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Ramp-Up-Phase Current-Profile Control of Tokamak
Plasmas via Nonlinear Programming

C. Xu, Y. Ou, J. Dalessio, E. Schuster, T. C. Luce, J. R. Ferron, M. L. Walker, and D. A. Humphreys

Abstract—The achievement of suitable toroidal-current-density
profiles in tokamak plasmas plays an important role in enabling
high fusion gain and noninductive sustainment of the plasma
current for steady-state operation with improved magnetohydro-
dynamic stability. The evolution in time of the current profile
is related to the evolution of the poloidal magnetic flux, which
is modeled in normalized cylindrical coordinates using a partial
differential equation (PDE) usually referred to as the magnetic flux
diffusion equation. The dynamics of the plasma current density
profile can be modified by the total plasma current and the power
of the noninductive current drive. These two actuators, which are
constrained not only in value and rate but also in their initial and
final values, are used to drive the current profile as close as possible
to a desired target profile at a specific final time. To solve this
constrained finite-time open-loop PDE optimal control problem,
model reduction based on proper orthogonal decomposition is
combined with sequential quadratic programming in an iterative
fashion. The use of a low-dimensional dynamical model dramat-
ically reduces the computational effort and, therefore, the time
required to solve the optimization problem, which is critical for a
potential implementation of a real-time receding-horizon control
strategy.

Index Terms—Distributed parameter systems, nonlinear
programming (NLP), proper orthogonal decomposition (POD),
tokamak plasma control.

I. INTRODUCTION

THE CONTROL of the current profile in tokamak plasmas
has been proved to be the enabler of advanced scenarios

characterized by improved confinement, enhanced magnetohy-
drodynamic stability, and possible steady-state operation [1],
[2]. The evolution in time of the current profile is related to the
evolution of the spatial derivative of the poloidal flux profile,
which is modeled in normalized cylindrical coordinates using
a partial differential equation (PDE) usually referred to as the
magnetic flux diffusion equation [3]. The total plasma current
and the power of the noninductive current drive can be used
to modify the dynamics of the poloidal-magnetic-flux profile.
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Fig. 1. Total plasma current evolution defines the ramp-up and flattop phases
of the discharge. The control problem focuses on Phase I, which includes the
ramp-up phase and the first part of the flattop phase. The control goal is to drive
the current profile from some initial arbitrary condition to a predefined target
profile at some time T within the time window [T1, T2] in the flattop phase.

These two physical actuators enter the magnetic flux diffusion
equation as interior, boundary, and diffusivity control terms.

Recent experiments in different devices around the world
(JET [4], [5], [6], DIII-D [7], JT-60U [8], and Tore Supra
[9], [10]) have demonstrated significant progress in achieving
profile control. One possible approach to current-profile con-
trol focuses on creating the desired current profile during the
plasma current ramp-up and early flattop phases with the aim
of maintaining this target profile during the subsequent phases
of the discharge. Since the actuators that are used to achieve
the desired target profile are constrained, experiments have
shown that some of the desirable target profiles may not be
achieved for all arbitrary initial conditions. Therefore, a perfect
matching of the desirable target profile may not be physically
possible. In practice, the objective is to achieve the best possible
approximate matching at a prespecified time during the early
flattop phase of the total plasma current pulse, as shown in
Fig. 1. Thus, such matching problem can be formulated as
a finite-time optimal control problem for the magnetic flux
diffusion PDE [11].

In general, it is very difficult, if not impossible, to provide
analytic solutions for optimal control problems defined for
PDE systems (see, e.g., [12]–[14] and the references therein).
Numerical approaches for the solution of these PDE problems
arise as an effective alternative. State-of-the-art numerical al-
gorithms for PDE optimal control synthesis can be categorized
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into indirect and direct methods, based on calculus of variations
and nonlinear programming (NLP), respectively. The calculus
of variations can be used in indirect methods to derive the
optimality conditions for a given optimal control problem.
These optimality conditions result in a two-boundary-value
problem, which usually requires numerical computations for
its solution. However, it is often technically challenging to
compute the variations for systems described by PDEs. As an
alternative approach, system states and controls can be treated
as independent variables in direct methods to reformulate the
original optimal control problem as a constrained PDE-based
optimization problem, which can be solved using NLP tech-
niques. The sequential quadratic programming (QP) (SQP)
method [15] is one of the most robust algorithms for the nu-
merical solution of NLP problems. A quadratic approximation
of the objective functional and a linear approximation of the
constraint equation are carried out around a current estimate
of the solution of the optimal control problem to convert the
original NLP problem into a QP problem. Newton’s method
can be used to solve the optimality conditions associated with
the obtained QP problem. The solution is then used to update
the estimate of the solution of the optimal control problem,
which is used for a new approximation of the original NLP
problem into a QP problem. The SQP procedure generates
then a sequence of QP problems and a series of estimates
that converge to the solution of the original optimal control
problem.

To overcome the high dimensionality of the problem, re-
duced order modeling (ROM) techniques play a very important
role in dealing with the control of infinite-dimensional dy-
namical systems. The proper orthogonal decomposition (POD)
method is an efficient ROM technique used to obtain low-
dimensional dynamical systems (LDDSs) from data ensembles
that arise from numerical simulation or experimental observa-
tion. The POD method has been widely used and proved suc-
cessful to discover coherent structures from complex physical
processes (e.g., [16]) and to control PDE systems (e.g., [17]).

We combine POD and SQP to solve a “motion planning”
problem where the open-loop optimal control sequences must
be computed over time to minimize the quadratic error between
the actual output profile (spatial derivative of the poloidal-
magnetic-flux profile) at a prescribed final time and a desired
target profile. This work is aimed at saving long trial-and-
error periods of time currently spent by fusion experimentalists
trying to manually adjust the time evolutions of the actua-
tors to achieve the desired current profile at some prespec-
ified time. Simulation results show the effectiveness of this
approach.

This paper is organized as follows. The optimal con-
trol problem for the current-profile system is introduced in
Section II. The POD method to obtain a reduced order model is
discussed in Section III. In Section IV, the Galerkin projection
method based on a test function set composed by dominant
POD modes is also discussed. In Section V, the procedure for
the POD-based optimization is stated, and a brief introduction
to SQP optimization theory is presented. Simulation studies are
presented in Section VI. This paper is closed in Section VII by
stating conclusions and future research remarks.

II. FORMULATIONS OF THE OPTIMAL CONTROL PROBLEM

A. Control-Oriented Model

To enable the model-based control of the current profile at
DIII-D, a control-oriented model for the dynamic evolution of
the poloidal flux profile during and just following the ramp-
up of the plasma current has been recently proposed [18]. The
magnetic diffusion equation is combined with empirical corre-
lations obtained at DIII-D for the temperature and noninductive
current to introduce a simplified dynamic model describing
the evolution of the poloidal flux during the inductive phase
of the discharge. In this paper, we make use of the model
introduced in [18] to illustrate the proposed open-loop opti-
mal control technique, but full predictive codes (CORSICA,
CRONOS, PTRANSP, etc.) could be used with the potential of
a more accurate prediction than that provided by this simplified
control-oriented model.

The current density j, which flows toroidally around
the tokamak and whose profile must be controlled, is related
to the derivatives of the poloidal magnetic flux ψ with respect to
the toroidal magnetic flux Φ. We let ρ be an arbitrary coordinate
indexing the magnetic surface. Any quantity constant on each
magnetic surface could be chosen as the variable ρ. We choose
the mean geometric radius of the magnetic surface as the vari-
able ρ, i.e., πBφ,oρ2 = Φ, where Bφ,o is the reference toroidal
magnetic field at the geometric plasma center Ro. The variable
ρ̂ denotes the normalized radius ρ/ρb, and ρb is the radius of
the last closed flux surface. The evolution of the poloidal flux
in normalized cylindrical coordinates is given by the magnetic
diffusion equation

∂ψ

∂t
=

η(Te)
µoρ2

b F̂
2

1
ρ̂

∂

∂ρ̂

(
ρ̂F̂ ĜĤ

∂ψ

∂ρ̂

)
−RoĤη(Te)

〈j̄NI · B̄〉
Bφ,o

(1)

where t is the time, ψ is the poloidal magnetic flux, η is the
plasma resistivity, Te is the plasma electron temperature, µo

is the vacuum permeability, j̄NI is the noninductive source of
current density (neutral beam, electron cyclotron, etc.), B̄ is the
toroidal magnetic field, and <> denotes flux-surface average.
F̂ , Ĝ, Ĥ are geometric factors, which are functions of ρ̂. The
boundary conditions of (1) are given by

∂ψ

∂ρ̂

∣∣∣∣
ρ̂=0

= 0
∂ψ

∂ρ̂

∣∣∣∣
ρ̂=1

=
µo

2π
Ro

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

I(t) (2)

where I(t) denotes the total plasma current.
During “Phase I” (see Fig. 1), mainly governed by the ramp-

up phase, the plasma current is mostly driven by induction. In
this case, it is possible to decouple the equation for the evolution
of the poloidal flux from the equation for the evolution of the
temperature Te(ρ̂, t). Highly simplified models for the temper-
ature and noninductive toroidal current density are chosen for
this phase.

The temperature Te is assumed to follow

Te(ρ̂, t) = kTeT
profile
e (ρ̂)

I(t)
√

P

n̄(t)
(3)
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where the reference profile T profile
e is identified from DIII-D

through Thomson scattering and kTe = 1.7295 · 1010 m−3 ·
A−1 · W−1/2. The average density n̄ is defined as

n̄(t) =
1∫

0

n(ρ̂, t)dρ̂ (4)

where n denotes the plasma density.
The noninductive toroidal current density 〈j̄NI · B̄〉/Bφ,o is

assumed to follow

〈j̄NI · B̄〉
Bφ,o

= kNIparj
profile
NIpar (ρ̂)

I(t)1/2P (t)5/4

n̄(t)3/2
(5)

where the reference profile jprofile
NIpar is identified from DIII-D

through a combination of MSE diagnostics and the
EFIT equilibrium reconstruction code and kNIpar =
1.2139 · 1018 m−9/2 · A−1/2 · W−5/4. The model for Te

and 〈j̄NI · B̄〉/Bφ,o previously presented considers neutral
beams as the only source of current and heating. In the case
where more heating and current sources are considered, (3) and
(5) should include the weighted contributions of the different
sources, and reference profiles need to be identified for each
heating and current source.

The resistivity η scales with the temperature Te as

η(ρ̂, t) =
keffZeff

T 3/2
e (ρ̂, t)

(6)

where Zeff = 1.5 and keff = 4.27.2 · 10−8 Ω · m (keV)3/2.
By introducing

ϑ1(ρ̂) =
keffZeff

k3/2
Te µoρ2

b

1
F̂ 2(ρ̂)(T profile

e (ρ̂))3/2
(7)

ϑ2(ρ̂) = RoĤµoρ
2
b(ρ̂)kNIparj

profile
NIpar (ρ̂) (8)

D(ρ̂) = F̂ ĜĤ k =
µo

2π
Ro

Ĝ
∣∣∣
ρ̂=1

Ĥ
∣∣∣
ρ̂=1

(9)

the normalized poloidal magnetic flux can be rewritten as

1
ϑ1(ρ̂)

∂ψ

∂t
= u1(t)

1
ρ̂

∂

∂ρ̂

[
ρ̂D(ρ̂)

∂ψ

∂ρ̂

]
+ ϑ2(ρ̂)u2(t). (10)

The control inputs u1 and u2 are functions of physical
actuators such as the total power P of the noninductive current
drive, the total plasma current I , and the average density n̄, i.e.,

u1(t) = n̄1.5I−1.5P−0.75 u2(t) = P 0.5I−1. (11)

In this paper, we consider the average density n̄ as an uncon-
trolled but measurable input. This decision is motivated by the
fact that the tight control of n̄ in experiments can be chal-
lenging. The poloidal magnetic flux at the spatial boundaries
is determined by the Neumann conditions

∂ψ

∂ρ̂
(0, t) = 0

∂ψ

∂ρ̂
(1, t) = ku3(t) (12)

where k is a constant and u3(t) = I . The initial condition for
the magnetic flux profile is given by

ψ(ρ̂, 0) = ψ0(ρ̂). (13)

B. Cost Functional and Constraints

In practice, the toroidal current density is usually specified
indirectly by the rotational transform ῑ (or the safety factor q =
ῑ−1), which is defined as

ῑ(ρ, t) =
∂ψ(ρ, t)
∂Φ

. (14)

The constant relationship between Φ and ρ, namely, ρ =√
Φ/πBφ,o, and the definition of the normalized radius ρ̂ allow

us to rewrite (14) as ῑ(ρ̂, t) = (∂ψ/∂ρ̂)(1/Bφ,oρ2
b ρ̂). Since ῑ is

uniquely defined by the spatial derivative of the magnetic flux
ψ, in this paper, we define the system output as

ι(ρ̂, t) =
∂ψ

∂ρ̂
. (15)

The three control inputs u1(t), u2(t), and u3(t) are indeed
functions of only two independent variables, namely, the total
noninductive power P (t) and the total plasma current I(t). The
control objective is therefore to find control inputs P (t) and
I(t) that minimize the cost functional

J =
1
2

1∫

0

∣∣ι(ρ̂, tf ) − ιd(ρ̂)
∣∣2 dρ̂ +

1
2

tf∫

t0

(γII
2 + γP P 2) dt,

(16)

where ιd(ρ̂) is the desired target profile at time tf and the
positive constants γI and γP are control weighting factors. The
control actuators must satisfy the following constraints:

Magnitude saturation : I(0)
l ≤ I ≤ I(0)

u

Pl ≤ P ≤ Pu (17)

Rate saturation :
∣∣∣∣
dI (t)

dt

∣∣∣∣ ≤ I(1)
u (18)

Initial and final values : I(t0) = I0 I(tf ) = If . (19)

We introduce two admissible control sets P and I for all t ∈
[t0, tf ] to denote the constraints (17)–(19):

P = {P (t)|Pl ≤ P (t) ≤ Pu} (20)

I =

{
I(t)

∣∣∣∣I
(0)
l ≤ I(t) ≤ I(0)

u ,

∣∣∣∣
dI(t)
dt

∣∣∣∣ ≤ I(1)
u ,

I(t0) = I0, I(tf ) = If

}
. (21)

III. POD METHOD

Given a collection of snapshots Ψ = {ψ (ρ̂, tj)} =
{ψj(ρ̂)} , j = 1, 2, . . . , n, on the domain 0 ≤ ρ̂ ≤ 1, the
goal of the POD method (see, e.g., [16]) is to produce a set
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of basis functions V = {v1(ρ̂), v2(ρ̂), . . . , v1(ρ̂)} (l ≤ n) to
optimally approximate any snapshot ψj(ρ̂) in Ψ, i.e.,

ψj ≈
l∑

i=1

zivi (22)

where zi, i = 1, 2, . . . , l, are constants. We refer to Ψ as the
data collection set and to V as the POD basis set.

For any two functions fi(ρ̂) and fj(ρ̂) in either Ψ or V ,

we define their inner product as 〈fi, fj〉 =
1∫

0
fifj ρ̂dρ̂ and

the induced norm of any function fi(ρ̂) as ‖fi‖ = 〈fi, fi〉 =
1∫

0
f2

i ρ̂dρ̂. We multiply (22) on both sides by ρ̂vk and integrate

over ρ̂ ∈ [0, 1] to obtain

1∫

0

ψjvkρ̂dρ̂ ≈
l∑

i=1

zi

1∫

0

vivkρ̂dρ̂. (23)

If the basis functions in V satisfy the orthonormal condition

1∫

0

vivkρ̂dρ̂ =
{

1, i = k
0, i )= k

(24)

we can obtain zk =
1∫

0
ψjvkρ̂dρ̂ = 〈ψj ,ψk〉 and write the snap-

shot approximation (22) as

ψj ≈
l∑

i=1

〈ψj , vi〉 vi. (25)

The objective of the POD method is to find a set V that
minimizes the error of the approximation (25), i.e.,

min
vi∈V

Jb(v1, . . . , vl) =
n∑

j=1

∥∥∥∥∥ψj −
l∑

i=1

〈ψj , vi〉 vi

∥∥∥∥∥

2

s.t. 〈vi, vj〉 = δij =
{

1, i = j
0, i )= j.

(26)

We first rewrite the cost functional (26) as

Jb (v1, . . . , vl)

=
n∑

j=1

〈
ψj −

l∑

i=1

〈ψj , vi〉vi,ψj −
l∑

i=1

〈ψj , vi〉vi

〉

=
n∑

j=1

[
〈ψj ,ψj〉 − 2

l∑

i=1

〈ψj , vi〉2 +
l∑

i=1

〈ψj , vi〉2
]

=
n∑

j=1

[
〈ψj ,ψj〉 −

l∑

i=1

〈ψj , vi〉2
]
. (27)

Therefore, solving the minimization problem (26) is equivalent
to solving the maximization problem

max
vi∈V

JB (v1, . . . , vl) =
n∑

j=1

l∑

i=1

〈ψj , vi〉2,

s.t.〈vi, vj〉 = δij .

By introducing

K (ρ̂, ρ̂′) =
n∑

j=1

ψj (ρ̂)ψj (ρ̂′) Rv =
1∫

0

K (ρ̂, ρ̂′) v (ρ̂′) ρ̂′dρ̂′

we can obtain

〈Rvi, vi〉 =
1∫

0

Rvi (ρ̂) vi (ρ̂) ρ̂dρ̂

=
1∫

0

1∫

0

K (ρ̂, ρ̂′) vi (ρ̂′) ρ̂′dρ̂′vi (ρ̂)ρ̂dρ̂

=
1∫

0

1∫

0

n∑

j=1

ψj (ρ̂)ψj (ρ̂′) vi (ρ̂′) ρ̂′dρ̂′vi (ρ̂) ρ̂dρ̂

=
n∑

j=1




1∫

0

ψj (ρ̂) vi (ρ̂) ρ̂dρ̂




2

=
n∑

j=1

〈ψj , vi〉2

(28)

and rewrite JB as JB(v1, . . . , vl) =
∑l

i=1 〈Rvi, vi〉.
Therefore, for any POD basis function v ∈ V , we formulate

the following optimization problem:

max
v

JPOD = 〈Rv, v〉 s.t. 〈v, v〉 = 1. (29)

We define the Lagrange functional

LPOD = 〈Rv, v〉 − λ(〈v, v〉 − 1) (30)

where λ is a Lagrange multiplier and assume that v = v∗ + ηv′.
Then, we can obtain

LPOD (η) = 〈R (v∗ + ηv′) , (v∗ + ηv′)〉

− λ〈(v∗ + ηv′) , (v∗ + ηv′)〉 + λ

= 〈Rv∗, v∗〉 + η〈Rv∗, v′〉

+ η〈Rv′, v∗〉 + η2〈Rv′, v′〉

− λ
[
〈v∗, v∗〉 + η〈v∗, v′〉 + η〈v′, v∗〉 + η2〈v′, v′〉

]

+ λ (31)

where η is an arbitrary real number and v′ is an arbitrary
variation with respect to the optimal solution v∗ ∈ V . The
optimality condition then becomes

dLPOD (η)
dη

∣∣∣∣
η=0

= 2〈Rv∗, v′〉 − 2〈λv∗, v′〉

= 2〈Rv∗ − λv∗, v′〉 = 0. (32)
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Since v′ is arbitrary, the optimality condition is reduced to the
following eigenvalue problem:

Rv = λv or

1∫

0

K (ρ̂, ρ̂′)v (ρ̂′) ρ̂′dρ̂′ = λv (ρ̂) . (33)

The integral equation (33) can be discretized in space to obtain
a finite-dimensional eigenvalue problem. When the number of
discrete points (m) is much larger than the number of snapshots
(n), i.e., m , n, the discrete version of (33) generates a large-
scale eigenvalue problem of dimension m. We follow instead
an approach based on Sirovich’s method [19], [16], which
allows for the solution of the integral equation (33) based on
an eigenvalue problem of dimension n. We assume that each
POD basis function v can be expressed as a linear combination
of the snapshots ψj , j = 1, 2, . . . , n, i.e.,

v
n∑

k=1

akψk (34)

which means that it is possible to find a combination of obser-
vation data (i.e., to determine the coefficients ak) from which
dominant characteristics can be extracted. We substitute now
the snapshot expansion (34) into (33) to obtain

1∫

0

n∑

j=1

ψj(ρ̂)ψj(ρ̂′)

[
n∑

k=1

akψk(ρ̂′)

]
ρ̂′dρ̂′ = λ

n∑

j=1

ajψj(ρ̂)

or

n∑

j=1




n∑

k=1

1∫

0

ψj(ρ̂′)ψk (ρ̂′) ρ̂′dρ̂′ak



ψj(ρ̂) = λ
n∑

j=1

ajψj(ρ̂).

(35)

By introducing the following matrix notation:

Cjk =
1∫

0

ψj(ρ̂′)ψk(ρ̂′)ρ̂′dρ̂′ a = [a1, a2, . . . , an]T (36)

we can rewrite (35) as

n∑

j=1

[
n∑

k=1

Cjkak − λaj

]
ψj(ρ̂) = 0, i.e., Ca = λa (37)

where C = [Cjk] ∈ Rn×n. Since C is a nonnegative Hermitian
matrix, i.e., C = CT, it has a complete set of orthogonal
eigenvectors (a1, . . . ,an). Each POD basis function can be
expressed then as

vi = [ψ1, . . . ,ψn]ai, i = 1, 2, . . . , l. (38)

IV. POD/GALERKIN METHOD

We let v(ρ̂) be a testing function (or trial function) which
has at least first-order derivative with respect to the spatial
coordinate ρ̂. We multiply both sides of (10) by ρ̂v(ρ̂) and

integrate over ρ̂ ∈ [0, 1] to obtain the weak form of the magnetic
flux diffusion equation

1∫

0

1
ϑ1(ρ̂)

ψ(ρ̂)v(ρ̂)ρ̂dρ̂

= u1(t)ρ̂D(ρ̂)
∂ψ

∂ρ̂
v(ρ̂)

∣∣∣∣
1

0

− u1(t)
1∫

0

D(ρ̂)
∂ψ

∂ρ̂

∂v

∂ρ̂
ρ̂dρ̂

+ u2(t)
1∫

0

ϑ2(ρ̂)v(ρ̂)ρ̂dρ̂

= kD(1)v(1)n̄1.5I−0.5P−0.75

− n̄1.5I−1.5P−0.75

1∫

0

D(ρ̂)
∂ψ

∂ρ̂

∂v

∂ρ̂
ρ̂dρ̂

+ P 0.5I−1

1∫

0

ϑ2(ρ̂)v(ρ̂)ρ̂dρ̂. (39)

We assume that the magnetic flux can be spanned by the POD
basis functions vj (j = 1, 2, . . . , l), i.e.,

ψ(ρ̂, t) ≈
l∑

j=1

zj(t)vj(ρ̂). (40)

We substitute (40) into the weak form (39) and adopt the POD
basis functions as testing functions, i.e., v = vi, i = 1, 2, . . . , l,
to write

l∑

j=1




1∫

0

1
ϑ1(ρ̂)

vj(ρ̂)vi(ρ̂)ρ̂dρ̂



 zj(t)

= kD(1)vi(1)n̄1.5I−0.5P−0.75

− n̄1.5I−1.5P−0.75
l∑

j=1




1∫

0

D(ρ̂)
∂vj

∂ρ̂

∂vi

∂ρ̂
ρ̂dρ̂



 zj(t)

+ P 0.5I−1

1∫

0

ϑ2(ρ̂)vi(ρ̂)ρ̂dρ̂. (41)

By introducing the matrix notation

Mij =
1∫

0

1
ϑ1(ρ̂)

vi(ρ̂)vj(ρ̂)ρ̂dρ̂ (42)

Kij = −n̄1.5

1∫

0

D(ρ̂)
∂vj

∂ρ̂

∂vi

∂ρ̂
ρ̂dρ̂ (43)

bi = kD(1)vi(1)n̄1.5 ci =
1∫

0

ϑ2(ρ̂)vi(ρ̂)ρ̂dρ̂ (44)
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we can rewrite (41) as an l-dimensional matrix system

M
dz(t)
dt

=F(z, P, I)

= I−1.5P−0.75K(t)z(t)
+ b(t)I−0.5P−0.75 + cP 0.5I−1

(45)

where z = [zi] ∈ Rl×1, M = [Mij ] ∈ Rl×l, K = [Kij ] ∈
Rl×l, b = [bi] ∈ Rl×1, c = [ci] ∈ Rl×1, and F : Rl×1 ⊗ P ⊗
I → Rl×1 (⊗ denotes the Cartesian product). P and I repre-
sent the admissible sets of control inputs P and I defined in
(20) and (21), respectively.

By noting that the initial condition (13) can be rewritten as

ψ0(ρ̂) =
l∑

j=1

zj(0)vj(ρ̂) (46)

we multiply both sides of (46) by ρ̂vi(ρ̂) and integrate over 0 ≤
ρ̂ ≤ 1 to obtain

1∫

0

ψ0(ρ̂)vi(ρ̂)ρ̂dρ̂ =
l∑

j=1

zj(0)
1∫

0

vj(ρ̂)vi(ρ̂)ρ̂dρ̂. (47)

We introduce the matrix notation

fi =
1∫

0

ψ0(ρ̂)vi(ρ̂)ρ̂dρ̂ (48)

Gij =
1∫

0

vi(ρ̂)vj(ρ̂)ρ̂dρ̂ z0,j = zj(0) (49)

to rewrite (47) as a matrix formulation

f = Gz0 (50)

where f = [fi] ∈ Rl×1, G = [Gij ] ∈ Rl×1, and z0 = [z0,j ] ∈
Rl×1. Therefore, the Galerkin projection coefficients
zj(0), j = 1, 2, . . . , l, in (46) can be obtained by solving
the linear algebraic equation (50)

z0 = G−1f . (51)

We rewrite now the output variable ι defined in (15) in terms
of the Galerkin expansion (40), i.e., ι(ρ̂, t) =

∑l
j=1 zj(t)

∂vj

∂ρ̂ .
Similarly, the desired output variable ιd can also be rewritten as

ιd(ρ̂) =
l∑

j=1

zd
j
∂vj

∂ρ̂
(52)

where zd
j , j = 1, 2, . . . , l, are the desired Galerkin projection

coefficients in terms of the POD basis functions vj(ρ̂), j =
1, 2, . . . , l. To obtain the specific values of zd

j , j = 1, 2, . . . , l,
we can multiply both sides of (52) by ρ̂∂vi

∂ρ̂ and integrate over
0 ≤ ρ̂ ≤ 1 to obtain

1∫

0

ιd(ρ̂)
∂vi

∂ρ̂
ρ̂dρ̂ =

l∑

j=1

zd
j

1∫

0

∂vj

∂ρ̂

∂vi

∂ρ̂
ρ̂dρ̂. (53)

By introducing the matrix notation

gi =
1∫

0

ιd(ρ̂)
∂vi

∂ρ̂
ρ̂dρ̂ Hij =

1∫

0

∂vj

∂ρ̂

∂vi

∂ρ̂
ρ̂dρ̂ (54)

we can rewrite (53) as

g = Hzd (55)

where g = [gi] ∈ Rl×1, H = [Hij ] ∈ Rl×l, and zd = [zd
j ] ∈

Rl×1. Therefore, the Galerkin projection coefficients of the
desired profile can be obtained by solving the algebraic
equation (55)

zd = H−1g. (56)

Finally, we can rewrite the optimization problem (16)–(21)
subject to (10) in an l-dimensional POD subspace V =
span{v1, v2, . . . vl}

min
P∈P,I∈I

JG = [z(tf ) − zd]T[z(tf ) − zd]

+
1
2

tf∫

t0

(γII
2 + γP P 2) dt, (57)

s.t.
dz(t)
dt

=M−1F(z, P, I), z(0) = z0. (58)

V. NUMERICAL OPTIMIZATION

A. Control Parameterization

We use function values P (tk) and I(tk) at each time point tk
over the time grid

t0 = t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ tT = tf (59)

to parameterize the control inputs P (t) and I(t) for all t ∈
[t0, tf ]. For t ∈ (tk, tk+1), k = 1, 2, . . . , T − 1, we use linear
interpolations to approximate P (t) and I(t) as

P lin(t) = P (tk) +
P (tk+1) − P (tk)

tk+1 − tk
(t − tk) (60)

I lin(t) = Itk) +
I(tk+1) − I(tk)

tk+1 − tk
(t − tk). (61)

We denote P (tk) = Pk and I(tk) = Ik for all k =
1, 2, . . . , T − 1. Then, the constraints (20)–(21) become

Pl≤Pk+
Pk+1−Pk

tk+1−tk
(t − tk)

≤Pu⇒Pl≤Pk≤Pu (62)

I(0)
l ≤Ik+

Ik+1−Ik

tk+1−tk
(t − tk)

≤I(0)
u ⇒I(0)

l ≤Ik≤I(0)
u (63)∣∣∣∣

Ik+1 − Ik

tk+1 − tk

∣∣∣∣ ≤ I(1)
u ⇒ −I(1)

u

≤ Ik+1 − Ik

tk+1 − tk
≤ I(1)

u (64)

I1 = I0 IT = If . (65)
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To take into account the control parameterization, the admissi-
ble sets P and I are redefined as

P lin = {Pk, (k = 0, 1, . . . , T ) satisfies (62)} (66)
I lin = {Ik, (k = 0, 1, . . . , T ) satisfies (63)−(65)}. (67)

B. Nonlinear Optimization

After the parameterization, the control inputs can be repre-
sented as functions of time and the to-be-optimized parameters
Pk and Ik, for k = 1, 2, . . . , T , i.e.,

P lin(t) = P lin(P1, . . . , PT , t) I lin(t) = I lin(I1, . . . , IT , t).

We define a parameterization vector containing all the to-be-
optimized parameters U = (P1, . . . , PT , I1, . . . , IT )T ∈ U ∈
R2T×1, where U = P lin ∪ I lin.

With U denoting the to-be-optimized parameters and U
denoting the admissible parameter set, we can rewrite the
optimization problem (57)–(58) into a general nonlinear opti-
mization formulation

min
U∈U

JG(z, U) (68)

s.t.
dz(t)
dt

= M−1F(z, U), z(0) = z0. (69)

C. SQP

The SQP algorithm is an effective approach to find the local
minima of the NLP problem formulated by (68)–(69). SQP
is an iterative method which solves, at each iteration, a QP
problem and is an effective approach to obtain local minimal
solutions with superlinear convergence. The basic idea of SQP
is to generate a quadratic subproblem whose solution yields a
step toward the solution of the original nonlinear problem. We
summarize below the SQP iterative method for a general NLP
problem

NLP :
{ min

X
F (X)

s.t. e (X) = 0
(70)

where F and e have continuous second derivatives with respect
to X . We note that inequality constraints (e.g., e(X) ≤ 0) can
be converted into equalities by introducing a slack variable
(vector) ε such that e(X) + ε = 0. Then, in order to simplify

the explanation of the SQP method, we only consider NLP
with equality constraints in this section. If λ∗ is the Lagrange
multiplier corresponding to a local minimizer X∗ of (70), the
Lagrangian L(X,λ) = F (X) − λTe (X) satisfies L(X,λ∗) =
F (X) for all admissible X’s. Then, we can equivalently
rewrite the constrained NLP problem (70) as

NLP :

{
min

X
L (X,λ∗) = F (X) − (λ∗)Te (X)

s.t. e (X) = 0.
(71)

The first-order optimality condition for (71) is given by the
following nonlinear equations:

{
∇XL(X∗,λ∗) = ∇F(X∗) −∇e(X∗)λ∗ = 0
∇λL(X∗,λ∗) = e (X∗) = 0. (72)

One possible approach to the solution of this nonlinear problem
is to assume that we have an iteration

(
X(k+1),λ(k+1)

)
=

(
X(k),λ(k)

)
+

(
p(k),ω(k)

)
(73)

converging to (X∗,λ∗) defined by (72), where (X(k),λ(k)) is
the current estimate of (X∗,λ∗). Assuming that (X(k),λ(k)) is
close enough to (X∗,λ∗), the optimality condition (72) can be
linearized around the current estimate (X(k),λ(k)), i.e., (74), as
shown at the bottom of the page. By noting from (72) that

{
∇2

XλL
(
X(k),λ(k)

)
ω(k) = −∇e

(
X(k)

)

∇2
λL

(
X(k),λ(k)

)
= −e

(
X(k)

) (75)

it is possible to rewrite (74) into a compact matrix form, from
which (p(k),ω(k)) can be obtained (∇ = ∇X )

(∇2L
(
X(k),λ(k)

)
−∇e

(
X(k)

)

−
(
∇e

(
X(k)

))T 0

) (
p(k)

ω(k)

)

= −
(
∇L

(
X(k),λ(k)

)

−e
(
X(k)

)
)

. (76)

It is interesting to note that (76) is the first-order optimality
condition of the QP problem which represents a quadratic
approximation of L and a linear approximation of e in (71)
around the current solution (X(k),λ(k)). Therefore, from the
sequence of QP subproblems (77), shown at the bottom of the
page, it is possible to obtain search directions for the general
NLP problem (71), where each QP subproblem (77) minimizes
a quadratic approximation of the original Lagrangian subject to
a linear approximation of the constraints.

{
∇XL

(
X(k),λ(k)

)
+ ∇2

XL
(
X(k),λ(k)

)
p(k) + ∇2

XλL
(
X(k),λ(k)

)
ω(k) = 0

∇λL
(
X(k),λ(k)

)
+ ∇2

λXL
(
X(k),λ(k)

)
p(k) + ∇2

λL
(
X(k),λ(k)

)
ω(k) = 0

(74)

QP(k) :





min
p(k)

L
(
X(k),λ(k)

)
+ ∇L

(
X(k),λ(k)

)T
p(k) + 1

2

[
p(k)

]T ∇2L
(
X(k),λ(k)

)
p(k)

s.t. e
(
X(k)

)
+ ∇eT

(
X(k)

)
p(k) = 0

(77)
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D. Iteration of POD and SQP Methods

The POD model reduction technique captures the most dom-
inant modes of the system, which usually depend on the input
excitation. Since, during the numerical optimization procedure,
the control inputs are changed as the parameters are optimized,
it is a natural idea to combine the POD model reduction method
and the SQP optimization procedure. We use the control inputs
obtained during the last stage of the optimization procedure to
generate the data ensemble employed for the extraction of the
POD modes. These POD modes are then used to implement
a Galerkin projection that provides a low-dimensional model
approximating the original high-dimensional PDE system. The
low-dimensional model, which can dramatically reduce com-
putational effort, is used for a new stage of the optimization
procedure that provides updated control inputs. The overall al-
gorithm blends the POD model reduction method and the SQP
optimization procedure in an iterative fashion. Such algorithm
can be summarized as follows.

1) Set k = 0 to give the initial guess for the control se-
quences I(k) and P (k).

2) Simulate the PDE system (10) to obtain data
ensemble Ψk.

3) Generate the POD modes V (k)
POD and the LDDS (45) from

the data ensemble.
4) Solve the optimization problem (68)–(69) using the SQP

approach.
5) Go back to Step 2) and stop the iteration if the data

ensemble satisfies
∥∥∥Ψ(k+1) − Ψ(k)

∥∥∥ ≤ ε. (78)

Otherwise, continue the iteration until the error
criterion is satisfied.

Although a formal proof of convergence is out of the scope
of this paper, this algorithm has proven, in practice, to be al-
ways convergent for the considered number of parameterization
points.

VI. NUMERICAL ILLUSTRATIONS

The geometrical parameters D(ρ̂), ϑ1(ρ̂), and ϑ2(ρ̂) in
model (10) are shown in Figs. 2–4, respectively. The time
evolutions of the average density n̄(t), total power P (t), and
total current I(t) for DIII-D shot #129412 are shown in Fig. 5.
These experimental time evolutions for the total power P (t)
and the total current I(t) are used as the initial guesses for
the optimization procedure. Since the evolution for the average
density n̄(t) extracted from DIII-D shot #129412 has been
proved to be feasible for the considered scenario, we assume
in this paper that such time evolution can be reproduced by a
dedicated controller in any shot under the considered scenario,
and therefore, we consider it as the measurable input required
in our model. The integration of a more sophisticated predictive
code within the optimization procedure proposed in this paper
could provide a prediction of the (average) density and relax
the requirement of regulating it around a predefined trajectory.
In addition, it is also possible to include the average density
as one of the to-be-optimized actuator trajectories in the opti-

Fig. 2. Diffusivity coefficient D versus the normalized radius ρ̂.

Fig. 3. Shape of the coefficient ϑ1 versus the normalized radius ρ̂.

Fig. 4. Shape of the coefficient ϑ1 versus the normalized radius ρ̂.

mization procedure proposed in this paper (with the risk of not
being able to accurately reproduce the optimized trajectory in
experiments). The initial magnetic flux profile in shot #129412
shown in Fig. 6 is used as the initial condition for the numerical
simulations carried out as part of the optimization procedure.
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Fig. 5. Evolution of variables n̄ (1019 m−3) and I (in megaamperes) versus
time t (shot #129412).

Fig. 6. Initial distribution ψ0 (in webers) versus the normalized radius ρ̂.

We parameterize the control input functions by their values
at eight equidistant time points (t1, t2, . . . , t8), i.e.,

P (t(k)) = Pk I(t(k)) = Ik, k = 1, 2, . . . , 8. (79)

The computational grid used for solving the magnetic flux
diffusion PDE has M = 25 spatial and N = 25 temporal points
for the domains defined by 0 ≤ ρ̂ ≤ 1 and 0 ≤ t ≤ 1.2 s,
respectively. The following constraints are considered: Pl =
0.2 MW, Pu = 10 MW, I(0)

l = 0.15 MA, Iu(0) = 1.19 MA,
I(1)
u = 5 MA/s, I0 = 0.709 MA, and If = 1.187 MA. The

error tolerance in the termination condition (78) is chosen as
ε = 10−4.

We first generate through simulations the data ensemble
required to obtain the POD modes. Let λ1 > · · · > λl > · · · >
λd > 0 denote the positive eigenvalues of the correlation matrix
C, where d = rank(C). The error (energy ratio) associated with
the approximation with the first l POD modes is

εl =
n∑

j=1

∥∥∥∥∥ψj −
l∑

i=1

〈ψj , vi〉vi

∥∥∥∥∥

2

=
d∑

k=l+1

λk. (80)

Fig. 7. First four POD modes as a function of the iteration number.

Fig. 8. Evolution of P [in watts] as a function of time t [in seconds].

In this case, the eigenvalues of the first four POD modes
obtained from the simulated data are λ1 = 9.96790964 × 10−1,
λ2 = 3.121034 × 10−3, λ3 = 7.89143 × 10−5, and λ4 =
8.63946 × 10−6. This implies that just four POD modes
capture more than 99% of the system energy, or equivalently,
that by using just four POD modes, we can approximate the
original PDE system with less than 1% error. Fig. 7 shows
how the first four POD modes evolve as the iterations of the
proposed optimization procedure take place.

The four POD modes are employed to obtain an l = 4 dimen-
sional model which is, in turn, used to carry out the numerical
optimization. The proposed algorithm satisfies the termination
condition after five iterations. The optimized actuator trajecto-
ries are shown in Figs. 8 and 9 as a function of the iteration
number. As the iterations take place, we note that the sequence
of actuator trajectories converge (compare optimizations 4
and 5). From Fig. 8, we can conclude that the initial guess for
the total power (labeled “shot data” in the figure) seems to be
very close to a converged optimal solution. On the contrary,
Fig. 9 shows that the initial guess for the total current is far from
optimal and that the iterative optimization procedure converges
to such optimum. From Fig. 10, the matching-error reduction
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Fig. 9. Evolution of I [in amperes] as a function of time t [in seconds].

Fig. 10. Spatial ι-profile versus the normalized radius ρ̂ at tf = 1.2 s.

Fig. 11. Cost functional values in terms of iterations.

can be appreciated as the optimization procedure progresses.
The monotonic decrease of the cost function value is shown in
Fig. 11 as a function of the iteration number. As new optimized
trajectories are obtained, iteration after iteration, new POD
models are generated to carry out a new SQP optimization

Fig. 12. Magnetic flux evolution ψ0 [in webers] with the optimized inputs.

until acceptable convergence is achieved. The combination of
POD model reduction and SQP-based NLP is what we call
an optimization iteration in the figures. Fig. 12 shows the
spatial–temporal evolutions of the PDE system as a function
of the optimization iteration.

For the simulation study presented in this section, the pro-
posed algorithm was implemented in MATLAB and run in a
personal computer with the following configuration: Pentium
T4200 Dual-Core 2.00-GHz CPU, 3.00-GB RAM, and 32-b
Windows XP Operating System. The computation time depends
on the number of POD modes used for the model reduction,
the spatiotemporal discretization used for the numerical data
generation, the control parameterization, the settings of the SQP
algorithm, and the error tolerance of the proposed iterative
algorithm. Based on an energy analysis, we have found that
using four POD modes is accurate enough to approximate
the original PDE system. Our numerical studies show that the
use of a higher dimensional model for the SQP optimization
increases the computational complexity without a comparable
increase of accuracy. The choice of the grid size for a nu-
merical simulation is always a tradeoff between accuracy and
computational burden. In this case, the numerical simulation
over the M × N discretization grid is carried out with the only
purpose of generating the data from which the l POD modes are
extracted. Once the l number of POD modes is defined based
on an energy analysis, we increase the size of the M × N dis-
cretization grid until the first l number of POD modes no longer
change. In our simulation study, increasing the grid beyond
25 × 25 will not produce any significant change in the first four
POD modes. The only effect will indeed be the increase of the
overall computational time. The number of control parameters
is a design choice. As we increase this number, the algorithm
has more degrees of freedom to minimize the cost function.
However, a higher price in terms of computational burden must
be paid. For instance, it takes around 150 s to optimize sixteen
parameters (eight for each control input), while it takes less
than 60 s to complete the optimization based on 12 parameters
(six for each control input) without a significant change in the
achieved value of the cost function.

The POD–SQP iterative optimization procedure can dramati-
cally accelerate the numerical computations. A relatively large-
scale discretization on an M × N grid is only used to generate
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the data from which the POD modes are obtained. The SQP
optimization is carried out instead based on a low-dimensional
model of order l. The achieved computation time based on the
configuration and settings described previously is already small
enough to enable the solution of the numerical optimization
problem between two plasma discharges. However, there is
extensive room for improvement. For instance, the computation
time could be drastically reduced by implementing the algo-
rithm in C++, by running the algorithm in a multiprocessor
machine, and by choosing the appropriate optimization set-
tings. A study on the feasibility of implementing a receding
horizon control strategy based on the proposed optimization
algorithm is underway. The term receding-horizon control, or
model predictive control, describes a class of algorithms that,
at each control interval, computes an open-loop sequence of
manipulated input variables in order to optimize the future
behavior of the plant over a specific time horizon [20]–[22]. The
feedback feature of the receding horizon controller may reduce
the accuracy requirements on the optimization, relaxing, in this
way, the computation-time needs. Even a control interval of
several seconds may enable the implementation of a receding-
horizon controller in long-discharge tokamaks like ITER.

VII. CONCLUSION AND FUTURE WORK

The open-loop finite-time optimal current-profile-control
problem arising in tokamak plasmas during the ramp-up phase
of the discharge is solved by using POD model reduction and
NLP. The proposed numerical optimization procedure alter-
nates POD model reduction and SQP in an iterative scheme.
The SQP technique is an effective approach for the solution of
the NLP problem derived from the original optimal current-
profile-control problem. Numerical studies demonstrate that
the iterative POD-SQP optimization procedure is efficient and
reduces computational effort. Simulation results show that the
numerical optimization procedure can generate control trajec-
tories driving the final ι-profile within the proximity of a pre-
defined desired profile. The POD–SQP optimization procedure
is characterized by high-speed computation and shows poten-
tial for real-time implementation in a closed-loop receding-
horizon scheme, particularly for long-discharge tokamaks such
as ITER.

REFERENCES

[1] T. Taylor, “Physics of advanced tokamaks,” Plasma Phys. Control.
Fusion, vol. 39, no. suppl. 12B, pp. B47–B73, Dec. 1997.

[2] M. Murakami, M. R. Wade, C. M. Greenfield, T. C. Luce, J. R. Ferron,
H. E. St. John, J. C. DeBoo, W. W. Heidbrink, Y. Luo, M. A. Makowski,
T. H. Osborne, C. C. Petty, P. A. Politzer, S. L. Allen, M. E. Austin,
K. H. Burrell, T. A. Casper, E. J. Doyle, A. M. Garofalo, P. Gohil,
I. A. Gorelov, R. J. Groebner, A. W. Hyatt, R. J. Jayakumar, K. Kajiwara,
C. E. Kessel, J. E. Kinsey, R. J. La Haye, L. L. Lao, A. W. Leonard,
J. Lohr, T. W. Petrie, R. I. Pinsker, R. Prater, T. L. Rhodes,
A. C. C. Sips, G. M. Staebler, T. S. Taylor, M. A. Vanzeeland, G. Wang,
W. P. West, and L. Zeng, “Progress toward fully noninductive, high beta
conditions in DIII-D,” Phys. Plasmas, vol. 13, no. 5, pp. 056 106:1–
056 106:9, May 2006.

[3] F. Hinton and R. Hazeltine, “Theory of plasma transport in toroidal
confinement systems,” Rev. Mod. Phys., vol. 48, no. 2, pp. 239–308,
Apr. 1976.

[4] D. Moreau, F. Crisanti, X. Litaudon, D. Mazon, P. De Vries, R. Felton,
E. Joffrin, L. Laborde, M. Lennholm, A. Murari, V. Pericoli-Ridolfini,
M. Riva, T. Tala, G. Tresset, L. Zabeo, and K. D. Zastrow, “Real-time
control of the q-profile in JET for steady state advanced tokamak opera-
tion,” Nucl. Fusion, vol. 43, no. 9, pp. 870–882, Sep. 2003.

[5] L. Laborde, D. Mazon, D. Moreau, A. Murari, R. Felton, L. Zabeo,
R. Albanese, M. Ariola, J. Bucalossi, F. Crisanti, M. de Baar,
G. de Tommasi, P. de Vries, E. Joffrin, M. Lennholm, X. Litaudon,
A. Pironti, T. Tala, and A. Tuccillo, “A model-based technique for in-
tegrated real-time profile control in the JET tokamak,” Plasma Phys.
Control. Fusion, vol. 47, no. 1, pp. 155–183, Jan. 2005.

[6] D. Moreau, D. Mazon, M. Ariola, G. De Tommasi, L. Laborde,
F. Piccolo, F. Sartori, T. Tala, L. Zabeo, A. Boboc, E. Bouvier, M. Brix,
J. Brzozowski, C. D. Challis, V. Cocilovo, V. Cordoliani, F. Crisanti,
E. De La Luna, R. Felton, N. Hawkes, R. King, X. Litaudon, T. Loarer,
J. Mailloux, M. Mayoral, I. Nunes, E. Surrey, and O. Zimmerman, “A two-
time-scale dynamic-model approach for magnetic and kinetic profile con-
trol in advanced tokamak scenarios on JET,” Nucl. Fusion, vol. 48, no. 10,
p. 106 001, Oct. 2008.

[7] J. R. Ferron, P. Gohil, C. M. Greenfield, J. Lohr, T. C. Luce,
M. A. Makowski, D. Mazon, M. Murakami, C. C. Petty, P. A. Politzer,
and M. R. Wade, “Feedback control of the safety factor profile evolu-
tion during formation of an advanced tokamak discharge,” Nucl. Fusion,
vol. 46, no. 10, pp. L13–L17, Oct. 2006.

[8] T. Suzuki, A. Isayama, S. Ide, T. Fujita, T. Oikawa, S. Sakata, M. Sueoka,
H. Hosoyama, and M. Seki, “Recent RF experiments and application of
RF waves to real-time control of safety factor profile in JT-60U,” in Proc.
AIP Conf., 2005, vol. 787, pp. 279–286.

[9] T. Wijnands, D. Van Houtte, G. Martin, X. Litaudon, and P. Froissard,
“Feedback control of the current profile on Tore Supra,” Nucl. Fusion,
vol. 37, no. 6, pp. 777–791, Jun. 1997.

[10] O. Barana, D. Mazon, L. Laborde, and F. Turco, “Feedback control of
the lower hybrid power deposition profile on Tore Supra,” Plasma Phys.
Control. Fusion, vol. 49, no. 7, pp. 947–967, Jul. 2007.

[11] J. Blum, Numerical Simulation and Optimal Control in Plasma Physics.
Hoboken, NJ: Wiley, 1988.

[12] P. Neittaanmaki and D. Tiba, Optimal Control of Nonlinear Parabolic Sys-
tems: Theory, Algorithms, and Applications. New York: Marcel Dekker,
1994.

[13] V. Arnautu and P. Neittaanmaki, Optimal Control From Theory to Com-
puter Programs. Norwell, MA: Kluwer, 1993.

[14] R. Pytlak, Numerical Methods for Optimal Control Problems With State
Constraints. New York: Springer-Verlag, 1999.

[15] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York:
Springer-Verlag, 2006.

[16] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. New York: Cambridge Univ. Press,
1996.

[17] K. Kunisch and S. Volkwein, “Control of the Burgers equation by
a reduced-order approach using proper orthogonal decomposition,”
J. Optim. Theory Appl., vol. 102, no. 2, pp. 345–371, Aug. 1999.

[18] Y. Ou, T. C. Luce, E. Schuster, J. R. Ferron, M. L. Walker, C. Xu, and
D. A. Humphreys, “Towards model-based current profile control at
DIII-D,” Fusion Eng. Des., vol. 82, no. 5-14, pp. 1153–1160, Oct. 2007.

[19] M. Bergmann, L. Cordier, and J. Brancher, “Optimal rotary control of
the cylinder wake using proper orthogonal decomposition reduced-order
model,” Phys. Fluids, vol. 17, no. 9, p. 097 101(1–21), Aug. 2005.

[20] D. Mayne and H. Michalska, “Receding horizon control of nonlinear
systems,” IEEE Trans. Autom. Control, vol. 35, no. 7, pp. 814–823,
Jul. 1990.

[21] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,
pp. 789–814, Jun. 2000.

[22] R. Findeisen and F. Allgower, “An introduction to nonlinear model predic-
tive control,” in Proc. 21st Benelux Meeting Syst. Control, 2002, pp. 1–23.

Photographs and biographies of all authors not available at the time of
publication.

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on March 09,2010 at 10:37:34 EST from IEEE Xplore.  Restrictions apply. 


