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Robust Control Design for the Poloidal Magnetic
Flux Profile Evolution in the Presence

of Model Uncertainties
Yongsheng Ou, Chao Xu, and Eugenio Schuster

Abstract—The potential operation of a tokamak fusion reactor
in a highly efficient steady-state mode is directly related to the
achievement of certain types of radial profiles for the current
flowing toroidally in the device. The evolution in time of the
toroidal current profile in tokamaks is related to the evolution of
the poloidal magnetic flux profile, which is modeled in normalized
cylindrical coordinates using a nonlinear partial differential equa-
tion usually referred to as the magnetic diffusion equation. We
propose a robust control scheme to regulate the poloidal magnetic
flux profile in tokamaks in the presence of model uncertainties.
These uncertainties come mainly from the resistivity term of the
magnetic diffusion equation. First, we either simulate the magnetic
diffusion equation or carry out experiments to generate data
ensembles, from which we then extract the most energetic modes
to obtain a reduced-order model based on proper orthogonal de-
composition and Galerkin projection. The obtained reduced-order
model corresponds to a linear state-space representation with un-
certainty. Taking advantage of the structure of the state matrices,
the reduced-order model is reformulated into a robust control
framework, with the resistivity term as an uncertain parameter.
An H∞ controller is designed to minimize the regulation/tracking
error. Finally, the synthesized model-based robust controller is
tested in simulations.

Index Terms—Current profile control, distributed parameter
systems, POD, robust control, tokamak plasma control.

I. INTRODUCTION

S ETTING UP a suitable current profile, which is propor-
tional to the spatial derivative of the poloidal flux profile,

has been demonstrated to be a key condition for one possible
advanced scenario with improved confinement and possible
steady-state operation [1]. One approach to current-profile con-
trol is to focus on creating the desired current profile during
the plasma-current ramp-up and early flat-top phases (finite-
time optimal control problem) with the aim of maintaining this
target profile during the subsequent phases of the discharge
(regulation problem).

Our previous work includes the investigation of the use of
extremum seeking (ES) [2] and nonlinear programming [3] to
achieve open-loop solutions for the optimal control problem
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Fig. 1. Total plasma-current evolution can be roughly divided into two phases,
which are the ramp-up and flat-top phases. During Phase I (ramp-up phase and
the first part of the flat-top phase), the control goal is to drive the magnetic
flux profile from some initial arbitrary condition to a predefined target profile at
some time T between the time window [T1, T2], which is in the flat-top phase.

defined during the ramp-up and early flat-top phases. The time
evolutions of the control inputs are obtained in the interval
[0, T ] in order to minimize the quadratic error between the
actual and desired current profiles at time T (see Fig. 1). This
paper is aimed at saving long trial-and-error periods of time
currently spent by fusion experimentalists trying to manually
adjust the time evolutions of the actuators to achieve the desired
current profile at some time T within a prespecified window
[T1, T2].

These open-loop solutions depend on the plasma resistivity,
and therefore on the electron temperature, whose dynamics is
very difficult to be predicted by simple control-oriented models
[4]. In this paper, we take into account the unmodeled temper-
ature dynamics by considering the resistivity coefficient in the
magnetic diffusion equation as an uncertainty. After reducing
the dimensionality of the magnetic diffusion equation by com-
bining proper orthogonal decomposition (POD) and Galerkin
projection [5], the model for the poloidal flux is written within
a robust control framework. A robust controller minimizing the
H∞ norm of the sensitivity function of the closed-loop system
is then designed to reduce the tracking/regulation error.

This paper is organized as follows. The dynamic model
for the poloidal flux is introduced in Section II. The model
reduction technique is explained in Section III. Section IV
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describes how the model is written within a robust control
framework. The controller is designed and tested in simulations
in Section V. This paper is closed with the conclusions in
Section VI.

II. CURRENT-PROFILE EVOLUTION MODEL

Let ρ be an arbitrary coordinate indexing the magnetic sur-
face. Any quantity constant on each magnetic surface could be
chosen as the variable ρ. We choose the mean geometric radius
[6] of the magnetic surface as the variable ρ, i.e., πBφ,oρ2 = Φ,
where Φ is the toroidal magnetic flux and Bφ,o is the reference
toroidal magnetic field at the geometric plasma center Ro. The
variable ρ̂ denotes the normalized radius (ρ/ρb), and ρb is
the radius of the last closed flux surface. The evolution of the
poloidal flux in normalized cylindrical coordinates is given by
the magnetic diffusion equation [7]

∂ψ

∂t
=

η(Te)
µoρ2

b F̂
2ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
− RoĤη(Te)

〈j̄NI · B̄〉
Bφ,o

(1)

where t is the time, ψ is the poloidal magnetic flux, η is
the plasma resistivity, Te is the plasma electron temperature,
µo = 4π × 10−7 (H/m) is the vacuum permeability, jNI is the
noninductive source of current density (neutral beam, electron
cyclotron, etc.), B is the magnetic field, and 〈〉 denotes flux-
surface average. F̂ , Ĝ, and Ĥ are geometric factors, which are
functions of ρ̂. The boundary conditions are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

=
µo

2π
Ro

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

I(t) (2)

where I(t) denotes the total toroidal plasma current.
The current density that flows toroidally around the tokamak

〈j · B/Bφ,o〉 and whose profile must be controlled is related to
the spatial derivative of the poloidal magnetic flux

〈j̄ · B̄〉
Bφ,o

=
1

µoρ2
b F̂

2Ĥρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

1
R0

∂ψ

∂ρ̂

)
. (3)

The model makes the simplifying assumption that the mag-
netic geometry is fixed in time. This excludes two potential
sources of flux—a change in ρb (either by a change in the shape
of the last closed flux surface or in Bφ,o) and a change in the
location of the geometric center of the interior flux surfaces
relative to that of the last closed flux surface. Changes in ρb

are small by design in the experiments of interest, but it is
straightforward to include this effect in the model for situations
where it would be important. Changes in the relative positions
of the flux surfaces do occur, but for cases of interest, these
happen slowly enough and they can be neglected.

A simplified scenario-oriented model for the noninductive
toroidal current density is chosen for Phase I (see Fig. 1). Based
on experimental observations at DIII-D, the shape of the profile
is assumed to remain fixed and equal to the so-called reference
profile jprofile

NIpar (ρ̂), which is identified from DIII-D discharges
associated with the experiment of interest and shown in Fig. 2
[7]. The response to the actuators is simply a scalar multiple of

Fig. 2. Temperature (Tprofile
e (ρ̂)) and noninductive toroidal current density

(jprofile
NIpar (ρ̂)) profiles.

the reference profile. The noninductive toroidal current density
(〈jNI · B〉/Bφ,o) is assumed to follow

〈j̄NI · B̄〉
Bφ,o

= kNIparj
profile
NIpar (ρ̂)

I(t)1/2Ptot(t)5/4

n̄(t)3/2
(4)

where kNIpar = 1.2139 · 1018 (m−9/2 · A−1/2 · W−5/4) and
Ptot is the total power of the noninductive current sources
(electron cyclotron heating, neutral beam heating, etc.). The
line-averaged plasma density is denoted by n.

The resistivity η scales with the temperature Te as

η(ρ̂, t) =
keffZeff

T 3/2
e (ρ̂, t)

(5)

where Zeff = 1.5 and keff = 4.2702 · 10−8 (Ω · m(keV)3/2).
It is worth noting that we can rewrite the equation for the

evolution of the poloidal flux (1) as

∂ψ

∂t
ν(ρ̂, t)

1
ρ̂

∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ

∂ρ̂

)
+ ν(ρ̂, t)f2(ρ̂)u1(t) (6)

with boundary conditions

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

= u2(t) (7)

initial condition ψ0(ρ̂) = ψ(ρ̂, 0), and

ν(ρ̂, t) =
η(Te)

µoρ2
b F̂

2
(8)

f2(ρ̂) = − RoĤµoρ
2
b F̂

2(ρ̂)kNIparj
profile
NIpar (ρ̂) (9)

u1(t) =
I(t)1/2Ptot(t)5/4

n̄(t)3/2
(10)

u2(t) = k3I(t), k3 =
µo

2π
Ro

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

(11)

f4(ρ̂) = F̂ ĜĤ. (12)

In practice, it is very difficult to accurately predict the time
evolution of the electron temperature Te, and consequently
of the plasma resistivity η(Te), by a model that is simple
enough for control design. Therefore, in this paper, we integrate
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η(Te) into ν(ρ̂, t) and model it as an uncertainty as explained
hereafter.

III. MODEL REDUCTION USING POD/GALERKIN

A. POD Modes

First, we either simulate the magnetic diffusion equation (1)
on the grid Qij = (ρ̂i, tj), where i and j are integers with 1 ≤
i ≤ m and 1 ≤ j ≤ n, respectively, or carry out experiments to
generate data ensembles from which the most energetic modes
can be extracted. The set V = span{ψ1, . . . , ψn} ⊂ Rm refers
to a data ensemble consisting of snapshots {ψj}n

j=1 obtained at
n different instants of time either from simulations or experi-
ments. The goal of the POD method is to find an orthonormal
basis {φk}l

k=1 such that, for some predefined 1 ≤ l ≤ d, where
d = dimV ≤ m, the reconstruction error for the snapshots is
minimized, i.e.,

min
{φk}l

k=1

1
n̄

n̄∑

j=1

∥∥∥∥∥ψj −
l∑

k=1

(ψj , φk)φk

∥∥∥∥∥

2

(13)

subject to

(φi, φj) = δij , 1 ≤ i ≤ l; 1 ≤ j ≤ i

where ‖ψ‖ =
√
ψTψ and (·, ·) denotes the inner product in the

space L2([0, 1]).
Let Λ1 > · · · > Λl > · · · > Λd > 0 denote the positive

eigenvalues of the correlation matrix K, defined as Kij =
(1/n)(ψj , ψi), for i, j = 1, . . . , n, and v1, . . . , vl, . . . , vd

denote the associated unit-norm eigenvectors, where d =
rank(K). Then, the POD basis functions take the form [5]

φk =
1√
Λk

n̄∑

j=1

(vk)jψj =
1√
Λk

Y vk, k = 1, . . . , d (14)

where (vk)j is the jth component of the eigenvector vk and
Y = (ψ1, . . . , ψn) is the collection of all the snapshots. More-
over, the error (energy ratio) associated with the approximation
with the first l POD modes is

εl =
1
n̄

n̄∑

j=1

∥∥∥∥∥ψj −
l∑

k=1

(
ψT

j φk

)
φk

∥∥∥∥∥

2

=
d∑

k=l+1

Λk. (15)

B. Galerkin Projection

Let V = {z|z, (dz/dρ̂) ∈ L2(ρ̂)} and φ(ρ̂) ∈ V
be a test function, where ρ̂ ∈ [0, 1]. Let VPOD =
span{φ1, φ2, φ3, φ4, . . . , φl} ⊂ V be a space spanned by
the POD modes obtained from the model reduction process for
ψ(ρ̂, t). Let

ψ(ρ̂, t) ≈ ψl(ρ̂, t) =
l∑

k=1

βk(t)φk(ρ̂) (16)

where φk(ρ̂) ∈ VPOD, k = 1, 2, . . . , l. Similarly, let WPOD =
span{ϕ1, ϕ2, ϕ3, ϕ4, . . . , ϕn} ⊂ W be a space spanned by the

POD modes obtained from the model reduction process for
ν(ρ̂, t). We write

ν(ρ̂, t) ≈ νn(ρ̂, t) =
n∑

i=1

γi(t)ϕi(ρ̂) (17)

where Γ = (γ1, . . . , γn)T ∈ Rn is the uncertainty vector and
ϕi(ρ̂) ∈ WPOD, i = 1, 2, . . . , n. The vector Γ is the finite di-
mensional approximation of ν(ρ̂, t) with respect to the obtained
POD modes. Each element γi of Γ is a time-varying uncertainty
associated with ϕi(ρ̂), which is modeled as γi = γ0

i (1 + δi)
with |δi| < 1 for all i.

We rewrite (6) in its weak form by multiplying both sides by
ρ̂φ(ρ̂) and integrating over the spatial domain [0, 1], i.e.,

1∫

0

ρ̂φ(ρ̂)
∂ψ(ρ̂, t)

∂t
dρ̂ =

1∫

0

φ(ρ̂)ν(ρ̂)
∂

∂ρ̂

(
ρ̂f4(ρ̂)

∂ψ(ρ̂, t)
∂ρ̂

)
dρ̂

+
1∫

0

ρ̂φ(ρ̂)f2(ρ̂)ν(ρ̂)u1(t) dρ̂. (18)

We integrate by parts the second part of (18), taking into
account the boundary conditions, to finally obtain

∂

∂t

1∫

0

ρ̂φ(ρ̂)ψ(ρ̂, t) dρ̂

= u2(t)φ(1)ν(1)f4(1) + u1(t)
1∫

0

ρ̂φ(ρ̂)ν(ρ̂)f2(ρ̂) dρ̂

−
1∫

0

f4(ρ̂)(φ′(ρ̂)ν(ρ̂) + φ (ρ̂)ν ′(ρ̂))ψ′(ρ̂, t)ρ̂ dρ̂

where F ′ = ∂F/∂ρ̂.
Taking into account (16) and (17) and using the notation

〈〈g1, g2, . . . gn〉〉
∆=

1∫

0

g1(ρ̂)g2(ρ̂) · · · gn(ρ̂)ρ̂ dρ̂ (19)

and

Mjk = 〈〈φk, φj〉〉

Kjk =
n∑

i=1

γi

(〈〈
f4φ

′
k, φ′

j , ϕi

〉〉
+ 〈〈f4φ

′
k, φj , ϕ

′
i〉〉

)

Pj =
n∑

i=1

γi 〈〈φj , f2, ϕi〉〉

Qj =
n∑

i=1

γif4(1)k3φj(1)ϕi(1) (20)

we obtain a matrix representation for the reduced-order model

M
dx

dt
= −Kx + Pu1 + Qu2 (21)

where x(t) = (β1, . . . , βl)T ∈ Rl, M,K ∈ Rl×l, and P,Q ∈
Rl. The vector x(t) is the finite dimensional approximation of
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ψ(ρ̂, t) with respect to the obtained POD modes. The compo-
nents of the initial state are given by

xi(t0) = xi
0 = (ψ(t0), φi) , i = 1, . . . , l (22)

where x0 ∈ Rl×1 and φi, for i = 1, . . . , l, denotes the POD
modes.

Since M is invertible by the definition of the POD modes,
the state-space representation of the reduced-order model is
written as

{
ẋ = Ax + Bu
y = Cx + Du

(23)

where A = −M−1K ∈ Rl×l, B = M−1[P Q] ∈ Rl×2, C = Il

is an l × l identity matrix, D = 0, and u(t) = [u1(t)u2(t)]T.
We let uo(t) = [uo

1 uo
2]T be a set of open-loop control trajec-

tories, which are computed offline, and xo(t) be the open-loop
state trajectory associated to the open-loop control uo(t), with a
nominal initial state xo

0. The open-loop state trajectory satisfies

M
dxo

dt
= −Kxo + Puo

1 + Quo
2 (24)

with initial condition xo(t0) = xo
0.

Let us define

e(t) = x(t) − xo(t) uc(t) = u(t) − uo(t) (25)

where u(t) is the total control input and uc(t) = [uc
1 uc

2]T is the
to-be-designed closed-loop control, which is appended to the
open-loop control uo(t). Then, we can write

de

dt
= Ae + Buc + d (26)

where d(t)= −M−1(K − Ko)xo(t)+ M−1(P − P o)uo
1(t)+

M−1(Q − Qo)uo
2(t). In this paper, we assume that x(t), and

therefore e(t), is measurable.

IV. MODEL IN ROBUST CONTROL FRAMEWORK

A system with state-space representations A, B, C, and D
has a transfer function G(s) = D + C(sIl − A−1)B, where l
is the number of states in the system. Defining the matrix

Ma =
[

A B
C D

]
(27)

we can write the transfer function as a linear fractional transfor-
mation (LFT)

G(s)= Fu

(
Ma,

1
s
Il

)

= Ma22 +Ma21

1
s
Il

(
Il−Ma11

1
s
Il

)−1

Ma12

= D + C
1
s
Il

(
Il−A

1
s
Il

)−1

B

= D+C(sIl−A−1)B. (28)

Fig. 3. G(s) as an LFT using Ma, (1/s)Il.

The graphical representation of G(s) is shown in Fig. 3 with
equivalent equations

[
z1

y

]
=

[
A B
C D

] [
w1

u

]

w1 =
1
s
z1; y = Fu

(
Ma,

1
s
Il

)
u = G(s)u.

(29)

To make the uncertainty in the state-space system (23) ex-
plicit, the matrices K, P , and Q can be rewritten as

K =K̂0+
n∑

i=1

δiK̂i P = P̂0+
n∑

i=1

δiP̂i Q=Q̂0+
n∑

i=1

δiQ̂i

(30)
where

K̂0jk =
n∑

i=1

γ0
i

(〈
f4φ

′
k, φ′

j , ϕi

〉
+ 〈f4φ

′
k, φj , ϕ

′
i〉

)
(31)

K̂ijk = γ0
i

(〈
f4φ

′
k, φ′

j , ϕi

〉
+ 〈f4φ

′
k, φj , ϕ

′
i〉

)
(32)

P̂0j =
n∑

i=1

γ0
i 〈φj , f2, ϕi〉 (33)

P̂ij = γ0
i 〈φj , f2, ϕi〉 (34)

Q̂0j =
n∑

i=1

γ0
i f4(1)k3φj(1)ϕi(1) (35)

Q̂ij = γ0
i f4(1)k3φj(1)ϕi(1). (36)

Then, we define the matrix Ma as a general affine state-space
uncertainty

Ma =




A0 +

n∑
i=1

δiAiB0 +
n∑

i=1
δiBi

C0 +
n∑

i=1
δiCiD0 +

n∑
i=1

δiDi



 (37)

with A0 = −M−1K̂0 ∈ Rl×l, Ai = −M−1K̂i ∈ Rl×l, B0 =
M−1[P̂0 Q̂0] ∈ Rl×2, Bi = M−1[P̂i Q̂i], C0 = Il, Ci = 0, and
D0 = Di = 0 for all i = 1, 2, . . . , n.

This uncertainty can be formulated into an LFT by achiev-
ing the smallest number of repeated blocks using the method
outlined in [8]. With this purpose, the matrix Ji is formed as

Ji =
[

Ai Bi

Ci Di

]
∈ R2l×(l+2). (38)
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Using singular-value decomposition and grouping terms, the
matrix Ji can be expressed as

Ji = UiΣiV
∗
i = (Ui

√
Σ)

(√
ΣV ∗

i

)
=

[
Li

Wi

] [
Ri

Zi

]∗
(39)

where A∗ denotes the complex conjugate transpose of A. By
denoting qi as the rank of matrix Ji, each inner matrix is
given by

Li ∈ Rl×qi Wi ∈ Rl×qi Ri ∈ Rl×qi Zi ∈ R2×qi .

Then, the uncertainty can be written as

δiJi =
[
Li

Wi

]
[δiIqi ]

[
Ri

Zi

]∗
(40)

where qi = l for all i = 1, 2, . . . , n in this case (Ci = Di = 0).
Therefore, the matrix Ma can be written as

Ma = M11 + M12∆M21 (41)

where

M11 =
[

A0 B0

C0 D0

]
M12 =

[
L1 · · · Ln

W1 · · · Wn

]

M21 =




R∗

1 Z∗
1

...
...

R∗
n Z∗

n



 ∆ =




δ1Iq1 0

. . .
0 δnIqn



 .

This is equal to the lower LFT

Ma = Fl(M,∆)
= M11 + M12∆(IqT − M22∆)−1M21

= M11 + M12∆M21 (42)

where

M =
[

M11 M12

M21 0

]

and qT is the total rank of the ∆ matrix given by

qT =
n∑

i

qi = ln.

Finally, the transfer function G(s) of the uncertain state-
space model is written as

G(s)=Fu

(
Ma,

1
s
Il

)
=Fu

(
Fl

([
M11 M12

M21 0

]
,∆

)
,
1
s
Il

)
.

The graphical representation of G(s) is shown in Fig. 4 with
equivalent equations

[ [
z1

y

]

z2

]
=

[
M11 M12

M21 0

] [ [
w1

u

]

w2

]

w1 =
1
s
z1;w2 = ∆z2;

y = Fu

(
Fl(M,∆),

1
s
Il

)
u = G(s)u.

Fig. 4. G(s) as an LFT using M , ∆(1/s)Il.

The system given by Fu(Fl(M,.), (1/s)Il) can be writ-
ten as

G(s) =Fu

(
Fl(M,.),

1
s
Il

)
= Fl

(
Fu(M,

1
s
Il),.

)

=Fl(P ′,.) (43)

where P ′ = Fu(M, (1/s)Il). The next step in the system re-
duction moves the uncertainty, creating an upper LFT for
convention purposes. This is performed by using

G(s) = Fl(P ′,.) = Fu(P,.)

where P ′ is of the form

P ′ =
[

P ′
11 P ′

12

P ′
21 P ′

22

]
P =

[
P ′

22 P ′
21

P ′
12 P ′

11

]
.

The overall system reduction is shown in Fig. 5.
The goal is to design a controller that can robustly track the

optimal open-loop trajectories of magnetic flux ψ and meet
special performance requirements. Therefore, let us consider
the reference r and disturbance d as inputs and a weighted
version of the tracking error as the output z = Wpe, where Wp

is a weight chosen by the designer. The overall feedback system
is shown in Fig. 6.

We rewrite the plant in the general .−P−K configuration
(shown in Fig. 6) in order to enable tracking. Considering w2 =
u∆ and z2 = y∆, we get the following equations for the inputs
and outputs of p:

y∆ =P11u∆ + P12u

y =P21u∆ + P22u

where P11 ∈ RqT ×qT , P12 ∈ RqT ×2, P21 ∈ Rl×qT , and P22 ∈
Rl×2, so that the plant P from [u∆ u]T to [y∆ y]T is

P =

[
P11 P12

P21 P22

]
.

The diagram in Fig. 7 shows the rewritten feedback system.
From the diagram, we obtain the relationship between the
inputs and outputs

y∆ = P11u∆ + P12u

z = WP (−d − P21u∆ − P22u + r)
e = − d − P21u∆ − P22u + r

where e ∈ Rl×1, d ∈ Rl×1, and r ∈ Rl×1.
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Fig. 5. Diagram of G(s) manipulation.

Fig. 6. Overall feedback system.

Fig. 7. Robust control framework for augmented plant P ∗.

Then, the generalized plan P ∗ from [u∆ d r u]T to
[y∆ z e]T can be written as (see Fig. 7)

P ∗ =




P11 0 0 P12

−WP P21 −WP WP −WP P22

−P21 −1 1 P22



 .

V. CONTROLLER SYNTHESIS AND SIMULATIONS

Let us consider the tracking error dynamics given by (26).
The control objective is to keep the tracking error e small and
to reduce the effect of the disturbance d simultaneously. In our
system (see Fig. 6), the tracking error e is governed by

e = r − y = (I + KG)−1

︸ ︷︷ ︸
S

(r − d). (44)

In (44), we recognize the sensitivity transfer function S
relating the tracking error to both the disturbance d and the
reference signal r. Therefore, we have to keep S small at least
in both the disturbance and the reference frequency bandwidths.
The optimization problem is to find an H∞ controller K to
minimize ‖WpS‖∞, where S = (1 + KG)−1 and the weight
function Wp is defined as

WP =

(
s/M1/2

P + ω∗
B

)2

(
s + ω∗

BA∗1/2
)2 . (45)

Fig. 8. Comparison of initial ψ (in webers) profiles.

In this simulation study, we choose Mp = 1, A∗ = 10−4, and
ω∗

B = 106 [9].
Using the derived ∆−P ∗−K framework (Fig. 7), a stabi-

lizing controller can be designed to minimize the H∞ norm
of the frequency-weighted sensitivity transfer function in the
presence of resistivity (or conductivity) model uncertainties.
The uncertain parameters δi ranges from −1 to 1, defining the
range of values for the resistivity (or conductivity) for which the
system should be stably controlled so that the robust controller
can be considered a suitable design.

In this section, we present the simulation results showing
the effectiveness of the proposed robust control algorithm in
a combined reference-tracking and disturbance-rejection prob-
lem. For the simulation study, we consider the time interval
[t0 = 0.5 s, tf = T = 1.7 s], and the temperature Te is assumed
to follow (I(t)

√
Ptot/n(t)) as

Te(ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√

Ptot

n̄(t)
(46)

where T profile
e refers to a reference profile identified from

DIII-D discharges associated with the experiment of interest
(shown in Fig. 2) kTe = 1.7295 · 1010 (m−3 · A−1 · W−1/2).
This simplified model for the temperature evolution is only used
for simulation purposes. Any other more complex model could
be used with the same purpose since the designed controller
is robust against model uncertainties in the resistivity and,
therefore, in the temperature.

The nominal initial poloidal flux ψini shown in Fig. 8 has
been considered for the synthesis of an open-loop optimal
controller via ES [2]. Fig. 9 shows the time evolution of
the optimized open-loop actuation. Note that, from (10) and
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Fig. 9. Open-loop ES optimal control: (a) I(t). (b) Ptot. (c) n(t).

Fig. 10. Nominal conductivity profile.

(11), the control inputs are indeed functions of I(t), Ptot(t),
and n(t).

We consider now that the nominal initial profile used for
the design of the open-loop controller is disturbed, as shown
in Fig. 8. We compare the performances of both open- and
closed-loop controllers in the presence of this disturbance. For
the closed-loop simulation study presented in this section, we
assume that the time evolution of the average density n(t) is the
same as the one obtained by the open-loop ES controller. Nom-
inal and actual conductivities σ (1/resistivity) are compared in
Figs. 10–11. While Fig. 10 shows the nominal conductivity
used for the synthesis of the robust H∞ controller, Fig. 11
shows the actual evolution from 0.0 to 1.2 s as predicted by the
simulation models (5) and (46). Fig. 12 compares the desired
target profile ψd with the final-time profiles ψ(tf , ρ̂) obtained
with both the open- and closed-loop controllers. Both final-
time profiles are obtained using the disturbed initial profile in
Fig. 8 when the open- and closed-loop control input trajectories
are those shown in Figs. 9 and 13. The figure shows that
the proposed closed-loop controller outperforms the open-loop
controller by effectively tracking the nominal profile evolution
when the initial condition is perturbed.

VI. CONCLUSION

We consider a control-oriented dynamic model describing
the evolution of the poloidal flux during the inductive phase

Fig. 11. Conductivity profile evolution.

Fig. 12. Final time ψ (in webers) matching comparison.

of the tokamak discharge. Using the POD/Galerkin technique,
we reformulate this partial differential equation (PDE) model
into a low-dimensional ODE model that preserves the domi-
nant dynamics of the original parabolic PDE. The resistivity
term is modeled as an uncertainty, and the model is rewritten
within a robust control framework ∆−P ∗−K. A robust closed-
loop controller is synthesized to minimize the H∞ norm of a
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Fig. 13. Closed-loop robust tracking control: (a) I(t). (b) Ptot. (c) n(t).

weighted version of the sensitivity transfer function and, there-
fore, to minimize the weighted tracking error. The simulation
study shows that the proposed robust closed-loop controller
rejects the disturbance in the initial profile and improves the
tracking performance when compared to the open-loop case.
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