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Abstract
Tight regulation of the burn condition in ITER has been proven possible in simulations even under time-dependent

variations in the fuel concentration by the use of robustification techniques. One of the most fundamental control problems
arising in ITER and future burning-plasma tokamaks is the regulation of the plasma temperature and density to produce a
determined amount of fusion power while avoiding possible thermal instabilities. Such problem, known as burn control, will
require the development of controllers that integrate all the available actuators in the tokamak. Moreover, the complex dynam-
ics of the burning plasma and the uncertain nature of some of its magnitudes suggest that nonlinear, robust burn controllers
will be necessary. Available actuators in the burn control problem are auxiliary power modulation, fueling rate modulation,
and impurity injection. Also, recent experiments in the DIII-D tokamak have shown that in-vessel coil-current modulation can
be used for burn control purposes. The in-vessel coils generate non-axisymmetric magnetic fields that have the capability to
decrease the plasma-energy confinement time, which allows for regulating the plasma energy during positive energy perturba-
tions. In this work, in-vessel coil-current modulation is included in the control scheme, and it is used in conjunction with the
other previously mentioned actuators to design a nonlinear burn controller which is robust to variations in the deuterium-tritium
concentration of the fueling lines. Furthermore, fueling rate modulation is not only used to control the plasma density, but also
to control the plasma energy, if necessary, by means of isotopic fuel tailoring. Isotopic fuel tailoring is a particular way of
fueling the burning plasma which allows for reducing the fusion power produced and, therefore, also gives the opportunity to
decrease the plasma energy when needed. The model-based nonlinear controller is synthesized from a zero-dimensional model
of the burning-plasma dynamics. A nonlinear simulation study is used to illustrate the successful controller performance in an
ITER-like scenario in which unknown variations of the deuterium-tritium concentration of the fueling lines are emulated.

1. Introduction

Tight regulation of the burn condition in ITER has been proven possible in simulations even under time-dependent
variations in the fuel concentration by the use of robustification techniques. In the context of developing the nec-
essary burn controllers for future burning-plasma tokamaks, a robust, nonlinear, model-based controller has been
designed and successfully tested in nonlinear simulations. This burn control algorithm integrates the most e↵ec-
tive actuators available for burn control, namely auxiliary power modulation, in-vessel coil-current modulation,
fueling rate modulation, and controlled impurity injection. The controller makes use of the two pellet injectors
available in ITER’s initial phase: a Deuterium (D) injector (with pellets of 100% D nominal concentration) and a
Deuterium-Tritium (D-T) injector (with pellets of 10%D-90%T nominal concentration). The D-T concentration
in these fueling lines may vary over time and the estimation of such variation during operation may be di�cult
or not even possible. The developed burn controller has been designed to be robust to unknown variations in the
D-T concentrations of the fueling lines over time such as biases and drifts, and shows a satisfactory performance
in nonlinear simulations for di↵erent ITER-like scenarios.
The control algorithm considers that the primary methods to regulate the plasma energy are auxiliary power mod-
ulation and in-vessel coil-current modulation. The inclusion of in-vessel coil-current modulation as an actuator is
motivated by recent experiments in the DIII-D tokamak [1]. The non-axisymmetric magnetic fields generated by
the in-vessel coils have the capability to decrease the plasma-energy confinement time, which allows for regulation
of the plasma energy. Fueling rate modulation is used in isotopic fueling mode to control the plasma energy and
total density if both the auxiliary power and the in-vessel coil current saturate, or if the total plasma density, n,
is such that n > 2 fGWnGW , where 0 < fGW  1 is a design parameter, and nGW is the Greenwald density limit.
Otherwise, fueling rate modulation is exclusively used to control the D and T densities. Reduction of the plasma
energy by in-vessel coil-current modulation, instead of by isotopic fueling, allows for smaller control actions and
finer plasma-energy regulation, provided that a careful controller design is followed. Impurity injection is kept
as a backup actuator to decrease the plasma energy provided that n  2 fGWnGW . All these actuation methods
are integrated within one single burn-control algorithm that operates them simultaneously and makes decisions
about which one is the most suitable to ensure successful regulation of the burn condition. The robust, nonlinear,
feedback controller has been tested in closed-loop simulations for di↵erent ITER-like scenarios. Moreover, its
performance has been compared to the performances of both a nominal nonlinear feedback controller that is not
robust against variations in the D-T concentrations of the fueling lines and a feedforward control law designed
based on the nominal model (not capturing possible variations in the D-T fuel concentrations).

1



IAEA-CN-123/45

2. Burning PlasmaModel

The model utilized in this work is a zero-dimensional model in which all variables can be considered as volume-
averaged magnitudes. It takes into account the existence of the di↵erent types of particles that compose the
burning plasma: D, T, ↵ particles, and impurities. Approximate particle density and energy balance equations are
employed to characterize the dynamics of the burning plasma.
The balance equations for the D and T densities, nD and nT , are given by

dnD

dt
= �nD

⌧D
+ S in j

D � S ↵,
dnT

dt
= �nT

⌧T
+ S in j

T � S ↵, (1)

where t is the time, the terms �nD/⌧D and �nT /⌧T represent the transport of D and T particles out of the plasma
core, respectively, ⌧D and ⌧T are the D and T confinement times, respectively, S in j

D and S in j
T are the controllable D

and T injection rates, respectively, and S ↵ is the source of ↵ particles arising from nuclear fusion reactions,

S ↵ = nDnT h�vi = �(1 � �)(nD + nT )2h�vi, (2)

where � is the tritium fraction, defined as � = nT /(nD + nT ), and h�vi is the cross section of the D-T reaction,
which is modeled as h�vi = exp(a1/T r + a2 + a3T + a4T 2 + a5T 3 + a6T 4), where ai and r are constant scaling
parameters [2], and T is the plasma temperature (it is assumed that ion and electron temperatures are the same,
T , Te = Ti). Modeling of wall recycling e↵ects is omitted in this work to simplify the exposition due to space
constraints but it is included in [3]. The balance equation for the ↵-particle density, n↵, is given by

dn↵
dt
= �n↵

⌧↵
+ S ↵, (3)

where the term �n↵/⌧↵ represents the transport of ↵ particles out of the plasma core, and ⌧↵ is the confinement
time of the ↵ particles. For simplicity, only one type of impurity particle is considered in this work, although a
more complex model could be used. The time evolution of the impurity particle density, nI , is given by

dnI

dt
= �nI

⌧I
+ S sp

I + S in j
I , (4)

where the term �nI/⌧I represents the transport of impurities out the plasma core, ⌧I is the confinement time of
the corresponding impurity particle, S in j

I is the source of impurities injected for control purposes, and S sp
I is the

source of impurities arising from sputtering, which is modeled as

S sp
I = f sp

I

✓ n
⌧I
+

dn
dt

◆

, (5)

where f sp
I > 0 is a constant parameter, and n is the total plasma density,

n = ni + ne = 3n↵ + 2nD + 2nT + (1 + ZI)nI , (6)

where ni = n↵ + nD + nT + nI is the ion density, and ne is the electron density, which is related to the density of the
ions by the quasi-neutrality condition, ne = 2n↵ + nD + nT +ZInI , where ZI is the atomic number of the impurities.
The plasma energy, E, is related to n and T by

E =
3
2

(niTi + neTe) =
3
2

nT, (7)

where the assumption T , Te = Ti has been used. The energy density balance in the plasma is given by

dE
dt
= � E

⌧E
+ P , � E

⌧E
+ P↵ + POhm � Prad + Paux, (8)

where ⌧E is the energy confinement time, P , P↵+POhm�Prad+Paux is the total power density, P↵ is the ↵-particle
heating power density, POhm is the ohmic heating power density, Prad is the radiative power density, and Paux is the
auxiliary power density injected into the plasma. The ↵-particle power is given by P↵ = Q↵S ↵, where Q↵ = 3.52
MeV. The ohmic power is given by POhm = 2.8⇥10�9(Ze f f I2

p)/(a4T 3/2), where Ze f f = (4n↵+nD+nT +Z2
I nI)/ne is

the e↵ective atomic number of the plasma ions, Ip is the plasma current, a is the minor radius of the tokamak, and
T has to be given in keV. The radiative power is composed by three terms, Prad = Pbrem+Pline+Prec, where Pbrem is
the Bremsstrahlung term, Pline is the line radiation term, and Prec is the recombination term. Each term is given by
Pbrem = 4.8⇥10�37�P

j n jZ2
j
�

ne
p

T , Pline = 1.8⇥10�38�P
j n jZ4

j
�

neT�1/2, and Prec = 4.1⇥10�40�P
j n jZ6

j
�

neT�3/2,
where the summation in j is done for all types of ions in the plasma, and T has to be given in keV [4]. The ITER’s
parameters used in this work are Ip = 15 MA, R = 6.2 m, a = 2.0 m, BT = 5.3 T, 95 = 1.7, and V = 837 m3.
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2.1. E↵ect of In-vessel Coil Currents on Energy Confinement Time

For ⌧E , the IPB98(y,2) scaling is used [5],

⌧E = 0.0562HH I0.93
p B0.15

T n0.41
e19 M0.19R1.97✏0.580.78

95 (PV)�0.69, (9)

where HH is the so-called H-factor, Ip is the plasma current in MA, BT is the toroidal magnetic field, ne,19 is the
electron density in 1019 m�3, M is the plasma e↵ective mass in amu, R is the major radius, ✏ = a/R is the inverse
aspect ratio, where a is the minor radius, 95 is the elongation at the 95 % flux surface/separatrix, P is the total
power density in MW m�3, and V is the plasma volume. It is assumed that all particle confinement times scale
with ⌧E , i.e., ⌧↵ = k↵⌧E , ⌧D = kD⌧E , ⌧T = kT⌧E , ⌧I = kI⌧E , where k↵, kD, kT and kI are constant parameters.
The H-factor, HH , is a scalar which represents the uncertainty of the IPB98(y,2) scaling under di↵erent scenarios
and operating conditions. A value of HH = 1 yields the best fit to experimental data in the international database.
It can also be seen as a measurement of the plasma confinement quality which comprises e↵ects not explicitly
included in the IPB98(y,2) scaling. Amongst those e↵ects, perturbations in the tokamak magnetic configuration
can be considered. In particular, those magnetic perturbations introduced by the non-axisymmetric magnetic fields
generated by the in-vessel coils have a proven impact on HH in DIII-D plasmas with relatively low collisionality ⌫e
and relatively low ne (⌫e ⇡ 0.1, ne ⇡ 3.5 ⇥ 1019m�3) [1]. In these experiments, activation of the in-vessel coils
implied a decrease in HH and, consequently, a decrease in ⌧E . Tokamak plasmas with higher ⌫e and ne, on
the contrary, did not show HH variations under application of non-axisymmetric magnetic fields [6]. Using the
experimental data available for DIII-D in [1, 6], the following control-oriented scaling is used to account for the
influence of the in-vessel-coil current, denoted by Icoil, on HH ,

HH = HH,0 +
✓ ne

ne,0

◆��✓ ⌫e

⌫e,0

◆��
⇥

C2I2
coil +C1Icoil

⇤

, (10)

where HH,0 is the H-factor without activation of the in-vessel coils, ne,0 and ⌫e,0 are the electron density and
collisionality, respectively, corresponding to a nominal working point for which experimental data is available,
and � > 0, � > 0, C1 and C2 are constants which are determined from the experimental data. Because the in-vessel
coils can only reduce HH , the term

⇥

C2I2
coil +C1Icoil

⇤

is always  0, 8Icoil � 0.

2.2. Uncertainty Characterization for the D-T Concentration in the Fueling Lines

The fueling rates associated with the two fueling lines available in the initial phase of ITER (D-T pellet injector
and D pellet injector) are denoted as S in j

DT�line and S in j
D�line, respectively, and are considered as directly controllable

magnitudes. S in j
D and S in j

T can be expressed, in terms of S in j
DT�line and S in j

D�line, as

S in j
D = (1 � �DT�line)S in j

DT�line + (1 � �D�line)S in j
D�line, S in j

T = �DT�lineS in j
DT�line + �D�lineS in j

D�line, (11)

where �DT�line 2 [0, 1] and �D�line 2 [0, 1] are parameters that characterize the T concentration in the D-T and D
pellet injectors, respectively. Therefore, in the nominal case, �DT�line = �nom

DT�line , 0.9 and �D�line = �nom
D�line , 0.

However, as introduced above, unknown variations over time in the D-T concentrations are expected in the fueling
lines. Such uncertainties are modeled as �DT�line = �nom

DT�line + �DT�line, �D�line = �nom
D�line + �D�line, where �DT�line

and �D�line are the unknown variations in the D-T concentration in the D-T and D pellet injectors, respectively.
From its definition, it is found that �DT�line 2 [�0.9, 0.1] and �D�line 2 [0, 1], so these uncertainties are bounded.

2.3. Total Density and Tritium Fraction Dynamics

Because isotopic fueling controls E by regulating �, and stability limits exist for n, it is convenient to control n
and � under isotopic fueling mode, instead of nD and nT . From (6), the definition of �, and the balance equations
(1), (3), and (4), it is possible to write the balance equations for n and �, which are given by

dn
dt
= 3

"

�n↵
⌧↵
+ S ↵

#

+ (3n↵ + (1 + ZI) nI � n)
 

1 � �
⌧D
+
�

⌧T

!

�4S ↵ + 2(S in j
D�line + S in j

DT�line) + (1 + ZI)
"

�nI

⌧I
+ S in j

I + S sp
I

#

, (12)

d�
dt
= �(1 � �)

✓ 1
⌧D
� 1
⌧T

◆

+
2

n � 3n↵ � (1 + ZI) nI

n

�S ↵ + �D�lineS in j
D�line

+�DT�lineS in j
DT�line � �

h

�2S ↵ + S in j
D�line + S in j

DT�line

io

. (13)

As a result, two states, x, are utilized in this work for control design. If fueling rate modulation directly controls
nD and nT , then x = [n↵, nD, nT , nI , E]T . If isotopic fuel tailoring controls n and �, then x = [n↵, n, �, nI , E]T . The
inputs to the system are Paux, Icoil, S in j

I , S in j
D�line, and S in j

DT�line.
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3. Operating Points and Control Objective

The equilibria of the balance equations (1), (3), (4) and (8) (or alternatively, (3), (4), (8), (12) and (13)), which
define the operating points of the tokamak, are obtained by forcing the time derivatives to zero. Upper bars are
used to denote equilibrium values. It can be noted that S̄ in j

I = 0 is set, as controlled impurity injection is only
utilized as a back-up actuator to decrease E when E > Ē. In addition, at any operating point, it is desirable that ⌧̄E
is as large as possible, thus Īcoil = 0 is imposed. Then, the equilibrium system is composed by 5 equations with 8
unknowns (5 state variables + 3 inputs), so 3 variables must be specified in order to find a unique solution. The
variables fixed in this work to solve for the equilibrium, and therefore to define the tokamak operating point, are
T = T̄ , � = �̄, and �N = �̄N , where �N = �taBT /Ip[%], �t = 4µ0E/(B2

T V), where µ0 is the vacuum permeability.
The dynamic equations for the state error, defined as x̃ , x � x̄ = [ñ↵, ñD, ñT , ñI , Ẽ]T when isotopic fueling is not
employed, are given by

dñ↵
dt

= � n̄↵
⌧↵
� ñ↵
⌧↵
+ S ↵, (14)

dñD

dt
= � n̄D

⌧D
� ñD

⌧D
� S ↵ + S in j

D , (15)

dñT

dt
= � n̄T

⌧T
� ñT

⌧T
�S ↵+ S in j

T , (16)

dñI

dt
= � n̄I

⌧I
� ñI

⌧I
+ S in j

I + S sp
I , (17)

dẼ
dt

= � Ē
⌧E
� Ẽ
⌧E
+ P↵ + POhm � Prad + Paux. (18)

If isotopic fueling is used, then x̃ , x � x̄ = [ñ↵, ñ, �̃, ñI , Ẽ]T , and (15) and (16) are substituted by the dynamic
equations for the n and � error variables, denoted by ñ and �̃, respectively. Details can be found in [3].
The control objective is to drive the state error x̃ to zero, or alternatively, the state x to its equilibrium value x̄.

4. Controller Design

4.1. Control Law for the Nominal System (�D�line = 0, �DT�line = 0)

Step 1: Auxiliary Power Modulation. If Paux is set to

Punsat
aux =

Ē
⌧E
� P↵ � POhm + Prad � KPẼ, (19)

where KP > 0 is a design parameter, then (18) is reduced to dẼ/dt = � (1/⌧E + KP) Ẽ, and using a Lyapunov
function [7] VẼ =

1
2 Ẽ2 > 0, yields V̇Ẽ = � (1/⌧E + KP) Ẽ2 < 0. This ensures global asymptotical stability

for Ẽ (i.e., Ẽ ! 0). In this case, neither in-vessel coil-current modulation (Step 2) nor impurity injection
(Step 5) are used, i.e., Icoil ⌘ 0 and S in j

I ⌘ 0. Moreover, ñD and ñT are controlled by fueling rate modulation
(Step 3) as long as n  2 fGWnGW , where nGW =

Ip

⇡a2 1020m�3 is the Greenwald density limit (Ip in MA),
and 0 < fGW  1 is a design parameter. Otherwise, ñD and ñT are controlled by isotopic fueling (Step 4).
However, it may not be possible to set Paux = Punsat

aux because there exist saturation limits, which are denoted
as Pmax

aux and Pmin
aux . If Punsat

aux > Pmax
aux , the control algorithm keeps Paux = Pmax

aux , but it cannot be ensured
that Ẽ ! 0. The only possible ways to cope with this limitation are either to increase Pmax

aux or to improve
the machine parameters (Ip, BT, etc.). On the other hand, if Punsat

aux < Pmin
aux , the control algorithm keeps

Paux = Pmin
aux , but it cannot be ensured that Ẽ ! 0. In that case, the controller is designed to use in-vessel

coil-current modulation (Step 2), isotopic fueling (Step 4), and/or impurity injection (Step 5) to regulate Ẽ.

Step 2: In-vessel Coil-current Modulation. If ⌧E is set to

⌧unsat
E =

Ē
Pmin + K⌧E Ẽ

, (20)

where Pmin = P↵ + POhm � Prad + Pmin
aux, and K⌧E > 0 is a design parameter, then (18) is reduced to dẼ/dt =

� �

1/⌧E + K⌧E

�

Ẽ. Using VẼ =
1
2 Ẽ2 > 0, then V̇Ẽ = �

�

1/⌧E+K⌧E

�

Ẽ2 < 0, which ensures global asymptotical
stability for Ẽ (i.e., Ẽ ! 0). The required value Iunsat

coil to set ⌧E as in (20) is obtained from (9), (10), and (20)
by solving the following nonlinear equation,

C2(Iunsat
coil )2 +C1Iunsat

coil =
✓ ⌧unsat

E

KIPB98(y,2)
� HH,0

◆✓ ne

ne,0

◆�✓ ⌫e

⌫e,0

◆�

, (21)
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where KIPB98(y,2) = 0.0562I0.93
p B0.15

T n0.41
e,19 M0.19R1.97✏0.580.78

95 (Pmin)�0.69V�0.69. In this case, ñD and ñT are
controlled by fueling rate modulation (Step 3), except if n > 2 fGWnGW , when again isotopic fueling (Step 4)
is activated. However, it may not be possible to set Icoil = Iunsat

coil because there exists saturation limits, i.e.,
0  Icoil  Imax

coil . Iunsat
coil  0 is an indication that indeed Paux modulation can regulate Ẽ (Step 1) on its own.

In this case, in-vessel coil-current modulation is not necessary and the controller makes Icoil ⌘ 0. On the
other hand, if Iunsat

coil > Imax
coil , the controller sets Icoil = Imax

coil and uses isotopic fueling (Step 4) and/or impurity
injection (Step 5) to further regulate Ẽ.

Step 3: Fueling Rate Modulation (ñD and ñT Control). If S in j
D and S in j

T are set to

S in j,unsat
D = S ↵ +

n̄D

⌧D
� KDñD, S in j,unsat

T = S ↵ +
n̄T

⌧T
� KT ñT , (22)

where KD > 0 and KT > 0 are design parameters, then (15) and (16) are reduced to dñD/dt=� (1/⌧D+KD) ñD
and dñT /dt=� (1/⌧T +KT ) ñT , respectively. Using VñDT =

1
2 (ñ2

D+ñ2
T ), it is found that V̇ñDT =� (1/⌧D+KD) ñ2

D�
(1/⌧T + KT ) ñ2

T < 0, thus both ñD and ñT evolutions are globally asymptotically stable (i.e., ñD ! 0 and
ñT ! 0). The stabilizing values for S in j

D�line and S in j
DT�line are obtained from solving (11) together with (22).

Nonetheless, as before, it may not be possible to set S in j
D�line = S in j,unsat

D�line and/or S in j
DT�line = S in j,unsat

DT�line be-
cause there exist physical saturation limits, that are denoted by S in j,max

D�line , S in j,min
D�line, S in j,max

DT�line, and S in j,min
DT�line. If

S in j
D�line/S

in j
DT�line is larger or smaller than its applicable saturation limits, the controller keeps S in j

D�line/S
in j
DT�line

at the saturation limit that has been violated, and no further steps in the control algorithm are activated. The
asymptotic stability of ñD and/or ñT cannot be ensured unless the controller recovers from the saturation
limits. This is not an inherent problem of the control algorithm but just a physical limitation in the actuation
capability of the tokamak. Finally, it can be showed that, if Ẽ, ñD, and ñT are driven to zero, then ñ↵ and ñI
are also driven to zero as t ! 1 provided that S in j

I ⌘ 0 [3], so the control objective is achieved.

Step 4: Fueling Rate Modulation (�̂ and ñ Control). By using isotopic fueling, the controller attempts to drive
� ! �⇤ to make Ẽ asymptotically stable. This �⇤ value is obtained by solving the nonlinear equation

�⇤(1 � �⇤) =
Ē
⌧E
� POhm � Paux + Prad � K�,1Ẽ

Q↵(nD + nT )2h�viDT
, (23)

where K�,1 > 0 is a design parameter. In this case, (18) reduces to dẼ/dt = �
⇣

1/⌧E + K�,1
⌘

Ẽ, and using
the same Lyapunov function VẼ =

1
2 Ẽ2 > 0 as before, global asymptotical stability of Ẽ is ensured because

V̇Ẽ = �
⇣

1/⌧E + K�,1
⌘

Ẽ2 < 0. For stability analysis, it is convenient to define �̂ , � � �⇤ since making
�̂ ! 0 is equivalent to making � ! �⇤. Taking S in j

T as

S in j,unsat
T =

�[�2S ↵+S in j,unsat
D ]+S ↵+v

1 � � , (24)

and using the definition for �̂ and (13), it is possible to write d�̂/dt = �(1 � �) (1/⌧D � 1/⌧T ) + v
nD+nT

. By

taking v = �(nD + nT )[�(1 � �) 1
⌧D
+

�2��⇤
⌧T
+ K�,2�̂], where K�,2 > 0 is a design parameter, it is found that

d�̂/dt = �
⇣

1/⌧T + K�,2
⌘

�̂. Then, using V�̂ =
1
2 �̂

2, it is found that V̇�̂ = �
⇣

1/⌧T + K�,2
⌘

�̂2 < 0. Thus, the �̂
evolution is globally asymptotically stable. Taking S in j

D as

S in j,unsat
D =

nD

⌧D
+

nT

⌧T
+ 2S ↵ � S in j,unsat

T + w, (25)

and using (12), it is possible to write dñ/dt = 3 (�n↵/⌧↵ + S ↵)+ (1 + ZI)
⇣

�nI/⌧I + S in j
I + S sp

I

⌘

+ 2w, where
ñ , n � n̄. By taking w = � 1

2

h

3(�n↵/⌧↵+S ↵)+(1 + ZI)
⇣

�nI/⌧I + S in j
I + S sp

I

⌘

+Knñ
i

, where Kn > 0 is a
design parameter, it is found that dñ/dt = �Knñ. Using Vñ =

1
2 ñ2 ensures that the ñ evolution is globally

asymptotically stable because V̇ñ = �Knñ2 < 0. Solving (24)-(25) for S in j,unsat
D and S in j,unsat

T yields

S in j,unsat
D = (1 � �)

 

nD

⌧D
+

nT

⌧T
+ w

!

+ S ↵ � v, S in j,unsat
T = �

 

nD

⌧D
+

nT

⌧T
+ w

!

+ S ↵ + v. (26)

The stabilizing values for S in j
D�line and S in j

DT�line are obtained from solving (11) together with (26). If the satu-
ration limits S in j,max

D�line , S in j,min
D�line, S in j,max

DT�line, and S in j,min
DT�line are reached, then the controller keeps S in j

D�line/S
in j
DT�line at
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the saturation limit that has been violated (i.e., same procedure as in Step 3). The stability of the Ẽ, ñ, and/or
�̂ cannot be ensured in this case until the controller recovers from the saturation limits. Again, this is not a
problem of the control algorithm but just a natural limitation imposed by the available actuation capability.
However, in this case, impurity injection is activated for Ẽ regulation (Step 5), as long as n  2 fGWnGW . If
n > 2 fGWnGW , impurity injection is never used, as it always increases n. Finally, it can be showed that if Ẽ,
ñ, and �̂ are driven to zero with S in j

I ⌘ 0, then ñ↵ and ñI are also driven to zero as t ! 1 [3], and the control
objective is fulfilled.

Step 5: Impurity Injection. By using impurity injection, the controller attempts to drive nI ! n⇤I such that the
Ẽ evolution is asymptotically stable. This n⇤I value is obtained by solving the nonlinear equation

Prad(n⇤I ) = � Ē
⌧min

E
+ Pmin

↵ + POhm + Pmin
aux + KnI Ẽ, (27)

where KnI > 0 is a design parameter, and Pmin
↵ is the ↵ heating achieved by isotopic fueling. Note that

Paux = Pmin
aux, ⌧E = ⌧min

E , and P↵ = Pmin
↵ , which means that impurity injection is used only when the

combination of auxiliary power modulation (Step 1), in-vessel coil-current modulation (Step 2) and iso-
topic fueling (Step 3) is not enough to asymptotically stabilize Ẽ. In this case, (18) reduces to dẼ/dt =
�

⇣

1/⌧min
E + KnI

⌘

Ẽ. By using VẼ =
1
2 Ẽ2 > 0 as before, global asymptotical stability of Ẽ is ensured be-

cause V̇Ẽ = �
⇣

1/⌧min
E + KnI

⌘

Ẽ2 < 0. It is convenient to define n̂I , nI � n⇤I for stability analysis since
making n̂I ! 0 is equivalent to making nI ! n⇤I . By using both this definition and (17), and by tak-
ing S in j

I equal to S in j,unsat
I =

n⇤I
⌧I
� S sp

I � KIn̂I , where KI > 0 is a design parameter, it is possible to write
dn̂I/dt = � (1/⌧I + KI) n̂I . Taking Vn̂I =

1
2 n̂2

I , it is found that V̇n̂I = �(1/⌧I + KI)n̂2
I < 0, which implies

n̂I ! 0. Therefore, it can be ensured that nI ! n⇤I and Ẽ ! 0. Because of the upper saturation limit
that exists for S in j

I , denoted as S in j,max
I (note that S in j,min

I ⌘ 0), Ẽ ! 0 cannot be guaranteed until after the
controller recovers from saturation.

4.2. Robust Control Law (�D�line , 0, �DT�line , 0)

Step 3: Robust Fueling Rate Modulation (ñD and ñT Control). Equations (15) and (16) can be written in
matrix form as

h

˙̃nD, ˙̃nT
iT
= f+G [u + �], where f =

h

�(n̄D + ñD)/⌧D + S in j
D � S ↵,�(n̄T + ñT )/⌧T + S in j

T � S ↵

iT
,

G =
"

1 � �nom
DT�line 1 � �nom

D�line
�nom

DT�line �nom
D�line

#

, u =
"

S in j
DT�line

S in j
D�line

#

, � = G�1
"

�(�DT�lineS in j
DT�line + �D�lineS in j

D�line)
�DT�lineS in j

DT�line + �D�lineS in j
D�line

#

.

The nominal control law for ñD-ñT is denoted by  n = [S in j
D�line, S

in j
DT�line]T . A control law u =  n + v is now

sought, where v is the part to be designed for robustness. Using a similar approach as in [7], v is taken as

v = �0|| n||2
1 � 0

w
||w||2

if 0|| n||2||w||2 � ✏, v = �
 

0|| n||2
1 � 0

!2 w
✏

if 0|| n||2||w||2 < ✏, (28)

where ✏ > 0 is a design parameter that needs to be small, w is given by wT = [ @V
@ñD
, @V
@ñT

]G, where V = VñD +
VñT , and 0 is a constant that is obtained by finding a bound to � of the form ||�( n + v)||2  0(|| n||2 + ||v||2).
The control law (28) ensures that |ñD| and |ñT | are bounded by class K functions of ✏1. It can be showed
that, provided that Ẽ is driven to zero, |ñ↵| and |ñI | are also bounded by class K functions of ✏ [3].

Step 4: Robust Fueling Rate Modulation (�̂ and ñ Control). Equations (12) and (13) can be written in ma-
trix form as

h

˙̃n, ˙̂�
iT
= f ? + G?⇥u + �?

⇤

, where f ? =
h

f ?1 , f ?2
i

, f ?1 = 3
h

� n↵
⌧↵
+ S ↵

i

+
�

3n↵ + (1 + ZI) nI �
n
�

⇣ 1��
⌧D
+

�
⌧T

⌘

� 4S ↵ + (1 + ZI)
h

� nI
⌧I
+ S sp

I

i

, f ?2 = �(1 � �)
✓

1
⌧D
� 1

⌧T

◆

+ 2
n�3n↵�(1+ZI )nI

{�S ↵ + 2�S ↵}, and

G? =

2

6

6

6

6

4

2 2
2 �nom

DT�line��
n�3n↵�(1+ZI )nI

2 �nom
D�line��

n�3n↵�(1+ZI )nI

3

7

7

7

7

5

, �? = (G?)�1

2

6

6

6

6

6

4

0

2 �DT�lineS in j
DT�line

n�3n↵�(1+ZI )nI
+ 2 �D�lineS in j

D�line
n�3n↵�(1+ZI )nI

3

7

7

7

7

7

5

.

The nominal control law for �̂-ñ (isotopic fueling) is denoted by  ?n = [S in j
D�line, S

in j
DT�line]T . A control law

u =  ?n + v? is now sought, where v? is the part to be designed for robustness. Following [7], v? is taken as

v? = �
?0 || ?n ||2
1 � ?0

w?

||w?||2
if ?0 || ?n ||2||w?||2 � ✏?, v = �

 

?0 || ?n ||2
1 � ?0

!2 w?

✏?
if ?0 || ?n ||2||w?||2 < ✏?, (29)

1A continuous function f (x) is said to be a class K function if: (1) it is a strictly increasing function of x, and (2) f (0) = 0.
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Figure 1: Time evolutions for T , �N, �, nD, nT and n under robust feedback control law (solid blue), nominal feedback control law (magenta
dashed-dotted), and feedforward control law (black dotted), together with the reference signals (red dashed).

where ✏? > 0 is a design parameter that needs to be small, w? is given by (w?)T = [ @V?

@ñ ,
@V?

@�̂ ]G?, where
V? = Vñ + V�̂, and ?0 is a constant that is obtained by finding a bound to �? of the form ||�?( ?n + v?)||2 
?0 (|| ?n ||2 + ||v?||2). The control law (29) ensures that |ñ| and |�̂| are bounded by classK functions of ✏?. The
proof to show that |ñ↵| and |ñI | are also bounded by class K functions of ✏?, provided that Ẽ is driven to
zero, follows the same arguments as in Step 3. More details can be found in [3].

5. Nonlinear Simulation Study

Simulation results for the evolution of the plasma temperature (T ), normalized beta (�N), tritium fraction (�),
deuterium density (nD), tritium density (nT ) and total density (n) are showed in Fig. 1. The system inputs are
shown in Fig. 2, where the waveforms for S in j

D , S in j
T , S in j

D�line, S in j
DT�line, Icoil, and Paux are illustrated. Also, a constant

negative 30 % drop in the T concentration of the D-T pellet injector is emulated during the whole simulation,
whereas no T is assumed in the D pellet injector (as in the nominal case). Such deviation in the D-T concentration
with respect to the nominal case is totally unknown to the controller. Initially, the controller attempts to regulate
the system around a first operating point defined by T = 10 keV, �N = 2, and � = 0.5, from t = 0 s till t = 50
s. The simulation study starts from a perturbed initial condition with respect to this first operating point (+20%
in n↵, +30% in nD, +10% in nT , and +20% in E (no perturbation is introduced in nI)). Second, at t = 50 s, the
controller attempts to drive the system to a di↵erent operating point defined by T = 12 keV, �N = 1.75, and � =
0.45. Finally, from t = 100 s until t = 150 s, the controller attempts to drive the system back to the first operating
point. In the case of nominal D-T fuel concentration, the reference actuator signals shown in Fig. 2 are designed
to achieve in open loop the desired reference states shown in Fig. 1. However, in presence of the simulated bias in
the T concentration of the D-T pellet injector, the variables evolve in open loop to values that are di↵erent from
the desired references as shown in Fig. 1. Under the nominal control law, �N is driven to the desired operating
points during the whole simulation, whereas T and n can only be driven to the first operating point; at t = 50 s,
the nominal control law is unable to accurately drive T and n to the second operating point, and it is also unable
to drive T and n back to the first operating point at t = 100 s. Because n > 2 fGWnGW between t = 0 s and t ⇡
50 s, and later between t ⇡ 100 s and t ⇡ 150 s, isotopic fueling is employed, while regular density control is
used between t ⇡ 50 s and t ⇡ 100 s. In open loop, n exceeds two times the Greenwald stability limit, while the
nominal and robust control laws avoid violating such limit. Still, the nominal control law cannot drive �, nD and
nT to the desired operating points during the entire simulation. On the other hand, the robust control law is able
to successfully drive all the variables T , �N , �, nD, nT and n to the di↵erent operating points. Fig. 2 shows that
the robust control law can correct the drifts in the D-T concentration of the pellet injectors even though they are
unknown to the controller, and drives Paux, S in j

D , S in j
T and Icoil to their reference values. It must be emphasized that

S in j
D�line and S in j

DT�line are not expected to converge to their reference values due to the emulated bias. The in-vessel
coils are utilized by both the nominal and robust control laws during the short periods of time in which Paux is
saturated to its minimum value, around t = 0 s and t = 50 s. Impurity injection is not used at all by the controller
due to the fact that, while isotopic fueling is employed, density limits are closed to be violated (i.e., n > 2 fGWnGW ).
The simulation study suggests both that the D-T pellet-concentration variations play a crucial role in the burning
plasma dynamics and that robust burn controllers are necessary to e↵ectively overcome their negative impact in
ITER.
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Figure 2: Actuator signals under robust (solid blue) and nominal (magenta dashed-dotted) control laws, and actuator reference (red dashed).

6. Conclusions
A nonlinear, robust burn controller, which is capable of regulating the burning plasma system around a desired
equilibrium under the presence of large initial perturbations and uncertainties in the DT concentration of the pellet
injectors, has been presented. The controller can be used to drive the system between di↵erent operating points,
since the design process avoids model linearization around a particular equilibrium. Moreover, the algorithm com-
bines all feasible actuators available in tokamaks for burn control (auxiliary power, in-vessel coil current, fueling
rates, and impurity injection) in a comprehensive, integrated control strategy, which allows for a high flexibility
when choosing the most appropriate actuation methods in di↵erent scenarios. For instance, the controller chooses
isotopic fueling in scenarios in which disruptive density limits may be reached, whereas it chooses a more accurate
D and T density control approach around operating points that are relatively far from disruptive density limits.
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