DIII-D shot 172538 is taken as the starting point for the feedforward control optimization. This shot is used
as the reference shot for experimental testing (see Section 5). It represents a promising starting point for high
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(a) Linearizations around feedforward trajectory.
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(b) Finite horizon predictive reference tracking.

Figure 2: Diagrams for linearization around the feedforward trajectory and predictive feedback control as reference
tracking around the feedforward trajectory.

performance steady-state scenario development because it has high qmin with high triangularity and elevated
energy confinement (H98,y,2 ≈ 1.5), and plasma current of 1.04 MA.

Two optimization cases are presented. In case 1 of Figure 1, the plasma current is constrained to be 1.04 MA
from 2.5 seconds until the end of the discharge to ensure the same flattop current as that in the reference
discharge 172538. Also, the neutral beam power and ECCD power is constrained to be at maximum starting at
3 seconds until the end of the discharge to force the highest possible noninductive current fraction. The results
of the optimization (case 1) are shown in Figures 1(a) and 1(b). As can be seen in Figure 1(a), the optimized
control policy is parameterized as a piece-wise linear function with updates every 100 ms, and bounds are
applied to the actuators (dashed magenta)3. The loop voltage profile is simulated with the model described in
Section 2. In Figure 1(b), the nominal (blue) and optimized (red) loop voltage profiles are plotted at the end
of the flattop phase. Large strides are made in flattening the loop voltage profile by introducing an overshoot
or wiggled current ramp-up and early timing of the ECCD turn-on and the bulk of the NBI power. In case 2
of Figure 1, the plasma current is now constrained to be 0.91 MA during the flattop. Based on predictive
TRANSP runs, it was estimated a flattop current of 0.91 MA would provide an inductive current fraction
of around 80-85%, which was taken as the baseline for experimental testing. The results of the optimization
(case 2) are shown in Figures 1(b) and 1(c). The obtained loop voltage profile is plotted in green in Figure 1(b).
Similar result to that of the original optimization case (case 1) was obtained. As shown in Figure 1(c), the
primary differences being a slightly later turn-on time of ECCD and later ramp-up of the NBI power. The
same characteristic current overshoot in the ramp-up phase can be noted.

4 Real-time Optimization of the q Profile Evolution

In the previous section, the simulated plasma evolution in response to the actuators was embedded into a
nonlinear optimization problem that solves for a feedforward control policy (set of actuator waveforms) that
under ideal conditions guides the plasma evolution to the desired state. However, mismatch between the model
and real plasma dynamics and variability in the plasma startup and tokamak wall conditions amongst other
things can lead to poor performance with feedforward control alone. Therefore, to account for variable plasma
conditions and mismatch between the model and real system, the feedforward control is combined with feedback
control.

The feedback control signal is computed by optimizing in real-time the plasma response to the available actuator
set over a finite horizon (number of future control time-steps). Similar to the feedforward control design, the
feedback control strategy is formulated as an optimization problem and is solved with numerical optimization
techniques. The difference is that the system dynamics are linearized to make the problem strictly convex, the
constraints are softened so that the problem is always feasible, and the evolution is only considered over a short
horizon (small number of time steps) to reduce the size of the problem so that it is real-time solvable. The
real-time optimization problem is solved repeatedly on every control time-step in a scheme known as model
predictive control (MPC) or receding horizon control (RHC).

As the q profile depends inversely on the spatial derivative of the poloidal flux, we can introduce the inverse
safety factor profile,

ι(ρ̂, t) ,
1

q(ρ̂, t)
=
−∂ψ∂ρ̂ (ρ̂, t)

Bφ,0ρ2bρ̂
, (9)

which is useful for control design purposes. Designing a feedback controller for ι instead of q avoids the
nonlinearity associated with the inverse of the spatial gradient of the poloidal magnetic flux in (3).

Let uFF(t) represent the feedforward control sequence, and let ιFF(t), VFF
loop, βFF

N represent the corresponding

feedforward output trajectory obtained from the feedforward control optimization4. To design a predictive
feedback controller, a time varying linear model defined by matrices Ak,Bk, and ck is used by taking a first
order approximation to the system defined by (1)-(2) (see Figure 2(a)), which represents a good approximation
of the system dynamics in a neighborhood of the feedforward trajectory.

3To aid convergence, the number control updates is gradually increased starting with updates every 250 ms.
4Again the bold variable designates discretization in space, i.e. ι = [ιρ̂=0.05, ιρ̂=0.01, . . . , ιρ̂=0.95]T .

5
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To control the q profile, we consider the reference tracking problem formulated as a finite-horizon, optimal
control problem. As illustrated in Figure 2(b), the feedback controller predicts the ι profile evolution over a
short horizon and updates the control action to maintain ι on the desired evolution, which in this work is the
feedforward trajectory5. At time k, we consider the quadratic optimization problem6

minimize
{uFB

t }
k+N
t=k

Jk =

k+N∑
t=k

∥∥ιt − ιFFt ∥∥2Q +
∥∥ut − uFF

t

∥∥2
R
,

subject to
k≤t<k+N

xt+1 = Atxt + Btut + ct,

yt =

 ι
βN

Vloop


t

= h(xt,ut),

βN,t ≤ βmax
N |t ,

Vloop,t ∈ Bounds on Vloop,

ut = uFF
t + uFB

t ∈ Ut.

(P2)

(P2)

Minimize Deviations from

Desired Feedforward Evolution

Predict State and Output

Evolution with Linearized Model

Impose MHD Stability Limit

Impose Flat Loop Voltage Profile

Impose Actuator Limits - Bounds

Defined by Ut
Relative to the feedforward problem (P1), the feedback optimization (P2) problem considers a shorter horizon
(number of future time steps), k, k+ 1, k+ 2, . . . , k+N , and a linearized form of the system dynamics (poloidal
flux evolution model) is used in problem (P2) to make the problem real-time solvable. The feedback control
(uFB) represents an update to the feedforward control (uFF) with the aim of minimizing deviations from the
target ι profile evolution, ιFF, which describes a plasma evolution that evolves to a flat loop voltage profile as
found in the feedforward control design section. Additionally, an upper limit on βN is imposed to avoid the
onset of magnetohydrodynamic instabilities (MHD), and a constraint on the loop voltage profile is included
(see Section 4.1). If deviations from the desired loop voltage profile are predicted, then the feedback controller
makes updates, as best as possible, to the feedforward control so as to minimize the constraint violations.

Because of limits on the actuators and other constraints, the optimal solution to problem (P2) cannot be
obtained in closed-form, and the problem must therefore be solved numerically. Fortunately, this type of
quadratic optimization problem involving a positive definite cost function (R > 0 and Q ≥ 0) can be solved
efficiently using active set techniques, which take advantage of the fact that the set of active constraints on
sequential control updates does not change dramatically, and thus the active set information from the previous
control update can be used to warm start the solution on the next control update [8].

4.1 Bounds on Loop Voltage Profile

The bound on Vloop of problem (P2) can be imposed in a variety of ways. For instance, a flat loop voltage

profile can be characterized by a null gradient
∂Vloop

∂ρ̂ ≡ 0. Since the spatial derivative of the loop voltage profile

is proportional to the time derivative of the ι profile (from (9)), a flat loop voltage can be imposed by applying
the constraint ∂ι/∂t = 0, or equivalently

ιt+1 − ιt = 0 for t = k, k + 1, . . . , N − 1. (10)

However, it certainly does not make sense to apply this constraint throughout the entire control phase. Instead
there should be a trigger event or a specific time during the control phase at which this constraint is applied.
For this work, we choose to apply the constraint beginning at a specified time, tss. In order to ensure the
optimization problem (P2) remains feasible, the loop voltage constraint can be softened with a forgiveness
parameter,

−εss ≤ (ιt+1 − ιt) ≤ εss, εss ≥ 0. (11)

where εss represents a window on forgiveness of satisfying the loop voltage constraint. The forgiveness parameter
is included as an optimization variable in the MPC problem (P2) by replacing the optimization objective with

Jk ← Jk +Wssε
2
ss, (12)

in which case the MPC problem will minimize violation of the loop voltage constraint, where Wss is introduced
as a control weight. Varying the relative size of Q to Wss can be used to align control effort towards tracking
the desired reference profile evolution ιFF or satisfying the loop voltage constraint.
5Other target profile evolutions are indeed possible.
6The function ‖z‖2W denotes the squared weighted Euclidian norm, i.e. ‖z‖2W = zTWz.
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(a) TRANSP test: feedforward case 1 – flattop Ip = 1.04 MA.
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Figure 3: Predictive TRANSP testing: the loop voltage profile obtained with optimized feedforward control policies of
Figure 1 in comparison to the loop voltage obtained with a non-optimized control policy (actuator waveforms
of shot 172538 labeled nominal). In (a) the optimized feedforward case 1 (red) and in (b) the optimized
feedforward case 2 (green) are plotted. The associated TRANSP run identification numbers are nominal –
725381122, case 1 – 1725381608, and case 2 – 1725381614.
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(a) Experimental test: feedforward control alone (case 2).
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(b) Experimental test: feedforward (case 2) + feedback control.

Figure 4: Experimental testing: the loop voltage profile obtained with optimized feedforward is compared to a standard
Ip ramp (shot 175272). Two tests are shown, (a) feedforward control alone shot 175274 (green) and (b)
feedforward + feedback shot 175278 (magenta). The loop voltage profile is obtained with interpretive
TRANSP runs, and associated run identification numbers are standard Ip ramp – 1752722601, feedforward
case 2 – 1752742601, and feedforward + feedback – 1752782601.

5 Experimental Testing

The ultimate objective of this work is to design a sophisticated control strategy that can reliably assist access
to high qmin > 1.5 − 2.0 discharges in a highly noninductive regime (fNI > 90%) with a uniform loop voltage
profile obtained as early as possible in the discharge. Shot 172538 is taken as the reference shot; a high
qmin discharge with high triangularity and elevated energy confinement (H98,y,2 ≈ 1.5), and plasma current of
1.04 MA, toroidal field BT = 1.65, major radius R = 1.66 m, and minor radius a = 0.61 m. The broad current
profile in 172538 is obtained with ECCD applied at ρ̂ = 0.2 − 0.65 to drive off-axis current and maintain the
elevated qmin, and the 150◦ beamline is tilted off-axis by 16◦ to increase the off-axis current drive. The reference
flattop current is scaled down to 0.91 MA for higher a noninductive fraction (fNI ≈ 80− 85%).

Testing begins with predictive TRANSP runs of the optimized feedforward control policies developed in
Section 3. In Figure 3, predictive TRANSP runs of the feedforward optimization cases of Figure 1 are shown;
case 1 (flattop Ip of 1.04 MA) is shown in Figure 3(a) and case 2 (flattop Ip of 0.91 MA) is shown in Figure 3(b).
For comparison, a non-optimized case (labeled nominal) is obtained with predictive TRANSP runs of the
actuator waveforms of shot 172538 with flattop Ip of 1.04 MA (same as 172538) and flattop Ip scaled down to
0.91 MA for comparison with optimized case 2. In both cases it can be noted the optimized feedforward control
signals have obtained flatter loop voltage profiles.

Experimental testing of the optimized feedforward control policy (case 2) was conducted in DIII-D discharges
with feedforward control alone (Figure 4(a)) and feedforward + feedback control (Figure 4(b)). The loop voltage
profile obtained with optimized feedforward (shot 175274) is compared to a standard Ip ramp with βN control
(shot 175272) in Figure 4(a). Notable improvements to the flatness of the loop voltage profile are obtained
in the optimized case. The loop voltage profile cannot be directly measured; instead it is found by TRANSP
analysis runs. In the test demonstrating combined feedforward + feedback control, the feedforward control
was once again defined by the actuator waveforms of Figure 1(c) (case 2). Recall that the control strategy
involves designing a feedforward control that evolves to the desired plasma state under ideal conditions, and
then using feedback control to help follow the feedforward state evolution during actual experiments, i.e. the
feedback corrects for disturbances and model mismatch. Stated plainly, the feedforward control produced a set
of actuators waveforms and corresponding state evolution (q evolution) that evolves to a flattop loop voltage,
which serves as a path to the desired state. The feedback ensures the plasma follows that path. This is why the
control strategy for loop voltage control still functions primarily as a q profile controller, only now it follows a
q profile evolution that evolves to a stationary state. The Vloop constraint is incorporated for added insurance
that a flat loop voltage can be obtained. In Figure 4(b), the results of shot 175278 are shown, in which the
flat Vloop constraint is applied starting at tss = 4 s. The loop voltage profile during the flattop phase of shot
175274 is plotted in comparison to the loop voltage profile obtained with the standard Ip ramp (shot 175272).
In this case, only a minor improvement in flattening the loop voltage profile can be seen around 4.2 seconds.
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It should be noted that this controller represents the necessary first steps. First, improvements are being made to
the model so that accurate predictions to the profile evolution over 1-2 confinement times can be made. Second,
the feedback solver efficiency needs to be improved so that a long horizon time (of length 1-2 confinement times)
can be used in the control design. With these improvements, the controller can make decisions in the ramp-up
while considering how those control actions will effect the profiles in the flattop. Presently, the controller uses
a horizon time of 5-10 control time steps (roughly 200ms). This needs to be pushed up to 1-2 seconds, enabling
a controller that can impose the Vloop constraint through the entire discharge.

6 Conclusions

This work has presented numerical optimal control methods for combined feedforward + feedback control of
the plasma q profile evolution to assist access of stationary plasmas characterized by a flat loop voltage profile.
It was found, based on numerical optimization studies involving a simplified control-oriented model, that an
overshoot in the target flattop current during ramp-up combined with an appropriate timing of the NBI and
ECCD turn-ON times is beneficial for the development of stationary plasmas. The optimized feedforward
control policy has also shown better results with respect to the non-optimized case in more comprehensive, as
compared to the control-oriented model, predictive-TRANSP simulations. While experimental tests were less
persuasive, it is important to note that the control approach is largely dependent on a good plasma model.
The quality and reliability of both the optimized feedforward control policy and predictive feedback control
will improve as more physics knowledge is embedded into the control-oriented model such as a dynamic plasma
temperature model to provide better prediction of the plasma resistivity.
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