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Transport Parameter Estimations of Plasma Transport
Dynamics Using the Extended Kalman Filter

Chao Xu, Yongsheng Ou, and Eugenio Schuster

Abstract—The accuracy of first-principle predictive models for
the evolution of plasma profiles is sometimes limited by the
lack of understanding of the plasma transport phenomena. It
is possible then to develop approximate transport models for
the prediction of plasma dynamics, which are consistent with
the available diagnostic data. This data-driven approach, usually
referred to as phenomenological modeling, arises as an alternative
to the more classical theory-driven approach. In this paper, we
propose a stochastic filtering approach based on an extended
Kalman filter to provide real-time estimates of poorly known
or totally unknown transport coefficients. We first assume that
plasma dynamics is governed by tractable models obtained by
first principles. However, the transport parameters are considered
unknown and to be estimated. These estimates will be based solely
on input/output diagnostic data and limited understanding of
the transport physics. Numerical methods (e.g., finite differences)
can be used to discretize the partial differential equation models
both in space and time to obtain finite-dimensional discrete-time
state-space representations. The system states and to-be-estimated
parameters are then combined into an augmented state vector.
The resulting nonlinear state-space model is used for the design
of an extended Kalman filter that provides real-time estimations
not only of the system states but also of the unknown transport
coefficients. Simulation results demonstrate the effectiveness of the
proposed method for a benchmark transport model in cylindrical
coordinates.

Index Terms—Extended Kalman filter, parameter estimations,
plasma transport.

I. INTRODUCTION

MATHEMATICAL modeling of plasma transport phe-
nomena with modest complexity but capturing domi-

nant dynamics is critical for plasma control design. Transport
theories (classical, neoclassical, and anomalous) produce, un-
der necessary assumptions, strongly nonlinear models based on
partial differential equations (PDEs). However, the complexity
of these models often makes them not useful for control design
since it is very challenging, if not impossible, to synthesize
compact and reliable control strategies based on these com-
plicated mathematical models. As an alternative, data-driven
modeling techniques, including system identification [1] and
data assimilations [2], have the potential to obtain practical low-
complexity dynamic models for the control of plasma systems.
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Data-driven modeling techniques have been successfully
used in the past to model plasma transport dynamics for active
control design in nuclear fusion reactors (see, e.g., [3]–[6]).
System identification using input/output (I/O) diagnostic data
has been used to model the current profile dynamics in ASDEX
Upgrade [4]. In the JET tokamak [6], a two-time-scale linear
system is used to describe the dynamics of the magnetic and
kinetic profiles around certain quasi-steady-state trajectories,
where system matrices can be identified from the experimental
or simulation data using system identification algorithms in [1].
In the L-mode discharges of the JT-60U tokamak [5], diffusive
and nondiffusive coefficients of the momentum transport equa-
tion of the toroidal rotation profile dynamics are estimated from
transient data obtained by modulating the momentum source.

First-principle modeling of the plasma profile dynamics
usually results in multiple-input–multiple-output infinite-
dimensional transport models. By using the method of av-
eraging over magnetic surfaces, the transport model can be
formulated into 1-D PDEs with respect to a variable indexing
the magnetic surfaces [7], [8]. System identification, however,
often generates dynamic models fitting the I/O diagnostic data
but does not take into account the physical structure of the trans-
port model obtained by first principles. In this case, the states
of the identified models do not necessarily represent physical
variables. In this paper, we propose instead to use the tractable
1-D PDE structure [8] of the first-principle model to estimate its
transport coefficients using experimental data. Previous work
following a similar approach includes [3, pp. 424–445], where
Wang formulates a parameter identification problem for the
electron transport model of a tokamak plasma governed by
nonlinear PDEs and proposes a PDE-constrained optimization
method to solve the parameter estimation problem.

Various numerical methods (such as the finite-difference
method [9]) can be used to obtain fully spatial–temporal dis-
cretized models in terms of given spatial nodes and sampling
rates. For finite-dimensional discrete-time systems, stochastic
filters (e.g., the Kalman filter) can be used to estimate the
system states based on the I/O measurements. In order to be
able to also estimate system parameters, such as the transport
coefficients, it is possible to define an augmented state vector
which includes both the original system states and those to-be-
estimated parameters. The overall discrete-time model becomes
nonlinear, but stochastic filters (e.g., the extended Kalman
filter) can still be used to estimate the augmented state vector.

This paper is organized as follows. We introduce a linear
parabolic PDE system in Section II that retains the general
structure of plasma transport models under the circular cylin-
drical approximation. Then, an explicit numerical discretization
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scheme [9] is derived based on the finite-difference method over
a given spatial–temporal grid. In Section III, the propagation
stability of the numerical scheme is discussed. In Section IV,
we summarize the extended Kalman filter theory used in this
paper for the estimation of both system states and transport
parameters. In Section V, we test the performance of the
proposed method in simulations. We close this paper by stating
conclusions and potential research topics in Section VI.

II. PARABOLIC PLASMA TRANSPORT SYSTEM

We consider the following parabolic transport system
[8], [10]:

∂x(ξ, t)
∂t

=
1
ξ

∂

∂ξ

[
ξϑ(ξ)

∂x(ξ, t)
∂ξ

]
+ SIN(ξ, t) (1)

∂x(0, t)
∂ξ

= 0
∂x(1, t)

∂ξ
= SBC(t) x(ξ, tI) = x0(ξ) (2)

where x(ξ, t) represents a general plasma profile with respect
to the normalized spatial coordinate ξ ∈ [0, 1] and time t ∈
[tI , tF ]. The parameter ϑ(ξ) is unknown and to be estimated
based on observational data. Interior and boundary controls are
denoted by SIN(ξ, t) and SBC(t), respectively. The initial distri-
bution is denoted by x0(ξ). Two approaches can be considered
to parameterize the unknown coefficient ϑ(ξ).

1) Spatial discretization: Given a spatial grid division,
0 = ξ0 < ξ1 < · · · < ξi < · · · < ξM = 1, we can use the
to-be-identified discrete values ϑ(ξi)’s, i = 0, 1, . . . ,M ,
to approximate the spatially distributed coefficient ϑ(ξi)
based on the “simple function approximation”11[11]

ϑ(ξ) ≈
M−1∑

i=0

ϑ(ξi)1[ξi,ξi+1) (3)

where 1[ξi,ξi+1) is the simple function, which is defined
as one on [ξi, ξi+1) and zero elsewhere.

2) Subspace approximation: Given a subspace Θs ={vs
1(ξ),

vs
2(ξ), . . . , vs

ls
(ξ)}, where vs

i (ξ)’s, i = 0, 1, . . . , ls, are
basis functions, we assume that the unknown spa-
tially distributed coefficient can be expressed by ϑ(ξ) ≈∑ls

i=1 ϑs
i v

s
i (ξ), where the constants ϑs

i ’s are the to-be-
identified parameters.

In this section, we follow the first approach and derive a dis-
crete representation of the continuous PDE system (1) and (2)
using an explicit scheme over the following spatial–temporal
grid division:

0 = ξ0 < ξ1 < · · · < ξi < · · · < ξM = 1 (4)

t0 = tI < t1 < · · · < tj < · · · < tN = tF (5)

where ξi = ih and tj = t0 + jT . The profile function is then
rewritten as xj

i = x(ξi, tj). The boundary conditions are dis-

cretized using the Taylor series expansions to obtain

∂x(ξ0, tj)
∂ξ

=
−3xj

0 + 4xj
1 − xj

2

2h
= 0 (6)

∂x(ξM , tj)
∂ξ

=
xj

M−2 − 4xj
M−1 + 3xj

M

2h
= Sj

BC. (7)

Over the interior nodes ξ1, . . . , ξM−1, we obtain the following
discrete scheme:

xj+1
i − xj

i

T
=ϑi

xj
i−1− 2xj

i + xj
i+1

h2
+ ϑi

xj
i+1− xj

i−1

2ih2
+ Sj

IN,i

=
ϑi

h2

[
2i − 1

2i
xj

i−1 − 2xj
i +

2i + 1
2i

xj
i+1

]
+ Sj

IN,i

(8)

where we have used the simple function approximation (3) for
the coefficient ϑ(ξ) and denoted ϑi = ϑ(ξi). We substitute (6)
and (7) into (8) for i = 1 and i = M − 1, respectively. Then,
we obtain the following discrete system:





xj+1
1 = − 4Tϑ1

3h2

[
xj

1 − xj
2

]
+ xj

1 + TSj
IN,1

xj+1
i = Tϑi

h2

[
2i−1
2i xj

i−1 − 2xj
i + 2i+1

2i xj
i+1

]
+ xj

i + TSj
IN,i

xj+1
M−1 = 2(M−2)TϑM−1

3(M−1)h2 xj
M−2 −

2(M−2)TϑM−1
3(M−1)h2 xj

M−1

+ xj
M−1 + (2M−1)TϑM−1

3(M−1)h Sj
BC + TSj

IN,M−1.
(9)

Although our goal in this paper is to work with a general
transport equation (1), to better illustrate the proposed estima-
tion technique, a particular system output is adopted as

y(ξ, t) =
1
ξ

∂x(ξ, t)
∂ξ

. (10)

Note that if the state x in (1) represents the poloidal magnetic
flux, the output defined y in (10) is related to the rotational
transform [8], [6]. The proposed estimation method can indeed
handle any arbitrary nonlinear function of the state for the
system output. The output (10) can be discretized as

yj+1
1 =

1
2h2

[
xj+1

2 − xj+1
0

]
=

2
3h2

[
xj+1

2 − xj+1
1

]

yj+1
i =

1
2ih2

[
xj+1

i+1 − xj+1
i−1

]
, i = 2, . . . , M − 2

yj+1
M−1 =

1
ξM−1

∂x(ξM−1, tj+1)
∂ξ

=
1

(M − 1)h
xj+1

M − xj+1
M−2

2h

=
2

3(M − 1)h2

[
xj+1

M−1 − xj+1
M−2

]
+

Sj+1
BC

3(M − 1)h
(11)

where we have used the discretized boundary conditions (6) and
(7) to replace xj+1

0 and xj+1
M in the first and third equations of

(11), respectively. Measurements of the system output are taken
only at some discrete points in space, i.e., yi, i = 1, . . . , M − 1.

Remark 1—System With Time-Varying Coefficient: When
the transport coefficients are time varying, it is possible
to follow a subspace approximation approach. We assume
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that the time-varying functions can be approximated by cer-
tain temporal basis functions vt

i(t), i = 0, 1, . . . , lt, span-
ning the subspace Θt = {vt

1(t), vt
2(t), . . . , vt

lt
(t)}, i.e., ϑ(t) ≈

∑lt
i=1 ϑt

iv
t
i(t), where the constants ϑt

i’s are the to-be-identified
parameters.

III. PROPAGATION STABILITY

We discuss now the stability of the discretized model with
respect to the iteration index j, which is critical for effective
estimation. This discussion is timely because textbooks (e.g.,
[12]) on stability of finite-difference schemes usually do not
include boundary conditions in the analysis. In addition, the
cylindrical geometry considered in this paper makes the sta-
bility analysis more complicated than in Euclidean coordinates
usually found in textbooks. The propagation matrix of the
discrete scheme (9) is denoted by Φ = A(ω1, . . . , ωM−1) + I ,
where ωi = Tϑi/h2 (i = 1, 2, . . . ,M − 1), I is an identity
matrix, and A is the coefficient matrix of the discretization of
the spatial derivatives in (9). By introducing a vector xj as the
collection of the unknowns xj

1, . . . , x
j
M−1, we can rewrite the

discrete scheme (9) as

xj+1 = Φxj + Sj (12)

where Sj represents the source terms. Based on stability theory
of linear systems [12], the numerical scheme is numerically
stable if and only if all the eigenvalues of the propagation
matrix Φ satisfy |λ| < 1, where λ ∈ C solves the characteristic
polynomial equation det(λI − Φ) = 0.

The matrix (λI − Φ) takes a tridiagonal form

λI − Φ =





α1 γ1

β2 α2 γ2

. . . . . . . . .
βM−1 αM−1





where the parameters α’s, β’s, and γ’s are functions of λ and
ωi, i = 0, 1, . . . , M − 1. We carry out an LU decomposition,
λI − Φ = LU , with L and U defined by

L =





l1
β2 l2

. . .
βM−1 lM−1



 U =





1 µ1

1 µ2

. . .
1





where l1 = α1, µi = γi/li (i = 1, . . . ,M − 2), and li = αi −
βiµi−1 (i = 2, . . . , M − 1). Therefore, the λ-polynomial is
determined by

pM−1(λ, ω) = det(λI − Φ) = det L = ΠM−1
i=1 li (13)

where ω denotes the collection of ωi, i = 0, 1, . . . ,M − 1.
For a general M , it is difficult to obtain the polynomial (13)

manually, and a recursive approach is necessary. By rewriting

li = αi − βiγi−1Πi−2
k=1lk

/
Πi−1

k=1lk, i = 3, 4, . . . (14)

we can calculate the polynomial (13) recursively as

p1(λ, ω) = l1 = α1 (15)

p2(λ, ω) = l1l2 = α1α2 − β2γ1 (16)

pi(λ, ω) = Πi
k=1lk

=αipi−1 − βiγi−1pi−2, i ≥ 3. (17)

As a special case, we calculate the polynomial (13) when
M = 5

p4(λ, ω) = α4α3α2α1 − α4α3β2γ1

−α4β3γ2α1 − β3γ2α2α1 + β3γ3β2γ1. (18)

We assume that the characteristic polynomial (13) can be
represented by

pM−1(λ)=ν0λ
M−1+ν1λ

M−2+· · ·+νM−2λ+νM−1 (19)

where the coefficients νi’s, i = 0, 1, . . . ,M − 1, depend on the
discretization parameter ωi = Tϑi/h2 (i = 1, 2, . . . , M − 1)
and are obtained through the recursive computations (15)–(17).
By using the Routh–Hurwitz or Jury stability criteria [12],
we can obtain a stability condition for the proposed explicit
discretization scheme without the need of computing the roots
of (19). This stability condition is expressed in terms of the
parameters ωi’s, which are, in turn, functions of the coefficients
ϑi’s. Given ranges for ϑi, it is always possible to choose a time
step T that is small enough to satisfy this stability condition.
However, since the coefficients ϑi’s are the to-be-estimated
unknowns, their possible ranges are not well known a priori,
which usually demands a conservative choice for the time step T .

IV. EXTENDED KALMAN FILTER

We can define uj = [Sj
IN,i Sj

BC ]T. By introducing the
augmented state and system output

zj = [xj
1 xj

2 · · · xj
M−1 ϑj ]T (20)

yj = [ yj
1 yj

2 · · · yj
M−1 ]T (21)

we can rewrite the discretized system (9)–(11) as the following
nonlinear state space representation:

zj+1 = f(zj ,uj) + wj yj+1 = h(zj+1,uj) + vj+1

where f and h are the state and measurement mappings defined
by the finite-difference schemes in (9)–(11) and the equation(s)
for ϑ given by ϑj+1 = ϑj . The disturbance input w and the
measurement noise v are assumed to be white zero-mean
Gaussian random sequences, i.e., wj ∼ N(0, Qj) and vj ∼
N(0, Rj), which satisfy the following properties:

E[wj1 · vj2 ] = 0 ∀ j1, j2 (22)

E[vj1 · vj2 ] = 0 E[wj1 · wj2 ] = 0 ∀j1 '= j2 (23)

E[wj · wj ] =Qj E[vj · vj ] = Rj (24)

where Qj and Rj are covariance matrices.
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In the rest of this section, we give a brief introduction of the
extended Kalman filter which is the nonlinear version of the
well-known Kalman filter in estimation theory. In the following
equations, we use ẑj+1|j to represent the state propagation
before the measurements are considered:

ẑj+1|j = f(ẑj|j ,uj) (25)

where ˆ represents the estimated value. We then compute the
Jacobian matrices with respect to the current state ẑj|j , the
propagation state ẑj+1|j , and the control input uj

F j =
∂f(z,u)

∂z

∣∣∣∣
ẑj|j ,uj

Hj+1 =
∂h(z,u)

∂z

∣∣∣∣
ẑj+1|j ,uj

. (26)

We are able to improve the propagation result in (25) by taking
into account the measurement yj+1

ẑj+1|j+1 = ẑj+1|j + Kj+1
[
yj+1 − h(zj+1|j ,uj)

]
(27)

where the gain Kj+1 is determined as

P j+1|j =F jP j|j(F j)T + Qj

Kj+1 =P j+1|j(Hj+1)T
[
Hj+1P j+1|j(Hj+1)T+Rj+1

]−1

P j+1|j+1 = (I − Kj+1Hj+1)P j+1|j .

More details on the extended Kalman filter can be found in [2].

V. NUMERICAL EXAMPLE

A. Numerical Simulation of the PDE System—Dense Grid

We first solve the PDE system (1) and (2) on a dense
grid based on an implicit finite-difference scheme. The in-
terior actuation function is assumed of the form SIN(ξ, t) =
bin(ξ)S∗

IN(t), which is indeed a relatively good model ap-
proximation for present spatially distributed actuators (e.g.,
current drives, torque sources, pellet injectors, etc.). We assume
the deposition profile as bin(ξ) = 1 − ξ4 (0 ≤ ξ ≤ 1) and the
excitation signals (shown in Fig. 1) as

S∗
IN(t) =

1
3

sin(5t) +
1
2

cos
[
10t + cos(5t2)

]
(28)

SBC(t) =
3
2

sin
(

1
5
t2

)
. (29)

The deposition profile and excitation signals have been arbitrar-
ily chosen to illustrate the method through a simulation study.
In practice, we are always interested in exciting the system in
a broad range of frequencies. These types of excitation signals
can indeed be implemented in real experiments.

The spatial–temporal domain is given by Ω = {(ξ, t) : 0 ≤
ξ ≤ 1, 0 ≤ t ≤ 6}. To start the simulation, the initial distrib-
ution is assumed as x(ξ, 0) = x0(ξ) = 2 − (4/5)ξ2. The simu-
lation of system (1) and (2) is carried out over the grid nodes (4)
and (5) with time step T = Td = 0.05 (s) and spatial step h =
hd = 0.025, where we use the subscript d to denote a dense-
grid division. The spatial–temporal evolution obtained from the
numerical simulation for the case ϑ = 0.12 constant is shown
in Fig. 2, where the evolutionary trajectories corresponding to

Fig. 1. (Red solid line) Interior and (blue dotted line) boundary excitation
signals defined by (28) and (29).

Fig. 2. Spatial–temporal evolution of the PDE system (1) and (2) with
excitation signals (28) and (29).

the values at the four finite-difference node points used for the
extended Kalman filter are marked with red solid lines on the
3-D surface.

B. Design of Extended Kalman Filter—Sparse Grid

We now let h = hs = 0.2 and T = Ts = 0.05, where the
subscript s denotes a sparse-grid division. We use an explicit
difference scheme to obtain a fourth-order discrete system
based on (9). The measurements defined by (10) are also taken
at the same spatial nodes that are used to obtain the state
propagation scheme (9).

Initial guesses for both the system states and transport param-
eters are needed to start the estimation. The better the guesses
for the system states, the better and faster the estimation of
the transport parameters. When the main goal is the estimation
of the transport parameters, it is worth taking advantage of
the fact that direct or indirect measurements of the states are
usually available in present tokamaks either in real time or
computed off-line from previous discharges. Therefore, in this
simulation study, we assume that the initial guesses for the
system states are indeed slightly perturbed versions of the
real ones. For simulation purposes, we assume that the initial
state distribution is given by x(ξ, 0) = x0(ξ) = 2 − (4/5)ξ2.
The numerical simulations discussed hereinafter use the same
settings for the initial profile, discretization steps, and excitation
signals defined earlier in this section. We first consider the
case where the transport coefficient is constant and given by
ϑ = 0.12. The initial guess for the parameter is instead given
by ϑ̂ = 0.23. The initial guess error for the states is within
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Fig. 3. (Red solid line) Actual and (blue dotted line) estimated states.

Fig. 4. (Red solid line) Actual and (blue dotted line) estimated coefficients.

Fig. 5. (Red solid line) Actual and (blue dotted line) estimated states.

10% of the real value. With the given initial settings, we use
the extended Kalman filter to obtain both state and parameter
estimations, which are shown in Figs. 3 and 4, respectively. The
parameter estimation can rapidly converge to the real value.

We now consider the case where the transport coefficient
is spatially distributed. Instead of having only one unknown
parameter, we use four values at different node points ϑ(ξi)’s,
i = 1, 2, 3, 4, to represent the transport coefficient ϑ(ξ). The ac-
tual distributed transport coefficient is given by ϑ(ξ) = 0.8ξ2.
The initial guesses to start the parameter estimation are given
by (ϑ̂1, ϑ̂2, ϑ̂3, ϑ̂4) = (0.13, 0.23, 0.13, 0.33). The initial guess
error for the states is within 25% of the real value. It is
shown in Figs. 5 and 6 that the extended Kalman filter can
effectively provide the estimations of both the system states and
the transport coefficients.

Fig. 6. (Red solid line) Actual and (blue dotted line) estimated coefficients.

VI. CONCLUSION

We have considered a parameter estimation problem for a
benchmark model in plasma transport, which is governed by
a 1-D parabolic PDE. The explicit scheme is then used to
obtain a finite-dimensional discrete-time approximation based
on the finite-difference discretization of the PDE system over
a given spatial–temporal grid division. By including the un-
known transport coefficient as an augmented state variable,
we are able to reformulate the discrete-time linear system into
an augmented nonlinear system. Then, the extended Kalman
filtering technique is used to obtain real-time estimations of
both the system state and the transport coefficient based on the
measurements.

In this paper, we have only considered the case where the
to-be-estimated parameter is independent of time. However,
by parameterizing time-varying transport parameters via given
temporal basis functions, it may be possible to formulate
the estimation problems of temporally distributed parameters
within the framework discussed in this paper. In this case, the
objective would be to estimate the constant projections of the
time-varying transport coefficients on the set of temporal basis
functions.

In order to avoid reducing T excessively in order to satisfy
the stability condition for the proposed explicit discretization
scheme, implicit unconditionally stable discretization schemes
must be developed as part of our future work to obtain robust
parameter estimations. The achievement of this goal will re-
quire a modification of the extended Kalman filter since it is not
well suited for the model structure resulting from the implicit
discretization procedure.

This paper has presented an alternative to the first-principle
approach to the modeling of the plasma dynamics and transport
phenomena by assimilating the experimental observations into
transport PDE models with modest complexity. Since the as-
similation of experimental data is carried out in real time, this
method can be effectively integrated into a feedback plasma
control system.
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