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Optimal Tracking Control of Current Profile in Tokamaks
Y. Ou, C. Xu, E. Schuster, T. C. Luce, J. R. Ferron, M. L. Walker, and D. A. Humphreys

Abstract—Setting up a suitable current spatial profile in
tokamak plasmas has been demonstrated to be a key condition
for one possible advanced scenario with improved confinement
and possible steady-state operation. Experiments at the DIII-D
tokamak focus on creating the desired current profile during the
plasma current ramp-up and early flattop phases with the aim of
maintaining this target profile during the subsequent phases of the
discharge. The evolution in time of the current profile is related
to the evolution of the poloidal magnetic flux, which is modeled
in normalized cylindrical coordinates using a parabolic partial
differential equation usually referred to as the magnetic diffusion
equation. We propose a framework to solve a finite-time, optimal
tracking control problem for the current profile evolution via
diffusivity, interior, and boundary actuation during the ramp-up
and early flattop phases of the discharge. The proposed approach
is based on reduced order modeling via proper orthogonal de-
composition and successive optimal control computation for a
bilinear system. Simulation results illustrate the performance of
the proposed controller.

Index Terms—Bilinear optimal tracking control, distributed
parameter systems, proper orthogonal decomposition (POD),
tokamak plasma control.

1. INTRODUCTION

UCLEAR fusion is the process by which two nuclei stick

N together to form a heavier nucleus. This process is ac-
companied by a release of energy E, which is the result of the
amount A of mass “lost” in the reaction. To make a fusion re-
action possible, a certain amount of energy is required to bring
the two repellant nuclei carrying positive charges sufficiently
close. To overcome the Coulomb barrier, the kinetic energy of
the nuclei is increased by heating. The temperature required for
a thermonuclear fusion reaction to take place is around 100 mil-
lion degrees. At much lower temperatures (about 10 thousand
degrees), the electrons and nuclei separate and create an ionized
gas called plasma, and also known as the fourth state of matter.
An intangible doughnut-shaped bottle created by magnetic
lines is used to confine the high-temperature plasma. This
type of magnetic confinement device is called Tokamak,
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Fig. 1. Scheme of a tokamak device. The toroidal field (TF) coils are wrapped
“poloidally” around the torus (the short way, going through the center hole),
while the poloidal field (PF) coils are wrapped “toroidally” (the long way)
around the torus. Current flowing in these conducting coils and in the plasma
produces the helical magnetic field that confines the plasma (Source: ITER).

an acronym for the Russian words Toroidalnaya Kamera
ee Magnitnaya Katushka (toroidal chamber with magnetic
coils), which was invented in the Soviet Union in the late 1950s
[1]. A toroidal magnetic field is produced by the so-called
“toroidal field” (TF) coils. The addition of a poloidal magneticc
field (necessary for the existence of a magnetohydrodynamic
(MHD) equilibrium [2]), generated by the toroidal plasma
electric current and the “poloidal field” (PF) coils, produces a
combined field in which the magnetic field lines twist their way
around the tokamak to form a helical structure (see Fig. 1). It is
possible to use the poloidal component By, of the helicoidal
magnetic lines to define nested toroidal surfaces corresponding
to constant values of the poloidal magnetic flux. The poloidal
magnetic flux 1) at a point P is the total flux through the
surface S bounded by the toroidal ring passing through P, i.e.,
’l/} = proldS.

In a tokamak, the achievement of a suitable (toroidal) current
profile plays an important role in enabling high fusion gain and
noninductive sustainment of the plasma current for steady-state
operation (see, e.g., [3]-[5]). The evolution in time of the cur-
rent profile is related to the evolution of the poloidal magnetic
flux, which is modeled in normalized cylindrical coordinates
using a parabolic partial differential equation (PDE) usually re-
ferred to as the magnetic diffusion equation. The dynamics of
the plasma current profile evolution can be modified by three ac-
tuators: the total plasma current, the non-inductive power, and
the average plasma density. These actuators enter the magnetic
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OU et al.: OPTIMAL TRACKING CONTROL OF CURRENT PROFILE IN TOKAMAKS

1.5 T T : :
1.4f
PHASE | PHASE Il
L 1

1.3 T 3
= T T T 1
< 1 2
=11} 1
h=2 1k
g . RAMP-UBE/PHASE FLAT-TOP PHASE
£0.90 ' 1
=
O

0.8 1

0.7

0.6 1

0.5—— : : :

500 1000 _ 1500 2000 2500
Time [msec]

Fig. 2. Current evolution defines the phases of the tokamak discharge.

diffusion equation as interior, boundary, and diffusivity control
terms.

One possible approach to current profile control is to focus
on creating the desired current profile during the plasma current
ramp-up and early flattop phases of the tokamak discharge with
the aim of maintaining this target profile during the subsequent
phasesofthedischarge. Since the actuators thatareused toachieve
the desired target profile are constrained, experiments have shown
that some of the desirable target profiles may not be achieved
for all arbitrary initial condition. Therefore, a perfect matching
of the desirable target profile may not be physically possible. In
practice, the objective is to achieve the best possible approximate
matching at final time £y = T during the early flattop phase of
the total plasma current pulse, as shown in Fig. 2. Thus, such
matching problem can be formulated as a finite-time optimal con-
trol problem for the magnetic diffusion PDE.

Our current work includes the investigation of the use ex-
tremum seeking [6] and nonlinear programming [7] to achieve an
open-loop control solution for this optimal problem. The work
is aimed at saving long trial-and-error periods of time currently
spent by fusion experimentalists trying to manually adjust the
time evolutions of the actuators to achieve the desired current pro-
file at some prespecified time. However, the reproduction of the
nominal initial conditions is usually challenging and sometimes
impossible for the operators, who can only guarantee that the real
initial conditions are within a neighborhood of the nominal ones.
Therefore, in this work we propose a closed-loop optimal control
law aimed at rejecting disturbances in initial conditions. The
objective of the closed-loop (feedback) optimal controller is to
track the undisturbed open-loop (feedforward) system trajectory.

Optimal feedback control design for PDE systems is very
challenging and usually unfeasible due to the infinite dimen-
sionality of the problem. In this paper, we use proper orthog-
onal decomposition (POD) and Galerkin methods to obtain a
low dimensional dynamical model for the PDE system. The
POD method is an efficient approach to obtain low-dimensional
dynamical models from data ensembles arising from numer-
ical simulation or experimental observation. By using POD it
is possible to extract the dominant low-dimensional dynamics
from the infinite dimensional dynamical system. The method
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has been widely and successfully used, particulary in the area
of fluid dynamics (e.g., [8]). Fundamental aspects of the POD
method applied to parabolic problems, such as error estimates
for POD-Galerkin model reduction applied to both linear and
nonlinear systems, are discussed in [9].

Due to the presence of the diffusivity control term in the mag-
netic diffusion equation, the low dimensional dynamical model
obtained turns to be bilinear. To track the open loop control tra-
jectory for any initial condition, minimize the control effort, and
match a target profile as closely as possible at a prespecified
time ¢ty = T, a closed-loop finite-time optimal tracking con-
trol problem for a finite-dimensional bilinear system must be
solved. Inspired by [10], the two-point-boundary-value (TPBV)
problem arising from the optimality conditions for the bilinear
system is solved using a convergent scheme based on an iter-
ative quasi-linear approximation approach. Convergence of the
iterative scheme is proved in appropriate functional spaces by
using the contraction mapping theorem.

This paper is organized as follows. In Section II, an infi-
nite-dimensional dynamic model for the poloidal flux  is in-
troduced. Section III describes the control objectives during the
different phases of the tokamak discharge, and states the control
problem. In Section IV, we discuss the POD method as well as
the Galerkin projection method based on a test function set com-
posed by dominant POD modes. After obtaining a low dimen-
sional bilinear system, in Section V, we derive the optimality
conditions and propose an iterative convergent scheme, based on
the quasi-linear approximation of the system dynamics, to solve
the optimal control problem. A simulation study showing the
effectiveness of the proposed feedback controller is presented
in Section VI. Conclusions and future work are presented in
Section VIL.

II. CURRENT PROFILE EVOLUTION MODEL

We let p be an arbitrary coordinate indexing the magnetic sur-
faces. Any quantity constant on each magnetic surface could be
chosen as the variable p. We choose the mean geometric radius
of the magnetic surface as the variable p, i.e., 7rB¢,7op2 = O,
where ® is the toroidal magnetic flux and By , is the reference
toroidal magnetic field at the geometric plasma center R,. The
variable p denotes the normalized radius (p/ps ), and py, is the ra-
dius of the last closed flux surface. The evolution of the poloidal
flux in normalized cylindrical coordinates is given by the mag-
netic diffusion equation [4]

o _ n(T.) 0

Ot popiF2p 0P

(ﬁﬁéﬁ&/ﬁ (in1- B)

ap qu),o

(H
where ¢ is the time, v is the poloidal magnetic flux, 7 is the
plasma resistivity, T, is the plasma electron temperature, (i, is
the vacuum permeability, j 7 is the non-inductive source of cur-
rent density (neutral beam, electron cyclotron, etc.), B is the
toroidal magnetic field, and () denotes flux-surface average. E,
é, H are geometric factors, which are functions of / and are

given in [6]. The boundary conditions are given by
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where I(t) denotes the total plasma current.

The model makes the simplifying assumption that the mag-
netic geometry is fixed in time. This excludes two potential
sources of flux—a change in p;, (either by a change in the shape
of the last closed flux surface or in By ,) and a change in lo-
cation of the geometric center of the interior flux surfaces rela-
tive to that of the last closed flux surface. It is straightforward
to include the effect of a change in p; in the model for situa-
tions where it would be important. However, we focus in this
work on the design of a current profile controller to be activated
during the late stage of the ramp-up phase, where the plasma
shape has already developed and is approximately fixed, which
implies that changes in p; are small by design in the experiments
of interest (By_, is also approximately constant). Changes in the
relative positions of the flux surfaces do occur, but for cases of
interest, these happen slowly enough and they can be neglected.

During “Phase I” (see Fig. 2), mainly governed by the
ramp-up phase, the plasma current is mostly driven by induc-
tion. In this case, it is possible to decouple the equation for the
evolution of the poloidal flux from the evolution equation for
the temperature 7, (p,t). Simplified scenario-oriented models
for the temperature and non-inductive toroidal current density
are chosen for this phase. Based on experimental observations
at DIII-D, the shapes of the profiles are assumed to remain fixed
and equal to the so-called reference profiles, which are identified
from DIII-D discharges associated with the experiment of in-
terest [4]. The responses to the actuators are simply scalar mul-
tiples of the reference profiles. The temperature 7, is assumed
to follow (I(t)y/Pot/n(t)), and can be written as T (p,t) =
kreTP1(p)  (I(t)v/Peot/7i(t)), where the reference pro-
file TP*file(5) is only function of the space coordinate [6],
ke = 1.7295 - 10'° (m—3A~'W~1/2), P, is the total power
of the non-inductive current sources [electron cyclotron heating
(ECH), neutral beam heating (NBH), etc.], and 7 is the line-av-
eraged plasma density. The non-inductive toroidal current den-
sity ({1 - B)/Bg.o) is assumed to follow ((jnr - B)/By.o) =
kNIparJ]\;?Sii(p) (I(t)Y/% Poot (t)>/* /7(t)*/?), where the ref-
erence profile JR,T})]? ° is only function of the space coordinate
[6], and kn1par = 1.2139 - 1018 (m=92A~Y2W=5/4) The
resistivity 7 scales with the temperature 7T, as 7(p,t) =
(keffZeﬁ'/Tf?/2(ﬁ7 t
4.2702 - 10~% (Qm(kev)3/2). The proposed time scaling
in terms of I(t), Piot(t), and 72(t) has been successfully val-
idated in experiments [6]. Since this is a scenario-oriented
model, the accuracy of the predicted profile shapes for the
temperature and non-inductive toroidal current density depends
however on how well the discharge conditions present at the
moment of identifying the reference profiles are reproduced.

We consider 7i(t), I(t), and Py (t) as the actuators of the
system. However, the waveforms for 7i(t), I(t), and P (t) gen-
erated by the controller proposed in this work indeed represent
the desired values for these controlled variables and therefore
the references to dedicated controllers. For instance, in the case
of the plasma current, a proportional-integral-differential (PID)
loop usually regulates the ohmic coil voltage to make the plasma
current measured by a Rogowski loop (which includes both in-
ductive and non-inductive current components) follow the de-

)), where Z.g = 1.5, and keg =

sired waveform generated by the controller. Similarly to the
case of the plasma current, a PID loop regulates gas puffing and
pumping to make the line averaged density measured by a CO»
interferometer follow the desired waveform. The power of the
current drives is directly controlled by the power supplies asso-
ciated with the drives.

III. CONTROL PROBLEM DESCRIPTION

During “Phase I” the control goal is to drive the current pro-
file from any arbitrary initial condition to a prescribed target or
desirable profile at some time T' € (T, T») (here Ty = 1.2s
and To = 2.4s) in the flat-top phase of the total current I(t)
evolution. During “Phase II”” the control goal is to regulate the
current profile around this target profile.

It is worth to note that we can rewrite the equation for the
evolution of the poloidal flux (1) as

Loy _ 10 (0 e
G =103 5 (D55 ) + fa 5,
with boundary conditions (9¢/9p)|,_o = 0, (9¢/0p)|,—, =
ksug(t), where ks = (u,/2m) (RO/C?‘ fl‘ ), and
p=1 lp=1
where
A\ keﬁ'Zeff 1
fl(p) k /2/,Lopb F2( )(Tproﬁlo( ))3/2
A\ keﬂZeﬁ'RokNIpar Fl(p)-}Rfr?;i;i(p)
f2(p) - k;/: (Tproﬁle( ))3/2
fa(p) =FGH @)
and
oA\
il = <I(t>\/—Pmt)
Ptot t
UQ(t) = I(f)( )
us(t) = I(1). 5)

The control of the magnetic diffusion PDE (3) is unique in the
sense that it admits control not only through () (interior con-
trol) and u3(¢) (boundary control) but also through w4 (¢), what
we name diffusivity control in this paper.

In practice, the toroidal current density is usually specified
indirectly by the rotational transform ¢ (or the safety factor ¢ =
=1, which is defined as t(p,t) = (9(p,t)/0®). The con-
stant relationship between ® and p, p = \/(®/7 By ,), and the
definition of the normalized radius / allow us to rewrite the ro-
tational transform as ¢(p, t) = (99 /9p)(1/By,0pip). Since ¢ is
uniquely defined by the spatial derivative of the magnetic flux
1), in this work we define the to-be-controlled variable as

9y

1) = 57

(6)

and use (3) to obtain a PDE for 6(p, t). To simplify notation, we
replace p by « hereafter. The control objective is to drive 6(z, t)
from any arbitrary initial profile 6;,;(x) to a prescribed target or
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desirable profile §4°(z) at some time ¢ ; = T'. Using (6) we can

rewrite (3) as

% = g1(x)ur(t) (g2(2)b(x, 1)) + ga(x)ua(t) ()
with g1(z) = f1(x)(1/), g2(z) = zfu(x), g3(x) = f2(2),

where “f’” stands for derivative of f w.r.t. z, ie., f’
(0f /Ox). By differentiating both sides of (7) w.r.t. x, and let-
ting ho((7) = g1(2)g2 (), b () = g}(2)g2(x) + 201 () gh(),
ha(x) = g (2)gh(x) + 91(2)g8 (), ha() = gh(x), we can
finally write

90(x,t)
ot

ho(x)0" (z,t)u1(t) + hy(2)8 (z, t)uy(t)
+ hao(z)0(x, t)ui(t) + hs(z)usa(t)

t) = k‘gUg(t), and

®)

with boundary conditions 6(0,¢) = 0, (1,
initial condition 6(xz,0) = Oni(z).

IV. MODEL REDUCTION USING POD/GALERKIN

A. POD Modes

The set V = span{#fi,...,0,} C R™ refers to a data en-
semble consisting of snapshots {¢;}7_, obtained from simula-
tion or experimental observation on the grid Q;; = (xi,tj),
where 4, j are integers with 1 < ¢ < m;1 < j < n (0;(i) =
O(xi,t;)). Let {px }{_, be an orthonormal basis of the data en-
semble V, where d = dim}V < m. We then project each of the
snapshots onto the basis ¢y,

=30

k=1

]7(pk Pk, (9)

where (-,-) denotes the vector inner product. The goal of the
POD method is to find an orthonormal basis such that for some
predefined 1 < [ < d the following average index is minimized:

n l 2
. 1
min =Y 1105 =Y (6, 01)0n
{991\-};\.:1 n j=1 k=1
subject 0 (s, p5) = 655, 1<i <, 1<j<i (10)

where ||0]| = \/(8,0) = VT and §;; denotes the Kronecker
delta, which is one when 7 = j and zero otherwise.

The solution of (10) can be found in the literature, e.g.,
[9]. Defining the correlation matrix X € R"™*™ as Kj;
(1/n)(8;,6;), fori,j =1,...,n,let Ay > --- > Ay >--- >
A4 > 0denote the positive eigenvalues of the correlation matrix
K and xi,...,Xx1,---,Xxa the associated eigenvectors, where
d = rank(K). Then, the POD basis functions take the form

(81,

1 < 1
S M, = ——0 k=1,....d) (11
Pk \/A—k;(xk)J J \/A_k Xk ( ) ) ) (11)
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where (xx); is the jth component of the eigenvector x; and
© = (61,...,0,) is the collection of all the snapshots. More-
over, the error (energy ratio) associated with the approximation
with the first [ POD modes is

l

0; — > (0] ox)en

k=1

El:%Z

J=1

-3

k=l+1

12)

B. Galerkin Projection

Let Vpop {@17@27@37@47---7@1} be the set of ob-
tained POD modes. Using the [ POD modes, we approximate
the system state as 6(z,t) ~ 0'(z,t) = ' ai(t)pi(x),
where continuous POD basis functions ¢;(x) € L?([0,1]) are
obtained by interpolating the POD modes ¢; (vectors). We
substitute this expression in (8) to obtain

l

> di(t)pix

=1
l l
82 i 3 i
x)uq(t Zaz ¢ + hy(x)uq(t Zaz ¢
=1 =1
1
+ ha(z)ua(t) Z a;(t)pi(z) + ha(z)ua(t). (13)
i=1
In order to write the weak form of (13) we define first
1
<9192---gn>:/ 9192 - - - gndz
Jo
N
~ Z g1(nAx)ge(nAx) ... gn(nAx)
n=1
2 <992 g0 > (14)

where Az is the spatial interval size and N + 1 is the
number of grid points (NAz 1) considered for the nu-
merical approximation of the interior product. The grid

F = [0 Az 2Az ... (N-1)Ax 1]T7, is parti-
tioned as ¥ = [[0 Az 2Az ... (N-1Az]T 1)
£ [ZT 1]7. We then multiply both sides of (13) by ¢ (x),
for k = 1,2,...,1, integrate over the spatial domain [0, 1],

and take into account that the POD basis functions ¢;(z) are
orthonormal, i.e., (¢;(x), $;(z)) = b;;, to obtain

dk(t)

=uy(t) < hs, ¢ >N
1

+uq(t) Z a;(t) [< ho, @7, dr >N o (1)$ (1) i (1)]

,=ll

+ui () Zai(t) [< R, @, i >N 71+ (1) (1) (1)]
l

+ui(t) Z i (1)K ha, iy e SV o (1) (1)dr(1)]

15)
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C. Inclusion of Boundary Control in Reduced-Order Model

Dirichlet boundary control cannot be effectively incorporated
into the reduced-order model by following a conventional inte-
gration-by-parts approach during the Galerkin projection. Spe-
cific difficulties in Dirichlet boundary control problems result
from the fact that they are not of variational type [11], [12]. In-
spired by [13], we overcome this problem by using a spatial
discretization (14) of the interior product during the Galerkin
projection and employing the end-point-separation method as
shown below. We rewrite the boundary condition as

1
0oy = Y ai(t)gi(1) = kaus(t). (16)
i=1
From (16) we can write
1
ar(t)pr(1) = kaus(t) = Y (1= 8ix)ai(®)gi(1). (A7)

1

K2

By using (17) we can obtain

MN

ai(t)pr(1)¢7 (1)
K (H)dn (1) (1)

l

u (t)ho(1)

= ul(t)ho(l)

Il

)ér(1)¢3 (1)

- Lkat

ZO‘I ()

We follow similar procedure to write

¢i(1)ei(1)]. (18)

l

=1

= uy (t)h1(1)ksus(t)},(1)

= ¢i(1)¢k(1)) (19

and

i ()ha(1) 3 i(W)dn(1)di(1) = wa (Dha(1)ksus(D)pr(1).

(20)
By substituting (18)—(20) into (15), using the notation

Tri = < ho, ¢, ok >V —ho(1)di(1)¢ (1)
+ < hi, @l e SN —hi(1)gi(1)¢),(1)
+ < ha, iy SNT!
Py = < ha, g, >
I = ho(1)ks¢y(1) + ha(1)ksdj(1) + ha(1)ksdr(1)

and redefining the control vector as

u = (v1,v2,v3)T = (u1,u2,uruz)’ 21

we obtain a matrix representation for the reduced order model

s
d—i‘ = Taw (t) + Bua(t) + Mus(t) (22)
where a(t) = (ai,...,a)T € RLT € R @ 11 € R™!, and

v; € R, fori = 1,2, 3. The vector &(t) is the finite dimensional
approximation of 8(x, t), w.r.t. the associated POD modes.

V. OPTIMAL TRACKING CONTROL DESIGN

A. Optimal Control Problem Statement

Weletvo(t) = [v¢ v v3]" be a set of open-loop control
trajectories, which are computed offline, and «°(t) be the open-
loop state trajectory associated with the open-loop control v° (%),
with a nominal initial state «§. The open-loop state trajectory
satisfies

d o

C‘; = Ta®v(t) + Dvs(t) + Iwg(¢) (23)
with initial condition a®(tg) = «f. Let us define e(t) = a(t) —
a’(t) and v¢(t) = v(t) — v°(t), where v(t) = [v1 v2  w3]T
is the overall control input and v°(¢t) = [v{ v§ w©§]| is the

to-be-designed closed-loop control, which is appended to the
open-loop control v°(¢). Then, we can write

d d
;; d: T(a®+e) (v + v5)+® (v] + v5)+1T (05 + v5) .
(24)
By substituting (23) into (24), we obtain
de
i A(t)e + B(e)u = f(e,u) (25)
where A(t) = Tv¢(t) € R, B(e) = [T(e+a°) @ II]€
RIX3, u(t) = vo(t) = [v§ o 05" € R3*L.

We state the optimal control problem for the reduced-order
ODE system (25) as

min J = %eT(tf)Se(tf) + ;/tof el (H)Q(t)e(t)dt

+uT () R(t)u(t)dt (26)
where S and ) are symmetric positive semi-definite matrices
and R is a symmetric positive definite matrix. By introducing
the Lagrange multiplier A(¢) € R'*!, we can define the Hamil-
tonian

He,u, ) = %eT(t)Q(t)e(t) + %uT(t)R(t)u(t)

+ M (D[A)e(t) + Ble)u(t)]. (27)

By invoking the principle of optimality, (OH /du) = 0, we ob-
tain

R(t)u(t) + BT (e)A(t) = 0.
Then, the optimal control law is given by
L) BT (e)A(t).

W)= —R (28)
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The optimal solution is characterized by the following set of
differential equations in the state e and costate A

. OH
e=r = A(t)e + B(e)u(t) )
A= —%—f = —Qt)e — AD)TAE) — " (1) 8386(6) A()

which define a two-point-boundary-value (TPBV) problem with
e(to) = eg = xg — x, A(ty) = Se(ty).

B. Solution by Quasi-Linear Approximation

The solution of the nonlinear TPBV problem is usually com-
putationally demanding. In this section, we propose a successive
approach based on a quasi-linear approximation of the system
dynamics [10] to solve the TPBV problem. By expanding our
problem (25) up to first-order around the previous iteration tra-
jectories e*(t) and u* (), the system (25) takes the form

ML = A(t)eF T + BF(t)u Tt (30)
where k is the iteration number and
B*(t) = B(€)]e=er 1) (31)

with initial condition e**1(0) = eg. The cost function takes the
form

Jk+1 — (€k+1(tf))TS€k+1(tf)

1
+ —

2 / ()T (1
+ (W) T R()u T (1) dt

N —

(32)
and the Hamilton is written as

H(€k+17 uk-‘,—l7 /\k-‘,—l)
1

= S O) ) (1)
3 ) R )
£ OFYT@A@(0) + BHOuH+ (1)), (33)

For each iteration, we have a standard linear quadratic optimal
control problem defined by (30) and (32) with the approximate
control law given by

uMT(t) = =R ()(BF)TAM(2). (34)

As explained above, the optimal problem is characterized by the
following TPBV:

L= A(t)a T+ BY (R )BT 1)

MHL = Q) e () — A()TAM(1) (35)
along with the boundary conditions
" (tg) = e, AFTL(tp) = SeFT(ty). (36)
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Let us propose the solution form

AL (L) & M ()T (1) 37
where s¥*1(t) is a [ x | symmetric matrix. Substituting (37)
into (35), we can obtain the following Riccati matrix differential
equation

ghHl = AT gh+1 _ ghtlg ) 4 gh+lph p=1(pkT gh+l
(38)
with terminal condition s***(¢;) = S. Then, the closed-loop
system becomes
ék-‘rl — (A _ BkR_l(Bk)TSk+1)€k+1 (39)
with the initial condition e**+1(tg) = e.

The open-loop state trajectories z°(¢t) are used to evaluate
(31) and start the iterations. The iterative procedure is stopped
when convergence is achieved under given error tolerance. Fi-
nally, by using the convergent solution s(¢) of the Riccati (38),
we obtain the following feedback control law

u*(t) = =R 1(t)BT (e)s* (t)e(t). (40)
The weight matrix R can be used to satisfy the magnitude con-
straints of the actuators.

Proof of Convergence for the Iterative Scheme

In the rest of this section, it remains to prove the conver-
gence of the proposed quasi-linear approximation in solving the
optimal control problem. Namely, we will show the following
limits in appropriate functional spaces

lim s®) = s*.

k—oo

lim e® =e*,
k—oo

(41)
The associated spaces are two Banach spaces , B; =
C([to,ts],RY), B C([to, ts],R™"), with norms
lle]|ss, SUPrefto,¢, le(T)ll, for any e € DBy and
[sllB. = sup.cpo,e, lIs(T)ll, for any s € DBy, where

[l [l
llell = v/ 2 iz1 e?, and ||s|| = /> iy 312

Remark 1: To show (41), we only need to show that both
{e(k)} and {s(k)} are Cauchy sequences. Thus, the conver-
gence follows due to the completeness of the Banach spaces.
The convergence proof is based on the contraction mapping the-
orem for Banach spaces, which is motivated by the convergence
proof in [10].

Based on (38) and (39), we obtain differential equations for
the differences e(*t1) — (k) and s(k+1) — (k)

% [e0+D — ]
— ®) (e<k+1> _ e<k>) n (Q[(k) _ Q[(k—l)> (k)
L] [s<k+1> _ sUﬂ L [s<k+1) _ 8(1«)} MO

" T (G [S(kﬂ) _ s(k)] 1 s [Q[(k) _ g[(H)}

(42)

+ [® — 1) 0 L) _ gl Z g 43)
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where

AR _ 4 _ g p-1 (B<k>)Ts(k+1>

Q®) —q 4 sE+D gH g1 (B<k>)T s (45

(44)

In order to express the solutions of (42) and (43), we introduce
the transition matrix ®(*) (¢, ¢o)
D (1, 19) = AW (1)@ (1, 1), @FHD (20, 40) = 1.
(46)
In the subsequent proof we will use some of the following prop-
erties of the transition matrix ®(-,-):
(I)(t'/ T)(I)(T'/ tO) = (I)(t7 tO)

O Yt,7) = O(r,t). (47)

?

Lemma 1: The solutions of (42) and (43) are

t
ewm—é“:/¢wm@ﬂx(%Wﬂ—W“Wﬂ)
Jto

x ) (7, 10)eldr (48)

and

S+ _ (k)
ty
- [ 9o
Jt

X {s(k) [Q[(k) _ Ql(k_l)} + [Q[(k) _ Q((k—l)]Ts(k-i—l)

+9® - k=D }¢>(k+1>(7, t)dr. (49)

Proof: The integral expression for e**1) — ¢(¥) can be
obtained by directly integrating both sides of the linear system
(42). This expression is written in terms of the transition matrix
(¢, 1) defined in (46)—(47). We note that the initial value of the
difference term e®**+1) (t5) — e(®)(ty) = 0 due to (36). There-
fore, only the inhomogeneous term of the solution appears in
(48), where we additionally use the transition matrix to write
e®) (1) = ®*) (1, tg)eq. By using the variation of the constant
method for solving differential equations and the definition of
the system transition matrix (47), the expression (48) can be
easily obtained.

For the integral expression for s+h) — ()
we first use the definition (46)—(47) of the tran-
sition  matrix to compute the time  derivative

(Wm{pwmmfpww_wq@HwM@}
Then, by taking into account (43), the resulting time derivative
expression is integrated on both sides from ¢ to £ to obtain

[¢(k)(t7t0)}T [8(k+1) _ s(k)] B+ (¢, 40)

_ /tf [@(k)(ﬂ to)r {3(k> [m(m _ m(k—n}
t

. |:Q[(k) _ m(k—ur S | k) _ ,3(k—1)}
x & (7. 10)dr (50)

where the final difference term s(**+1)(¢;) — s(¥)(¢;) vanishes
due to the terminal condition s(*+1) () = S in (38). In order
to cancel [®*)(¢,¢0)] T and ®*+1) (¢, t0) in (50), we multiply
both sides of the (50) with [®()(to,)]” (from the left) and
®(k+1) (¢4, ) (from the right) respectively, and use (47) to obtain
the integral expression for s(*+1) — s(*) [ ]
Theorem 2: There exists an appropriate control weight matrix
R, such that the sequences {e¢(*)(¢)} and {s(*)(t)} generated by
(38) and (39) are convergent.
Proof: Taking the || - ||s—norm of e(**1) —e(¥) and s(*) —
s(*=1) derived in Lemma 1, we have

He(k+1)_e(k)H% Sule(k)_m(k—l)‘ 51)
L 2
R P
%‘) %2
s 20 —tD| (s
Bo
where
= (k+1) (k)
i=, o o0 [0 t0) ol
(k) (k+1) (k)
pe=, e (@O o) (401 +1s1)
e
-, e )
JI%! togrtnga%tf O (T, t)|| || @ (1,1)]| -

By noting (;‘54) and (45), and by defining S*) £
B® R=1B(*)" we obtain the following norm bounds:

o x|
B>
— H5<k>s(k+1> _ 5<k—1>s<k>‘

B,
sy
B

s (e )
B
Hg(k) _ Q(k—l)‘
Bo
< |[s+D — 50 5<k>8(k+1>H
%2 ‘32
n HS(k)‘ ‘Suc) _ 5<k—1>‘ s(k)‘
B B, B
+ Hs(k)S(k) sthFD) _ 5(k) ‘ : (54)
%2 ‘32

Now we connect the terms in (53) and (54) with the factors
||e(k'+1) - e(k)H%Q and Hs(kH) - s(k)H%? to obtain

H5<k> _ 5<’H>H
%‘)

< HB(k) _ B(k—l)‘

R—lB<k>TH

B, B,

n B(k—nR—l‘ B<k>T_B(k—1>T‘

B

T p—
( BY H% + B ”||%2) T,

12|

B

<

(55)

% |let® — e(H)‘

By
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Fig. 3. Open-loop optimal control trajectories: (a) I(t), (b) Pioc(t), (¢) 72(2).
Using the norm bound estimates in (51)—(55), we obtain 0.16 ' ' y - ' '
Pl
0.14f R ~ 1
3 A
He(k+1) _ e(k)‘ <y |50 s(k)‘ ‘ %
By B> 0.12F ,' . g
’ ‘.
+WHJM_JMM) (56) ' s
B, 0.1F , S ]
.
where v; and 9 are defined as = H %
% 008F ¢ %
_ < 4 [N
=[50 : "
B, 0.06F 1« L8 1
L
k T 1 B s~
B®) + || BE=1| Il h .
B B, B 0.04F , . 1
— (k+1) 2 ] B¢
V2 _.u1||8 ||B2 R ] S
7] ol -
: .
(57) H ™
and ol , ‘ ( ‘ ,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Hs<k+1> _ s(k)‘ < s Hs(k+1) _ s(k)‘ _ S x
By Bo Fig. 4. Comparison of initial & profiles.
+ vy He(k) - e(’H)) (58)
Bs
where
_ k—1 k
By By
s 5
pove . pgve |5%|lm .
vy = + 2, (59) i i,
k+1) s Sy
M1 M1 S( B, BB,
We note that (58) can be solved with respect to
He(k) - e(k_l)‘ . (60)
B 0 0
X
Fig. 5. Time evolution of the 8 profile predicted by the original PDE model.

||s(k+1) — s(k)H%z, ie.,
<

’32_1—1/3

Hs<k+1> _ s(k)‘

By substituting (60) into (56), we obtain
vy +vy4(v1 — 1)
At this point, it is important to mention that because of Banach space, any Cauchy sequence in such a complete space

Ty
B,

the multiplicative influence of R~! in (57) and (59) for v
and vy, respectively, if |R|| is large enough, we can make

sure that the coefficients involved are less than one, i.e.,

1—1/4

o -

By

in the associated Banach spaces, i.e., ||s(k+1) — sk H%z — 0,

|e(k+D) —e(’“)H,B1 — 0. Due to the completeness of the

is convergent, thus

lim s®)(
k—o0

max {|vg/1 — vs|, |ve + va(vn — 12)/1 — 14|} < 1. Thus, we
can conclude that both {s(*)} and {e(*)} are Cauchy sequences

f)

s (1),

lim e®)(t) = e*(¢).

k—o0

(61)
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Fig. 7. Time evolution difference for the 6 profiles predicted by the original
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VI. SIMULATION STUDY

We present simulation results showing the effectiveness of
the proposed optimal control algorithm in a disturbance rejec-
tion problem. For this simulation study we consider a time in-
terval [tp = 0,ty = T = 1.2s] relative to an initial time
tini = 500 ms in the experiment, i.e., o = 0 in the simulations
corresponds to ti,; = 500 ms in the experiment. Fig. 3 shows
the time evolutions for 1(t), Pyt (t) and 7(t) obtained from an
extremum-seeking offline optimization procedure [6] and from
which the control inputs v°(¢) are computed according to (5)
and (21). The synthesis of this open-loop optimal controller con-
sidered the nominal initial profile 6;,; () shown in Fig. 4, which
has been extracted from DIII-D physical shot 129400 at t;,,; =
500 ms. Fig. 5 illustrates the space-time evolution of (%, ) as
predicted by the original PDE system (8) for the nominal initial
profile #;,,;(x) shown in Fig. 4 and the extremum-seeking-based
open-loop control v°(t) shown in Fig. 3. By simulating the orig-
inal PDE system (8), a data ensemble is created with snapshots
of the (¢, z) space-time evolution. POD modes are then ex-
tracted from the created data ensemble. A total of eight POD

s(1,1)

00 0.2 0.4 0.6 0.8 1 1.2

t

Fig. 8. Convergence of the first diagonal element of s.

0.35 : . r . . , r ' .
0.3t j

0.25} 1

0.2f i

0(x,t)

0.15F -

== Nominal open-loop control
Disturbed open-loop control
== Disturbed optimal tracking control

0.1

O 1 1 1 1 1 1 Il 1 1
0 0.1 02 03 04 05 06 07 08 09 1

X

Fig. 9. Final time § matching comparison.

modes is considered for model reduction (the first four dominant
POD modes are shown in Fig. 6). With these eight POD modes,
a low dimensional dynamical system, governed by the ordinary
differential equation (ODE) system (22), is obtained. Before
computing the closed loop control based on the reduced-order
model, we assess the effectiveness of the reduced-order model
in approximating the original PDE system. Fig. 7 shows the ap-
proximation error as function of time and space. By comparing
the magnitude orders in Figs. 5 and 7 we can note that the ap-
proximation error is less than 1%. The order of the error demon-
strate that the reduced-order model based on only eight POD
modes can successfully approximate the PDE system.

The first four more energetic POD modes.

For the functional (26), we choose R =  diag
{(200/max (v§')) , (2/max (v8')) , (200/max (v§')) },
Q = diag{100,100,10,1,1,1,1,1,}, S = diag
{20,5,0.1,0.10.1,0.10.1,0.10.1, 0.1}, where max (v?) stands
for the maximum value of the open-loop control v (t). We
use the proposed iterative quasi-linear approximation scheme
to compute the optimal control law. After iteration & = 3,
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Fig. 10. Optimal tracking control trajectories: (a) I(t), (b) Piot(¥), (¢c) n(t).

0.2 0.4

the solution of the Riccati matrix equation converges, and the
feedback controller is implemented according to (40). Fig. 8
shows the first diagonal element of s as a function of the
iteration number.

We consider now a disturbed initial profile 6;,;(z), as shown
in Fig. 4, and compare the performances of both open-loop
and closed-loop controllers in the presence of this disturbance.
Fig. 9 shows the difference between the final-time profiles
§(z,ty) obtained with the open-loop and closed-loop con-
trollers. The solid blue line shows the final profile obtained
with the open-loop controller when there is no disturbance in
the initial condition. It is possible to note how the closed-loop
controller (red dashed-dotted line) recovers the open-loop
undisturbed final profile even in the presence of a substantial
disturbance in the initial profile. It is also possible to note how
the disturbance in the initial profile is propagated to the final
profile in the open-loop control case (green dotted line). In the
case of the open-loop controller, the control input trajectories
shown in Fig. 3, and computed for the nominal initial profile,
are used. In the case of the closed-loop controller, the control
input trajectories are shown in Fig. 10.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider a simplified dynamic model de-
scribing the evolution of the poloidal flux during the inductive
phase of the tokamak discharge. The evolution in time of the
current profile is related to the evolution of the poloidal flux,
which is modeled in normalized cylindrical coordinates using
a PDE usually referred to as the magnetic diffusion equation.
An optimal tracking control problem is defined around a nom-
inal open-loop trajectory to overcome uncertainties in the initial
conditions. Diffusivity, interior, and boundary actuation is con-
sidered for the solution of this optimal control problem.

The control approach is based on model reduction via POD
and Galerkin projection methods. A conventional integra-
tion-by-parts approach during the Galerkin projection fails to
effectively incorporate the considered Dirichlet boundary con-
trol into the reduced-order model. To overcome this limitation
we use a spatial discretization of the interior product during the
Galerkin projection. The obtained low dimensional dynamical
model is bilinear as the result of the presence of the diffusivity
control term in the parabolic PDE system.

We propose a convergent successive scheme based on the
quasi-linearization of the system dynamics to compute an op-
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timal tracking control law for the bilinear reduced-order system.
Convergence of the iterative scheme is proved in appropriate
functional spaces by exploiting the contraction mapping the-
orem. The simulation study shows that the proposed controller
can effectively overcome the effect of disturbances in the initial
poloidal flux profile.

The experimental validation of this control law at the DIII-D
tokamak is part of our future work. The current profile controller
will have a feedforward component obtained via offline open-
loop control design based on highly complex predictive codes
and a feedback component designed as proposed in this work
based on simplified control-oriented models.
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